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1 Reflection and Transmission—Single Interface
Case

We will derive the reflection coefficients for the single interface case. These
reflection coefficients are also called the Fresnel reflection coefficients because
they were first derived by Austin-Jean Fresnel (1788-1827). Note that he lived
before the completion of Maxwell’s equations in 1865. But when Fresnel derived
the reflection coefficients in 1823, they were based on the elastic theory of light;
and hence, the formulas are not exactly the same as what we are going to derive
(see Born and Wolf, Principles of Optics, p. 40).

1.1 TE Polarization (Perpendicular or E Polarization)

Figure 1:

To set up the above problem, the wave in Region 1 can be written as Ei + Er.
We assume plane wave polarized in the y direction where the wave vectors are
βi = x̂βix + ẑβiz, βr = x̂βrx − ẑβrz, βt = x̂βtx + ẑβtz, respectively for the
incident, reflected, and transmitted waves. Then

Ei = ŷE0e
−jβi·r = ŷE0e

−jβixx−jβizz (1.1)
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and

Er = ŷRTEE0e
−jβr·r = ŷRTEE0e

−jβrxx+jβrzz (1.2)

In Region 2, we only have transmitted wave; hence

Et = ŷTTEE0e
−jβt·r = ŷTTEE0e

−jβtxx−jβtzz (1.3)

In the above, the incident wave is known and hence, E0 is known. From (1.2)
and (1.3), RTE and TTE are unknowns yet to be sought. To find them, we
need two boundary conditions to yield two equations. These are tangential E
continuous and tangential H continuous, which are n̂×E continuous and n̂×H
continuous conditions at the interface.

Imposing n̂×E continuous at z = 0, we get

E0e
−jβixx +RTEE0e

−jβrxx = TTEE0e
−jβtxx, ∀x (1.4)

In order for the above to be valid for all x, it is necessary that βix = βrx = βtx,
which is also known as the phase matching condition.1 From the above, by
letting βix = βrx = β1 sin θi = β1 sin θr, we obtain that θr = θi or that the law of
reflection that the angle of reflection is equal to the angle of incidence. By letting
βtx = β2 sin θt = βix = β1 sin θi, we obtain Snell’s law that β1 sin θi = β2 sin θt,
a law of refraction that was also known in the Islamic world in the 900 AD.

Now, canceling common terms on both sides of the equation (1.4), the above
simplifies to

1 +RTE = TTE (1.5)

To impose n̂ ×H continuous, one needs to find the H field using ∇× E =
−jωµH, or that H = −jβ ×E/(−jωµ) = β ×E/(ωµ). By so doing

Hi =
βi ×Ei

ωµ1
=

βi × ŷ
ωµ1

E0e
−jβi·r =

ẑβix − x̂βiz
ωµ1

E0e
−jβi·r (1.6)

Hr =
βr ×Er

ωµ1
=

βr × ŷ
ωµ1

RTEE0e
−jβr·r =

ẑβrx + x̂βrz
ωµ2

RTEE0e
−jβr·r (1.7)

Ht =
βt ×Et

ωµ2
=

βt × ŷ
ωµ2

TTEE0e
−jβt·r =

ẑβtx − x̂βtz
ωµ2

TTEE0e
−jβt·r (1.8)

Imposing n̂×H continuous or Hx continuous at z = 0, we have

βiz
ωµ1

E0e
−jβixx − βrz

ωµ1
RTEE0e

−jβrxx =
βtz
ωµ2

TTEE0e
−jβtxx (1.9)

As mentioned before, the phase-matching condition requires that βix = βrx =
βtx. The dispersion relation for plane waves requires that

β2
ix + β2

iz = β2
rx + β2

rz = ω2µ1ε1 = β2
1 (1.10)

β2
tx + β2

tz = ω2µ2ε2 = β2
2 (1.11)

1The phase-matching condition can also be proved by taking the Fourier transform of the
equation with respect to x.
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Since βix = βrx = βtx = βx, the above implies that βiz = βrz = β1z. Moreover,
βtz = β2z 6= β1z usually since β1 6= β2. Then (1.9) simplifies to

β1z
µ1

(1−RTE) =
β2z
µ2

TTE (1.12)

where β1z =
√
β2
1 − β2

x, and β2z =
√
β2
2 − β2

x.
Solving (1.5) and (1.12) yields

RTE =

(
β1z
µ1
− β2z

µ2

)/(
β1z
µ1

+
β2z
µ2

)
(1.13)

TTE = 2

(
β1z
µ1

)/(
β1z
µ1

+
β2z
µ2

)
(1.14)

