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Preface

Throughout my professional career I have been fascinated by problems involv-
ing electrical noise. In this book I would like to describe aspects of electrical
noise somewhat in the manner of a Russian matryoshka doll, in which each
shell contains a different doll, alluding to deeper and deeper meanings hidden
inside as outer appearances are peeled away.

Let us look at some dictionary definitions of noise. Surprisingly, the origin
of the word in the English language is unknown. The Ozford Universal Dic-
tionary (1955) has the following definition: “Noise. 1. loud outcry, clamour
or shouting; din or disturbance; common talk, rumour, evil report, scandal -
1734. A loud or harsh sound of any kind; a din ... An agreeable or melodious
sound. Now rare, ME. A company or band of musicians.”

This is not a helpful definition of the technical meaning of noise. The Sup-
plement to the Ozford English Dictionary (1989) lists the following: “Noise.
7. In scientific use, a collective term (used without the indefinite article) for:
fluctuations or disturbances (usu. irregular) which are not part of a wanted
signal, or which interfere with its intelligibility or usefulness.”

The last definition is an appropriate one and relates to the work of Prof.
Norbert Wiener who developed the mathematics of statistical functions in
the 1930s and 1940s. To this day I am awed by the power of mathemati-
cal prediction of averages of outcomes of statistically fluctuating quantities.
These predictions extend to the theory of and experiments on noise.

Let us look at the interpretation in other languages of the word used for
the technical term “noise”.

In German Rauschen: rush, rustle, murmur, roar, thunder, (poet.})
sough.
In Russian shum: noise, hubbub, uproar; vetra, voln: sound of

wind, waves.

In French bruit: noise, din, racket, uproar, commotion, clamor;
(fig.) tumult, sedition; fame, renown, reputation; beau-
coup de bruit pour rien, much ado about nothing.

In Italian rumore: noise, din, clamor, outcry, uproar; rumor.

It is interesting how different languages attach different meanings to noise.
The German and Russian origins are onomatopoetic, simulating the sound of
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rushing water or rustling of leaves, and do not necessarily possess the conno-
tation of unpleasantness. The French and Italian words have more abstract
meanings. Surprisingly, in French, it describes characteristics of persons who
stick out, are famous. In Italian it is clearly related to the word “rumor”. The
etymology of the word “noise” is a glimpse of the complexity and subtlety of
the meanings attached to words by different cultures. In the world of physics
and technology, noise is equally multifaceted.

A fascinating fact is that the ear is adjusted to have the highest al-
lowed sensitivity without being disturbed by one of the fundamental sources
of noise, thermal noise. Thermal noise is the agitation experienced by the
molecules in gases, liquids, and solids at all temperatures above absolute
zero (on the Kelvin scale). The molecules of air bounce around and hit the
eardrums in a continuous pelting “rain” of particles. If the ear were sensitive
to that bombardment, one would hear a continuous hissing noise comparable
to that of the noise of a radio tuned between stations with the volume turned
up. A simple computation finds that the power impinging upon the ear from
this thermal noise is of the order of 0.3 x 10712 W, a third of the threshold
of hearing [1], a rather remarkable fact.

Many of us have experienced the strange sensation that is produced when
a large shell is held to the ear. Popularly this is known as “hearing the ocean”.
In fact, this effect is due to the noise of the air particles impinging upon the
ear, enhanced by the shell acting as a resonator. Thus, even a normal ear can
hear the air particles impinging upon the ear when the effect is enhanced by
some means. Later in this book we shall learn how resonators enhance the
spectrum of noise near their resonance frequency.

My interest in noise, reflected in the content of this book, was and is
mainly in electrical and optical noise. It is not hard to understand the ori-
gin of electrical noise, at least the one related to the agitation of particles.
Particles with charge are surrounded by fields which, in turn, produce charge
accumulation (of opposite sign) in surrounding electrodes. As the particles
bounce around when driven by thermal effects or quantum effects, the charges
in the electrodes are dragged along and produce spurious currents, noise cur-
rents.

