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1 Scalar and Vector Potentials for Time-Harmonic
Fields

1.1 Introduction

Previously, we have studied the use of scalar potential Φ for electrostatic prob-
lems. Then we learnt the use of vector potential A for magnetostatic problems.
Now, we will study the combined use of scalar and vector potential for solving
time-harmonic (electrodynamic) fields.

This is important for bridging the gap between static regime where the fre-
quency is zero or low, and dynamic regime where the frequency is not low.
For the dynamic regime, it is important to understand the radiation of elec-
tromagnetic fields. Electrodynamic regime is important for studying antennas,
communications, sensing, wireless power transfer applications, and many more.
Hence, it is imperative to understand how time-varying electromagnetic fields
radiate from sources.

It is also important to understand when static or circuit (quasi-static) regimes
are important. The circuit regime solves problems that have fueled the mi-
crochip industry, and it is hence imperative to understand when electromagnetic
problems can be approximated with simple circuit problems and solved using
simple laws such as KCL an KVL.

1.2 Scalar and Vector Potentials for Statics, A Review

Previously, we have studied scalar and vector potentials for electrostatics and
magnetostatics where the frequency ω is identically zero. The four Maxwell’s
equations for a homogeneous medium are then

∇×E = 0 (1.1)

∇×H = J (1.2)

∇ · εE = % (1.3)

∇ · µH = 0 (1.4)

In order to satisfy the first of Maxwell’s equations or Faraday’s law above, we
let

E = −∇Φ (1.5)

Using the above in (1.3), we get, for a homogeneous medium, that

∇2Φ = −%
ε

(1.6)

which is the Poisson’s equation for electrostatics.
By letting

µH = ∇×A (1.7)
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since∇·(∇×A) = 0, the last of Maxwell’s equations above will be automatically
satisfied. And using the above in the second of Maxwell’s equations above, we
get

∇×∇×A = µJ (1.8)

Now, using the fact that ∇×∇×A = ∇(∇ ·A)−∇2A, and Coulomb’s gauge
that ∇ ·A = 0, we arrive at

∇2A = −µJ (1.9)

which is the vector Poisson’s equation. Next, we will repeat the above derivation
when ω 6= 0.

1.3 Scalar and Vector Potentials for Electrodynamics

To this end, we will start with frequency domain Maxwell’s equations with
sources J and % included, and later see how these sources J and % can radiate
electromagnetic fields. Maxwell’s equations in the frequency domain are

∇×E = −jωµH (1.10)

∇×H = jωεE + J (1.11)

∇ · µH = 0 (1.12)

∇ · εE = % (1.13)

In order to satisfy the third Maxwell’s equation, as before, we let

µH = ∇×A (1.14)

Now, using (1.14) in (1.10), we have

∇× (E + jωA) = 0 (1.15)

Since ∇× (∇Φ) = 0, the above implies that

E = −∇Φ− jωA (1.16)

The above implies that the electrostatic theory of E = −∇Φ is not exactly
correct when ω 6= 0. The second term above, in accordance to Faraday’s law, is
the contribution to the electric field from the time-varying magnetic field, and
hence, is the induction term.

Furthermore, the above shows that given A and Φ, one can determine the
fields H and E. To this end, we will derive equations for A and Φ in terms of
the sources J and % which are given. Substituting (1.14) and (1.16) into (1.11)
gives

∇×∇×A = −jωµε(−jωA−∇Φ) + µJ (1.17)
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Or upon rearrangement, after using that ∇ ×∇ ×A = ∇∇ ·A − ∇ · ∇A, we
have

∇2A + ω2µεA = −µJ + jωµε∇Φ +∇∇ ·A (1.18)

Moreover, using (1.16) in (1.13), we have

∇ · (jωA +∇Φ) = −%
ε

(1.19)

In the above, (1.18) and (1.19) represent two equations for the two unknowns A
and Φ, expressed in terms of the known quantities, the sources J and % which are
given. But these equations are coupled to each other. They look complicated
and are rather difficult to solve at this point.

As in the magnetostatic case, the vector potential A is not unique. One
can always construct a new A′ = A + ∇Ψ that produces the same magnetic
field µH, since ∇ × ∇Ψ = 0. It is quite clear that µH = ∇ × A = ∇ × A′.
This implies that A is not unique, and one can further show that Φ is also
non-unique.

To make them unique, in addition to specifying what ∇ ×A should be in
(1.14), we need to specify its divergence or ∇ ·A as in the electrostatic case.1

A clever way to specify the divergence of A is to make it simplify the compli-
cated equations above in (1.18). We choose a gauge so that the last two terms
in the equation will cancel each other. Therefore, we specify

∇ ·A = −jωµεΦ (1.20)

The above is judiciously chosen so that the pertinent equations (1.18) and (1.19)
will be simplified and decoupled. Then they become

∇2A + ω2µεA = −µJ (1.21)

∇2Φ + ω2µεΦ = −%
ε

(1.22)

Equation (1.20) is known as the Lorenz gauge2 and the above equations are
Helmholtz equations with source terms. Not only are these equations simplified,
they can be solved independently of each other since they are decoupled from
each other.