1.2 TM Polarization (Parallel or H Polarization)

Figure 2:

The solution to the TM polarization case can be obtained by invoking duality
principle where we do the substitution E→ H, H→ −E, and µ
 ε as shown
in Figure 2. The reflection coefficient for the TM magnetic field is then

RTM =

(
β1z
ε1
− β2z

ε2

)/(
β1z
ε1

+
β2z
ε2

)
(1.15)
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TTM = 2

(
β1z
ε1

)/(
β1z
ε1

+
β2z
ε2

)
(1.16)

Please remember that RTM and TTM are reflection and transmission coefficients
for the magnetic fields, whereas RTE and TTE are those for the electric fields.
Some textbooks may define these reflection coefficients based on electric field
only, and they will look different, and duality principle cannot be applied.

2 Interesting Physical Phenomena

Three interesting physical phenomena emerge from the solutions of the single-
interface problem. They are total internal reflection, Brewster angle effect, and
surface plasmonic resonance. We will look at them next.

2.1 Total Internal Reflection

Total internal reflection comes about because of phase matching also called
momentum matching. This phase-matching condition can be illustrated using
β-surfaces (same as k-surfaces in some literature), as shown in Figure 3.

Figure 3: Courtesy of J.A. Kong, Electromagnetic Wave Theory. Here, k is
synonymous with β. Also, the x axis is equivalent to the z axis in the previous
figure.
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It turns out that because of phase matching, for certain interfaces, β2z be-
comes pure imaginary.

Figure 4: Courtesy of J.A. Kong, Electromagnetic Wave Theory. Here, k is
synonymous with β, and x axis is the same as our z axis.

As shown in Figures 3 and 4, because of the dispersion relation that β2
rx +

β2
rz = β2

ix + β2
iz = β2

1 , β2
tx + β2

tz = β2
2 , they are equations of two circles in 2D

whose radii are β1 and β2, respectively. The tips of the β vectors for Regions
1 and 2 have to be on a spherical surface in the βx, βy, and βz space in the
general 3D case, but in this figure, we only show a cross section of the sphere
assuming that βy = 0.

Phase matching implies that the x-component of the β vectors are equal to
each other as shown. One sees that θi = θr in Figure 4, and also as θi increases,
θt increases. For an optically less dense medium where β2 < β1, according to the
Snell’s law of refraction, the transmitted β will refract away from the normal,
as seen in the figure. Therefore, eventually the vector βt becomes parallel to
the x axis when βix = βrx = β2 = ω

√
µ2ε2 and θt = π/2. The incident angle at

which this happens is termed the critical angle θc.
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Since βix = β1 sin θi = βrx = β1 sin θr = β2, or

sin θr = sin θi = sin θc =
β2
β1

=

√
µ2ε2√
µ1ε1

=
n2
n1

(2.1)

where n1 is the reflective index defined as c0/vi =
√
µiεi/

√
µ0ε0 where vi is the

phase velocity of the wave in Region i. Hence,

θc = sin−1(n2/n1) (2.2)

When θi > θc. βx > β2 and β2z =
√
β2

2 − βx2 becomes pure imaginary.
When β2z becomes pure imaginary, the wave cannot propagate in Region 2,
or β2z = −jα2z, and the wave becomes evanescent. The reflection coefficient
(1.13) becomes of the form

RTE = (A− jB)/(A+ jB) (2.3)

It is clear that |RTE | = 1 and that RTE = ejθTE . Therefore, a total internally
reflected wave suffers a phase shift. A phase shift in the frequency domain
corresponds to a time delay in the time domain. Such a time delay is achieved
by the wave traveling laterally in Region 2 before being refracted back to Region
1. Such a lateral shift is called the Goos-Hanschen shift as shown in Figure 5.

Please be reminded that total internal reflection comes about entirely due
to the phase-matching condition when Region 2 is a faster medium than Region
1. Hence, it will occur with all manner of waves, such as elastic waves, sound
waves, seismic waves, quantum waves etc.

Figure 5: Goos-Hanschen Shift. Courtesy of Paul R. Berman (2012), Scholar-
pedia, 7(3):11584.
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The guidance of a wave in a dielectric slab is due to total internal reflection
at the dielectric-to-air interface. The wave bounces between the two interfaces
of the slab, and creates evanescent waves outside, as shown in Figure 6. The
guidance of waves in an optical fiber works by similar mechanism, as shown in
Figure 7.

Figure 6: Courtesy of E.N. Glytsis, NTUA, Greece.

Figure 7: Courtesy of Wikepedia.
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