Electrical communications engineers worry about noise because they have
to discern signals in the presence of such background noise. In all cases
in which the background noise is worrisome, the signals are weak so that
amplifiers are needed to raise their power to detectable levels. Amplifiers
add noise of their own to the background noise. The ultimate source of low-
frequency (including microwave) amplifier noise is the “graininess of the elec-
trical charge”. This fact was recognized in its full significance by Schottky in
his classic paper in 1918 [2]. I quote from Schottky (my English translation):
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Cascading of vacuum tube amplifiers has made possible in recent
years the detection and measurement of alternating currents of
exceedingly small amplitude. Many technical tasks have thereby
realized a sudden benefit, but also a new field of research has been
opened up. The new amplifying circuits have the same impact on
electrical studies as the microscope has had for optics. Because no
clear limit has appeared to date on the achievable amplification,
one could hope to advance to the infinitesimally small by proper
shielding, interference-free layouts, etc. of the amplifying circuits;
the dream of “hearing the grass grow” has appeared achievable to
mankind.

This is an allusion by Schottky to the sensory power ascribed by the brothers
Grimm fairy tales to particularly endowed individuals. In the sequel he shows
that the dream will not come true and I quote:

The first insurmountable obstacle is provided, remarkably, by the
size of the elementary quantum of electricity (the charge of the
electron).

Schottky wrote his paper a decade before the formulation of the uncer-
tainty principle of Heisenberg. Some of the noise generated in amplifiers and
recognized by Schottky can be controlled. The amplifiers can be cooled or
refrigerated. The shot noise can be reduced by utilizing the mutual repulsion
among the negatively charged electrons. Schottky was careful to point out in
his paper that, with the current densities achievable in his day, such repulsion
could be ignored. In the intervening 75 years a great deal has happened and
this research led to the development of ultra-low-noise amplifiers.

The fundamental limit of the noise performance of amplifiers is ultimately
determined by quantum mechanics. This was the reason why I studied optical
amplification, at frequencies at which the quantum effects of the electromag-
netic field are observable, and at which quantum effects are, fundamentally,
responsible for the noise performance of optical amplifiers. This very prop-
erty of optical amplifiers makes them ideal models of quantum measurement
apparatus and permits study of the theory of quantum measurement with the
aid of simple optical measurement devices. This book thus spans the range
from microwave propagation and amplification to optical propagation and
amplification, all the way to issues of the theory of quantum measurement.

A book based on the work of 45 years clearly rests on collaboration
with many individuals. Among those I should mention with gratitude are
the late Prof. Richard B. Adler, Charles Freed, Dr. James Mullen, Prof. Y.
Yamamoto, Dr. J. P. Gordon, and many past and present students. Among
these, credit goes to Patrick Chou, John Fini, Leaf Jiang, Thomas Murphy,
Steve Patterson, Michael Watts, William Wong, and Charles Yu for the care-
ful reading of the manuscript that led to many corrections and suggestions
for improvements.
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Introduction

Quantitatively, the noise of a linear amplifier can be described as the noise
power added by the amplifier to the signal power in the process of signal
amplification. It has been found convenient to refer both the noise power and
the signal power to the input of the amplifier, before amplification, because
then one can make a direct comparison between the amplifier noise and the
thermal noise that accompanies the signal. We have gone so far as to ex-
press the noise ascribed to the amplifier in Kelvin, namely, in terms of the
thermal power that would be emitted by a thermal source if it were at this
temperature.

In the 1950s, Penzias and Wilson were readying a microwave antenna for
satellite communications using the latest in ultra-low-noise amplifiers. They
pointed their antenna in various directions of the sky, away from the high
emitters of noise such as the sun and some interstellar radio sources, and
found a background noise that could not be accounted for by the noise in the
amplifier. They had discovered the 3.5 K background radiation of interstellar
space. (This discovery decided in favor of the big-bang theory of the origin of
the universe over a rival cosmological theory.) The background noise observed
by Penzias and Wilson and quoted in the book The First Three Minutes by
Steven Weinberg [3] is roughly 1/100 of room temperature. They had to have
an excellent understanding of the noise in their receiver to attribute the slight
discrepancy in the observed noise power from the output of their amplifier
to an unknown source of noise. Professor Bernard Burke of the MIT physics
department was made aware of their discovery and brought them into contact
with Prof. R. H. Dicke of Princeton, who had indicated that the background
temperature of the universe should be of this magnitude if the universe indeed
started from the initial big bang in a very small volume and expanded ever
since. One may understand this in a somewhat simplified form as a decrease
of the frequency and energy density of the original high-temperature, high-
frequency electromagnetic waves as they extended over a larger and larger
volume. The same would happen to the sound frequency and energy in an
organ pipe in which the ends were moved continually farther and farther
apart.