Equations (1.21) and (1.22) can be solved using the Green’s function method.
Equation (1.21) actually implies three scalar equations for the three x, y, z
components, namely that

∇2Ai + ω2µεAi = −µJi (1.23)

1This is akin to that given a vector A, and an arbitrary vector k, in addition to specifying
what k×A is, it is also necessary to specify what k ·A is to uniquely specify A.

2Please note that this Lorenz is not the same as Lorentz.
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where i above can be x, y, or z. Therefore, (1.21) and (1.22) together constitute
four scalar equations similar to each other. Hence, we need only to solve their
point-source response, or the Green’s function of these equations by solving

∇2g(r, r′) + β2g(r, r′) = −δ(r− r′) (1.24)

where β2 = ω2µε.
Previously, we have shown that when β = 0,

g(r, r′) = g(|r− r′|) =
1

4π|r− r′|

When β 6= 0, the correct solution is

g(r, r′) = g(|r− r′|) =
e−jβ|r−r

′|

4π|r− r′|
(1.25)

which can be verified by back substitution.
By using the principle of linear superposition, or convolution, the solutions

to (1.21) and (1.22) are then

A(r) = µ

˚
dr′J(r′)

e−jβ|r−r
′|

4π|r− r′|
(1.26)

Φ(r) =
1

ε

˚
dr′%(r′)

e−jβ|r−r
′|

4π|r− r′|
(1.27)

In the above dr′ is the shorthand notation for dx dy dz and hence, they are still
volume integrals.

2 When is Static Theory Valid?

We have learnt in the previous section that for electrodynamics,

E = −∇Φ− jωA (2.1)

where the second term above on the right-hand side is due to induction, or the
contribution to the electric field from the time-varying magnetic filed. Hence,
much things we learn in potential theory that E = −∇Φ is not truly valid. But
simple potential theory that E = −∇Φ is very useful because of its simplicity.
We will study when static electromagnetic theory can be used to model this
world. Since the third and the fourth Maxwell’s equations are derivable from
the first two, let us first study when we can ignore the time derivative terms in
the first two of Maxwell’s equations, which, in the frequency domain, are

∇×E = −jωµH (2.2)

∇×H = jωεE + J (2.3)
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When the terms multiplied by jω above can be ignored, then electrodynamics
can be replaced with static electromagnetics, which are much simpler. That
is why Ampere’s law, Coulomb’s law, and Gauss’ law were discovered first.
Quasi-static electromagnetic theory eventually gave rise to circuit theory and
telegraphy technology. Circuit theory consists of elements like resistors, capaci-
tors, and inductors. Given that we have now seen electromagnetic theory in its
full form, we like to ponder when we can use simple static electromagnetics to
describe electromagnetic phenomena.

Figure 1: The electric and magnetic fields around a conducting particle contorts
themselves to satisfy the boundary conditions even when the particle is very
small.

To see this lucidly, it is best to write Maxwell’s equations in dimensionless
units or the same units. Say if we want to solve Maxwell’s equations for the
fields close to an object of size L as shown in Figure 1. This object can be a small
particle like the sphere, or it could be a capacitor, or an inductor, which are
small; but how small should it be before we can apply static electromagnetics?

It is clear that these E and H fields will have to satisfy boundary conditions,
which is de rigueur in the vicinity of the object as shown in Figure 1 even
when the frequency is low or the wavelength long. The fields become great
contortionist in order to do so. Hence, we do not expect a constant field around
the object but that the field will vary on the length scale of L. So we renormalize
our length scale by this length L by defining a new dimensionless coordinate
system such that.

x′ =
x

L
, y′ =

y

L
, z′ =

z

L
(2.4)
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In other words, by so doing, then Ldx′ = dx, Ldy′ = dy, and Ldz′ = dz, and

∂

∂x
=

1

L

∂

∂x′
,

∂

∂y
=

1

L

∂

∂y′
,

∂

∂z
=

1

L

∂

∂z′
(2.5)

In this manner, ∇ = 1
L∇
′; or ∇ will be very large when it operates on fields

that vary on the length scale of L, where ∇′ will not be large because it is in
coordinates normalized with respect to L.

Then, the first two of Maxwell’s equations become

1

L
∇′ ×E = −jωµ0H (2.6)

1

L
∇′ ×H = jωε0E + J (2.7)

Here, we still have apples and oranges to compare with since E and H have
different units; we cannot compare quantities if they have different units. For
instance, the ratio of E to the H field has a dimension of impedance. To bring
them to the same unit, we define a new E′ such that

η0E
′ = E (2.8)

where η0 =
√
µ0/ε0

∼= 377 ohms in vacuum. In this manner, the new E′ has
the same unit as the H field. Then, (2.6) and (2.7) become

η0

L
∇′ ×E′ = −jωµ0H (2.9)

1

L
∇′ ×H = jωε0η0E

′ + J (2.10)

With this change, the above can be rearranged to become

∇′ ×E′ = −jωµ0
L

η0
H (2.11)

∇′ ×H = jωε0η0LE
′ + LJ (2.12)

By letting η0 =
√
µ0/ε0, the above can be further simplified to become

∇′ ×E′ = −j ω
c0
LH (2.13)

∇′ ×H = j
ω

c0
LE′ + LJ (2.14)

Notice now that in the above, H, E′, and LJ have the same unit, and ∇′ is
dimensionless and is of order one, and ωL/c0 is also dimensionless.

