
ECE 604, Lecture 19

Fri, Feb 22, 2019

Contents

1 Rectangular Waveguides, Contd. 2
1.1 TM Modes (E Modes or Ez 6= 0 Modes) . . . . . . . . . . . . . . 2
1.2 Bouncing Wave Picture . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Field Plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Circular Waveguides 5
2.1 TE Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 TM Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Printed on March 24, 2019 at 16 : 44: W.C. Chew and D. Jiao.

1



ECE 604, Lecture 19 Fri, Feb 22, 2019

1 Rectangular Waveguides, Contd.

1.1 TM Modes (E Modes or Ez 6= 0 Modes)

The above exercise for TE modes can be repeated for the TM modes. The scalar
wave function for the TM modes is

Ψes(x, y) = A sin
(mπ
a
x
)

sin
(nπ
b
y
)

(1.1)

Here, sine functions are chosen for the standing waves, and the chosen values of
βx and βy ensure that the homogeneous Dirichlet boundary condition is satisfied
on the entire waveguide wall. Neither of the m and n can be zero, lest the field
is zero. In this case, both m > 0, and n > 0 are needed. Thus, the lowest TM
mode is the TM11 mode. Notice here that

β2
s = β2

x + β2
y =

(mπ
a

)2
+
(nπ
b

)2
(1.2)

Therefore, the corresponding cutoff frequencies and cutoff wavelengths for the
TMmn modes are the same as the TEmn modes. These modes are degenerate
in this case. For the lowest modes, TE11 and TM11 modes have the same
cutoff frequency. Figure 1 shows the dispersion curves for different modes of
a rectangular waveguide. Notice that the group velocities of all the modes are
zero at cutoff, and then the group velocities approach that of the waveguide
medium as frequency becomes large.

Figure 1: Dispersion curves for rectangular a rectangular waveguide. Notice
that the lowest TM mode is the TM11 mode, and k is equivalent to β in this
course (Courtesy of J.A. Kong).

1.2 Bouncing Wave Picture

We have seen that the transverse variation of a mode in a rectangular waveguide
can be expanded in terms of sine and cosine functions which represent standing
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waves, or that they are

(exp(−jβxx)± exp(jβxx)) (exp(−jβyy)± exp(jβyy))

When the above is expanded and together with the exp(−jβzz) the mode propa-
gating in the z direction, we see four waves bouncing around in the xy directions
and propagating in the z direction. The picture of this bouncing wave can be
depicted in Figure 2.

Figure 2:

1.3 Field Plots

Plots of the fields of different rectangular waveguide modes are shown in Figure
3. Higher frequencies are needed to propagate the higher order modes or the high
m and n modes. Notice that for higher m’s and n’s, the transverse wavelengths
are getting shorter, implying that βx and βy are getting larger because of the
higher frequencies involved.

Notice also how the electric field and magnetic field curl around each other.
Since ∇×H = jωεE and ∇×E = −jωµH, they do not curl around each other
“immediately” but with a π/2 phase delay due to the jω factor. Therefore, the
E and H fields do not curl around each other at one location, but at a displaced
location due to the π/2 phase difference. This is shown in Figure 4.
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Figure 3: Courtesy of Andy Greenwood. Original plots published in Lee, Lee,
and Chuang, IEEE T-MTT, 33.3 (1985): pp. 271-274.
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Figure 4:

2 Circular Waveguides

Figure 5:

2.1 TE Case

For a circular waveguide, it is best first to express the Laplacian operator, ∇s2 =
∇s ·∇s, in cylindrical coordinates. Doing a table lookup, ∇sΨ = ρ̂ ∂

∂ρΨ+ φ̂ 1
ρ
∂
∂φ ,

∇s ·A = 1
ρ
∂
∂ρρAρ + 1

ρ
∂
∂φAφ. Then

(
∇s2 + βs

2
)

Ψhs =

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ βs

2

)
Ψhs(ρ, φ) = 0 (2.1)
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Using separation of variables, we let

Ψhs(ρ, φ) = Bn(βsρ)e±jnφ (2.2)

Then ∂2

∂φ2 → −n2, and (2.1) becomes an ordinary differential equation which is(
1

ρ

d

dρ
ρ
d

dρ
− n2

ρ2
+ βs

2

)
Bn(βzρ) (2.3)