It is indeed remarkable that a purely technical accomplishment — the
design of low-noise amplifiers, the construction of a satellite communications
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link, and a very good understanding of the noise in amplifiers — has provided
the evidence for one of the theories of the origins of the universe. The existence
of the background radiation is now well established. The number 3.5 K has
been modified to 2.76 K.

At the very same time as these developments were taking place some of us
practitioners were asking ourselves whether there are any fundamental lower
bounds to the noise performance of an amplifier. Offthand, one might expect
that the minimum amount of noise added to the signal could not be lower
than the thermal background noise associated with the temperature at which
the amplifier operates. But this is not the case. There is ample evidence that
amplifiers can do better. Indeed, refrigerators produce locally lower tempera-
tures than the environment in which they operate and amplifiers can perform
the same feat. Further, truly super-deluxe amplifiers include refrigeration to
help them reduce their noise. It looks as if there is no lower limit to the noise
of an amplifier, if one is willing to pay the price of the refrigeration. Even
the shot noise, which is fundamental under random emission, can be reduced
by active control, at low frequencies. As the frequencies become higher and
higher, such control becomes not only physically more difficult, but impossi-
ble in a more fundamental way. The intrinsic noise has a fundamental lower
bound and that fundamental bound is of quantum mechanical origin. The
noise of fundamental origin is proportional to the frequency of the amplifier.
What makes laser noise so interesting is that it is truly fundamental; because
of its enormously high level it is detectable. Before we bring up this point in
more detail, let us return to noise radiation, namely the kind of radiation left
over by the big bang.

Whereas it is rather clear that bouncing charged particles cause noise, why
should there be an excitation of free space? The reason for its existence is
the following. Free space can transmit electromagnetic radiation. Thermally
agitated charged particles excite electromagnetic radiation. The radiation
in turn can transfer its energy to the particles. Thus, free space containing
charged particles at any temperature must contain radiation. This radiation
has a very specific intensity if it is at thermal equilibrium with the thermally
agitated particles, gaining as much energy per unit time from the charged
particles owing to their radiation as it is losing energy per unit time to the
charged particles. This radiation obeys laws very similar to the acoustic ra-
diation caused by thermal noise.

An electromagnetic mode of frequency v can carry energy only in units
of hv, where h is Planck’s constant; h = 6.626 x 10734 J s. Quantum effects
predominate over thermal effects when

hv > kT, (0.1)

where k is Boltzmann’s constant, k = 1.38 x 10723 J/K. For T' = 290 K, room
temperature, the crossover occurs in the far-infrared regime at a frequency
v =6 x 10'? Hz, that is, much higher than conventional microwave frequen-
cies. At frequencies below the limit imposed by (0.1), shot noise, thermal
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noise and related sources of noise predominate, at higher frequencies quan-
tum noise is predominant. Quantum noise has its origin in the graininess of
electromagnetic radiation, somewhat as shot noise has its origin in the graini-
ness of electric charge. According to quantum theory, electromagnetic energy
is a phenomenon that can be both particle-like and wave-like, the principle of
duality. Each particle, i.e. each photon, carries an energy hv, this energy be-
ing higher the higher the frequency v. For a given amount of power received,
the number of particles received decreases with increasing frequency, making
their graininess more noticeable. For this very reason, amplifiers of optical
radiation are much noisier than amplifiers of microwave or lower-frequency
radiation.

In 1973 A. Hasegawa and G. Tappert at Bell Telephone Laboratories sug-
gested [4] that optical fibers could propagate solitons. An optical fiber made
of silicon dioxide glass is dispersive in that the velocities of travel of sinusoidal
optical waves of different wavelengths are different. It is nonlinear owing to
the so-called Kerr effect: the index of refraction of the optical material de-
pends upon the intensity of the optical wave. This effect is named after John
Kerr, like Maxwell a Scot. (It turns out that W. C. Roentgen of X-ray fame
also discovered the effect, but Kerr published first.)

