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DTENTIALS AROUND A LINE CHARGE AND BETWEEN COAXIAL CYLINDERS
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Example 1.8b
PoTENTIAL QUTSIDE A SPHERICALLY SYMMETRIC CHARGE

saw in Eq. 1.4(4) that the flux density outside a spheric
= Q/4nr?. Using E = D/s, and taking the reference
ty, we see that the potential outside the charge Q is the

ally symmetric charge Qis
potential to be zero at in-
negative of the integral of

1.8 Electrostatic Potential: Equipotentials 23

tE,. t dr from infinity to radius 7:

"Qdn, _ _Q

.-
o 4megry  Amegr

) = —

(10)

Por Example 1.8¢
ENTIAL OF A UNIFORM DISTRIBUTION OF CHARGE
HAVING SPHERICAL SYMMETRY
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So the potential at a radius r inside the charge region is
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Example 1.8d
ELECTRIC DIPOLE
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Fic. 1.8  (d) Eleciric dipole. (¢) Equipotentials of electric dipole.
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Using the law of cosines, we have
r2 =% + & — 2r§cos 6
and similarly for _ with opposite sign of cos 8. For § <<r,
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Substituting in (15) and again using the restriction § << r, one obtains
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We define an electric dipole moment p of a pair of equal charges as the product of the
charge and the separation. The direction of vector p is from the negative charge to the
positive one. Thus (16) may be written as
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where F is a unit vector directed outward toward the point of observation. It is seen that
the dipole potential decreases as 1/ r* with increasing distance from the origin, whereas
the potential of the single charge decreases only as the first power. The increased rate
of decay of the potential is to be expected as a result of the partial cancellation of the
potentials of opposite sign. Equipotential lines are shown plotted on a plane passing
through the dipole in Fig. 1.8¢. The values shown are relative. The equipotentials are
surfaces of revolution generated by rotating the lines in Fig. 1.8e about the dipole axis.

1.9 CAPACITANCE

The capacitance between two electrodes, widely used in circuit calculations, is a meas-
ure of the charge Q on each electrode per volt of potential difference ®, — @, between
them:
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For capacitance systems having two electrodes; the excess negative charge on one
equals the deficiency of negative charge on the other.

Consider first the parallel plates in Fig. 1.9a. The separation is small compared with
the width. The result is that charges accumulate mainly on the most closely separated
surfaces. We shall idealize the structure as a portion of infinitely wide plates (Fig. 1.95)
and thereby neglect the fringing fields that do not pass straight from one plate to the
other. Such idealizations of real situations are extremely useful, but their limitations
must always be remembered. The flux density D is found from Gauss’s law to equal
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