The above is known as the Bessel equation whose solutions are special func-

tions. These special functions are Jn(x), Nn(x), H
(1)
n (x), and H

(2)
n (x) which are

called Bessel, Neumann, Hankel fuction of the first kind, and Hankel function
of the second kind, respectively, where n is the order, and x is the argument.1

Since this is a second order ordinary differential equation, only two of the four
commonly encountered solutions of Bessel equation are independent. Therefore,
they can be expressed then in term of each other. Their relationships are shown
below:2

Bessel, Jn(x) =
1

2
[Hn

(1)(x) +Hn
(2)(x)] (2.4)

Neumann, Nn(x) =
1

2j
[Hn

(1)(x)−Hn
(2)(x)] (2.5)

Hankel–First kind, Hn
(1)(x) = Jn(x) + jNn(x) (2.6)

Hankel–second kind, Hn
(2)(x) = Jn(x)− jNn(x) (2.7)

It can be shown that

Hn
(1)(x) ∼

√
2

πx
ejx−j(n+

1
2 )

π
2 , x→∞ (2.8)

Hn
(2)(x) ∼

√
2

πx
e−jx+j(n+

1
2 )

π
2 , x→∞ (2.9)

They correspond to traveling wave solutions when ρ → ∞. Since Jn(x) and
Nn(x) are linear superpositions of these traveling wave solutions, they corre-

spond to standing wave solutions. Moreover, Nn(x), Hn
(1)(x), and Hn

(2)(x)→
∞ when x → 0. Since the field has to be regular when ρ → 0 at the center of
the waveguide shown in Figure 5, the only viable solution for the waveguide is
that Bn(βsρ) = AJn(βsρ). Thus

Ψhs(ρ, φ) = AJn(βsρ)e±jnφ (2.10)

The homogeneous Neumann boundary condition on the waveguide wall then
translates to

d

dρ
Jn(βsρ) = 0, ρ = a (2.11)

1Some textbooks use Yn(x) for Neumann functions.
2Their relations with each other are similar to those between exp(−jx), sin(x), and cos(x).
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Defining Jn
′(x) = d

dxJn(x), the above is the same as

Jn
′(βsa) = 0 (2.12)

Plots of Bessel functions and their derivatives are shown in FIgure ??. The
above are the zeros of the derivative of Bessel function and they are tabulated
in many textbooks. The m-th zero of Jn

′(x) is denoted to be βnm in many
books,3 and some of them are also shown in Figure ??; and hence, the guidance
condition for a waveguide mode is then

βs = βnm/a (2.13)

for the TEnm mode. Using the fact that βz =
√
β2 − β2

s , the corresponding
cutoff frequency of the TEnm mode is

ωnm,c =
1
√
µε

βnm
a

(2.14)

When ω < ωnm,c, the corresponding mode cannot propagate in the waveguide
as βz becomes pure imaginary. The corresponding cutoff wavelength is

λnm,c =
2π

βnm
a (2.15)

By the same token, when λ > λnm,c, the corresponding mode cannot be guided
by the waveguide.

2.2 TM Case

The corresponding boundary value problem for this case is(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ βs

2

)
Ψes(ρ, φ) = 0 (2.16)

with the homogeneous Dirichlet boundary condition, Ψes(a, φ) = 0, on the
waveguide wall. The solution is

Ψes(ρ, φ) = AJn(βsρ)e±jnφ (2.17)

with the boundary condition that Jn(βsa) = 0. The zeros of Jn(x) are labeled
as αnm is many textbooks, as well as in Figure ??; and hence, the guidance
condition is that for the TMnm mode is that

βs =
αnm
a

(2.18)

With βz =
√
β2 − β2

s , the corresponding cutoff frequency is

ωnm,c =
1
√
µε

αnm
a

(2.19)

3Notably, Abramowitz and Stegun, Handbook of Mathematical Functions.
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or when ω < ωnm,c, the mode cannot be guided. The cutoff wavelength is

λnm,c =
2π

αnm
a (2.20)

with the notion that when λ > λnm,c, the mode cannot be guided.
It turns out that the lowest mode in a circular waveguide is the TE11 mode.

It is actually a close cousin of the TE10 mode of a rectangular waveguide. Table
in Figure ?? shows the plot of Bessel function Jn(x) and its derivative J ′n(x).
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