Optical pulses that maintain their shape as they propagate (solitons) can
form in glass fibers if the dispersion and Kerr effect balance. The Kerr effect
is called positive if the index increases with increasing intensity, negative if
it decreases with increasing intensity. The dispersion is called positive if the
velocity increases with wavelength A, negative if it changes in the opposite di-
rection. The Kerr effect in glass is positive. Negative dispersion and a positive
Kerr effect can balance each other to allow for soliton propagation. Hence,
to see solitons in fibers one must excite them at wavelengths at which silicon
dioxide has negative dispersion. This is the case for wavelengths longer than
1.3 um (although fiber dispersion can be affected by core-cladding design).
Optical fibers have one other remarkable property: at a wavelength of 1.5 ym
they have extremely low loss; they are extraordinarily transparent. Light at
this wavelength loses only a few percent of its power when propagating over a
1 km fiber. For this reason, optical fibers are a particularly felicitous medium
for signal propagation.

It was the stability of the soliton pulses that motivated Hasegawa in 1984
to propose long-distance optical communications using soliton pulses [5]. The
signal would be digital, made up of pulses (solitons) and empty time intervals,
symbolizing a string of ones and zeros. Over a trans-Atlantic distance of 4800
km, the optical signal would have to be amplified to compensate for the loss.

At the present time, most practical amplifiers for fiber transmission are
made of rare-earth-doped fibers (the rare earth being erbium) “pumped” by
a source at a wavelength in an absorption band of the dopant. The optical
pumping is done by light from an optical source, a laser with photons of en-
ergy hvp. The dopant atoms (erbium in the case of the fiber) absorb the pump
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photons and are excited to higher-lying energy levels which decay rapidly and
nonradiatively to the upper laser level. When an atom in the upper laser level
is stimulated by signal photons of energy hv, the atom makes a transition
from the upper laser level to the lower laser level, emitting a photon. This
so-called stimulated emission increases the signal, i.e. amplifies it.

Stimulated emission is not the only radiation emitted by the excited
atoms. As already pointed out by Einstein, an excited atom eventually decays
radiatively to a lower-lying level by spontaneous emission even in the absence
of stimulating radiation. This emission is independent of the stimulated emis-
sion. It masks the signal and is experienced as “noise” after detection.

At the time of Hasegawa’s proposal, long-distance optical signal trans-
mission was more complicated: the signal (pulse or no pulse) was detected,
regenerated and reemitted in so-called “repeaters” spaced every 100 km or so.
In this way the intervening loss was compensated but, equally importantly,
the noise added to the signal by random disturbances was removed. Digital
signals transmitted via repeaters were thus particularly immune to noise. One
disadvantage of this robust scheme of communications in transoceanic cable
transmission is that, once the cable has been laid, the format of transmission
cannot be changed, because the repeaters are designed to handle only one
particular format. Hasegawa’s bold move would do away with repeaters and
replace them with simple optical amplifiers. Once a cable of this type is in-
stalled, it is not tied to a particular signaling format. The pulse rate could be
changed at the transmission end and the receiver at the reception end, but
no changes would have to be made in the cable and amplifier “pods” at the
bottom of the ocean.

The implementation of Hasegawa’s idea took some time. The first ques-
tion was whether the solitons propagating along a fiber would be sufficiently
immune to the spontaneous-emission noise “added” in the optical amplifiers.
In 1984, while on sabbatical at AT&T Bell Laboratories, the author, with J.
P. Gordon, showed [6] that the noise in the amplifiers would change the carrier
wavelength of the solitons in a random way. Since the speed of the solitons is
a function of the carrier wavelength, the arrival time of the pulses would ac-
quire a random component; the solitons may end up in the wrong time slots,
causing errors [6]. This effect is now known as the Gordon-Haus effect. With
the parameters of the fiber proposed by Hasegawa, his “repeaterless” scheme
could not have spanned the Atlantic. The analysis clearly demonstrated the
dependence of the effect on the parameters of the fiber. But with a redesign
of the fiber, the Atlantic could be spanned!

L. F. Mollenauer and his group at AT&T Bell Laboratories {7] made pio-
neering experiments in which they verified many of the predicted properties
of soliton propagation. Since a fiber 4800 km long would cost of the order
of $100 million, they used a loop of the order of 100 km in length, with
three amplifiers, in which they launched a pseudorandom sequence of soli-
tons (ones) and empty intervals (zeros) and recirculated them as many times

s
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as they wished, thus simulating long distance propagation. They confirmed
the Gordon—Haus effect.