Therefore, one can compare terms, and ignore the frequency dependent jω
term when

ω

c0
L� 1 (2.15)
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or when

2π
L

λ0
� 1 (2.16)

Consequently, the above criteria are for the validity of the static approximation
when the time-derivative terms in Maxwell’s equations can be ignored. When
these criteria are satisfied, then Maxwell’s equations can be simplified to and
approximated by the following equations

∇′ ×E′ = 0 (2.17)

∇′ ×H = LJ (2.18)

which are the static equations, Faraday’s law and Ampere’s law of electromag-
netic theory. They can be solved together with Gauss’ laws.

In other words, one can solve, even in optics, where ω is humongous or
the wavelength very short, using static analysis. This is illustrated in the field
of nano-optics with a plasmonic nanoparticle. If the particle is small enough
compared to wavelength of the light, electrostatic analysis can be used. For
instance, the wavelength of blue light is about 400 nm, and 10 nm nano-particles
can be made. (Even the ancient Romans could make them!) And hence, static
electromagnetic theory can be used to analyze the wave-particle interaction.
This was done in one of the homeworks. Figure 2 shows an incident light whose
wavelength is much longer than the size of the particle. The incident field
induces an electric dipole moment on the particle, whose external field can be
written as

Es = (r̂2 cos θ + θ̂ sin θ)
(a
r

)3

Es (2.19)

while the incident field and the interior field to the particle can be expressed as

E0 = ẑE0 = (r̂ cos θ − θ̂ sin θ)E0 (2.20)

Ei = ẑEi = (r̂ cos θ − θ̂ sin θ)Ei (2.21)

By matching boundary conditions, as was done in the homework, it can be
shown that

Es =
εs − ε
εs + 2ε

E0 (2.22)

Ei =
3ε

εs + 2ε
E0 (2.23)

For a plasmonic nano-particle, the particle medium behaves like a plasma, and εs
in the above can be negative, making the denominators of the above expression
close to zero. Therefore, the amplitude of the internal and scattered fields can be
very large when this happens, and the nano-particles will glitter in the presence
of light.

8



ECE 604, Lecture 23 Mon, Mar 4, 2019

Figure 3 shows a nano-particle sets in plasmonic oscillation by a light wave.
Figure 4 shows that different color fluids can be obtained by immersing nano-
particles in fluids with different background permittivity causing the plasmonic
particles to resonate at different frequencies.

Figure 2: Courtesy of Kong.

Figure 3: A nano-particle undergoing electromagnetic oscillation when an elec-
tromagnetic wave impinges on it.
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Figure 4: Color of fluid containing nano-particles can be obtained by changing
the permittivity of the background fluid.

In (2.16), this criterion has been expressed in terms of the dimension of the
object L compared to the wavelength λ0. Alternatively, we can express this
criterion in terms of transit time. The transit time for an electromagnetic wave
to traverse an object of size L is τ = L/c0 and ω = 2π/T where T is the period
of the time-harmonic oscillation. Hence, (2.15) can be re-expressed as

2πτ

T
� 1 (2.24)

The above implies that if the transit time τ needed to traverse the object of
length L is much small than the period of oscillation of the electromagnetic
field, then static theory can be used.

The finite speed of light gives rise to delay or retardation of electromagnetic
signal when it propagates through space. When this retardation effect can be
ignored, then static theory can be used. In other words, if the speed of light
had been infinite, then there would be no retardation effect, and static theory
could always be used. Alternatively, the infinite speed of light will give rise
to infinite wavelength, and criterion (2.16) will always be satisfied, and static
theory prevails.

2.1 Quasi-Electromagnetic Theory

In closing, we would like to make one more remark. The right-hand side of
(2.11), which is Faraday’s law, is essential for capturing the physical mechanism
of an inductor and flux linkage. And yet, if we drop it, there will be no inductor
in this world. To understand this dilemma, let us rewrite (2.11) in integral form,
namely, ˛

C

E′ · dl = −jωµ0
L

η0

¨
S

dS ·H (2.25)
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In the inductor, the right-hand side has been amplified by multiple turns, ef-
fectively increasing S, the flux linkage area. Or one can think of an inductor
as having a much longer effective length Leff when untwined so as to compen-
sate for decreasing frequency ω. Hence, the importance of flux linkage or the
inductor in circuit theory is not diminished unless ω = 0.

By the same token, displacement current can be enlarged by using capaci-
tors. In this case, even when no electric current J flows through the capacitor,
displacement current flows and the generalized Ampere’s law becomes

˛
C

H · dl = jωεη0L

¨
S

dS ·E′ (2.26)

The displacement in a capacitor cannot be ignored unless ω = 0. Therefore,
when ω 6= 0, or in quasi-static case, inductors and capacitors in circuit theory
are important as we shall study next.
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