Noise is a familiar phenomenon accompanying any measurement. The
numerical values of the quantity measured differ from measurement to mea-
surement. In undertaking a measurement, the experimentalist starts from the
assumption that a sequence of measurements on identically prepared systems
will arrive at a set of outcomes that will have an average, the value of which
will be identified with the average value of the quantity measured. (This as-
sumes of course that the measurement is not distorting the average value as
often happens when the measurement apparatus is nonlinear.) Measurements
in quantum theory fit into this general view of measurement. The ideal ap-
paratus of quantum measurements does not have nonlinear distortions; the
average value of the measurements on an observable is indeed its expecta-
tion value. The individual outcomes of the measurements, in general, exhibit
scatter, just as they do for a classical signal in the presence of noise

Bell of “Bell’s inequality” fame was disturbed by the interpretation of
a quantum measurement, in particular by the von Neumann postulate by
which every measurement projects the wave function of the observable into
an eigenstate of the measurement apparatus [8]. He saw the postulate as a
graft onto the standard quantum description. He considered quantum theory
incomplete, like Einstein before him, but in a different sense. As an example
of a complete theory, he cited Maxwell’s theory of electromagnetism. The
equations that describe the electromagnetic field also contain in them the
rules for the measurement of the field. In contrast, the von Neumann postulate
has to be invoked in interpreting the outcome of a quantum measurement.

In the last chapter in this book, we attack the problem of quantum mea-
surements in the optical domain, since quantum formalisms for optical ap-
paratus will be well developed at that point. We shall discuss “quantum
nondemolition” (QND) measurements that leave the measured observable
unchanged. A QND measurement can be used to “derive” the von Neumann
postulate through the study of two QND measurements in cascade. One can
show that the conditional probability of measuring the same value of an ob-
servable in the second setup as in the first can be made unity through proper
design of the apparatus. We consider this a direct derivation from quantum
mechanics of the von Neumann postulate, in response to Bell’s criticism.

Bell was questioning the placement of the boundary between the quan-
tum and classical domains [9]: “Now nobody knows where the boundary
between the classical and quantum domain is situated.” We shall argue that
the boundary can be placed in most situations by virtue of the nature of all
measurement apparatus. A measurement apparatus has to deliver a result
that can be interpreted classically [10], such as the position of the needle of
a meter or a trace on a scope. For this to be possible, the measurement ap-
paratus, even though described quantum mechanically, must have lost, at its
output, quantum coherences that have no interpretation in terms of positive
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probabilities. This is the point of Zurek [11] and others [12-14], who have
shown that macroscopic systems lose coherence extremely rapidly.

It is appropriate that the subject of noise should lead us to ask some
fundamental questions in quantum theory. Quantum theory predicts the be-
havior of an ensemble of identically prepared systems. The statistical theory
of noise does likewise. The fluctuations in the observations made on a quan-
tum system can be, and should be, interpreted as noise. It is, in this writer’s
opinion, futile to search for a means to predict the outcome of one single mea-
surement. Statistical mechanics makes only probabilistic predictions about
a system, because of a lack of complete knowledge of the system’s initial
conditions. Quantum mechanics raises the lack of knowledge of the initial
conditions to the level of a principle. Hence the statistical character of the
description of nature by quantum mechanics is unavoidable.

At the outset, a disclaimer is in order. This book is not a synopsis of the
excellent work on electrical noise, optical communications, squeezed states,
and quantum measurement that has appeared in the literature. Instead, it
is a personal account of the author’s and his coworkers’ work over a career
spanning 45 years. Such an account has a certain logical consistency that has
didactic merit, a feature that would be sacrificed if an attempt had been made
to include the excellent work of other authors in such a way as to do it justice.
For the same reason, the literature citations will be found to be deficient. Yet
the author hopes that despite these deficiencies, and maybe even on account
of them, the reader will find this to be a coherent presentation from a personal
point of view of a very fascinating field.

The first three chapters provide the background necessary to understand
the basic concepts used in the remainder of the book: power flow, electro-
magnetic energy, group velocity, and group velocity dispersion; modes in
waveguides and resonators; resonators as multiports and their impedance
matrix and scattering-matrix description; and single-mode fibers, the optical
Kerr effect, and polarization coupling in fibers. Most concepts and laws will
be familiar to the reader. The first three chapters thus serve mainly as a
convenient reference for the later developments.

Chapter 4 derives the probability distribution for the carriers of a cur-
rent exhibiting shot noise and arrives at the spectrum of the current. Next,
the thermal noise on a transmission line is derived from the equipartition
theorem. From this analysis of a reversible (lossless) system it is possible,
surprisingly, to derive Nyquist’s theorem that describes the emission of noise
from a resistor, an irreversible process. The noise associated with linear loss
at thermal equilibrium calls for the introduction of Langevin noise sources.
Finally, we derive the probability distribution of photons on a waveguide
(one-dimensional system) at thermal equilibrium, the so called Bose-Einstein
distribution.

With the background developed in Chap. 4 we enter the discussion of
classical noise in passive and active multiports. If the multiports are lin-
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ear, their noise can be described fully by associated Langevin sources. At
thermal equilibrium, these possess some very simple properties. In particu-
lar, the spectral density matrix, appropriately weighted, forms the so-called
characteristic noise matrix. For a passive network at thermal equilibrium, this
matrix is proportional to the identity matrix. In the more general case of a
linear passive network not at equilibrium, or a linear active network, such as
a linear amplifier, the characteristic noise matrix contains all the information
necessary to evaluate the optimum noise performance of the network, the
noise performance that leads to the maximum signal-to-noise ratio at large
gain. This optimum noise performance is described, alternatively, as the min-
imum excess noise figure at large gain, or the minimum noise measure. The
optimization is studied with the simple example of a microwave field effect
transistor (FET).

Chapter 6 develops the background for the treatment of quantum noise.
The electromagnetic field is expressed in terms of a superposition of modes
whose amplitudes obey simple-harmonic-oscillator equations. The field is
quantized by quantization of the harmonic-oscillator amplitudes. The quan-
tum noise of a laser oscillator below threshold is derived. The Heisenberg
description of operator evolution is adhered to, in which the operators evolve
in time. Langevin operator noise sources are introduced in the equations for
passive and active waveguides (an example of the latter is erbium-doped-fiber
amplifiers). The role of the noise sources is to ensure conservation of com-
mutators, which are a fundamental attribute of the modes in the waveguide.
The noise of a typical fiber amplifier is derived. Through much of the text,
the quantum noise will appear additive to the “classical” c-number signal.
Laser amplifiers are well described in this way. However, in general, the quan-
tum noise is not represented so simply. The Wigner function is the quantum
equivalent of a probability distribution. In contrast to a classical probability
distribution, the Wigner function is not positive definite. In order to gain
a better understanding of peculiar forms of quantum noise, we study the
Wigner distribution as applied to a so-called Schrédinger cat state, a quan-
tum state of macroscopic character. This analysis is followed up in Chap. 7
by the quantum description of linear multiports. The formalism is presented
in the Heisenberg representation, which displays the correspondence with the
classical network description. The Schrédinger representation, in which the
wave functions, rather than the operators, evolve in time, is introduced and a
comparison between the two descriptions is made. The concept of entangled
states is introduced. A strong analogy is found to exist between the classical
characteristic noise matrix and its quantum counterpart. It is found that the
commutator relations determine the characteristic noise matrix of a quantum
network. This is the manifestation of a fundamental law, first explicitly stated
by Arthurs and Kelly [15], that requires all linear phase-insensitive amplifiers
to add noise to the amplified signal, if the amplification is phase-insensitve.
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Chapter 8 analyzes detection of microwave signals and optical signals. The
former can be treated classically; the latter require a quantum description.
Direct, homodyne, and heterodyne detection are described. The latter two
provide gain. Heterodyne detection provides phase-insensitive gain and thus
behaves like any other linear amplifier that must add noise to the signal.
Homodyne detection is phase-sensitive and it is found that, in principle, it
need not add noise to the signal.

Chapter 9 looks in detail at high-bit-rate optical-communication detec-
tion via optical preamplification followed by direct detection. In the process,
we find the full photon probability distributions for ideal amplifiers as well
as for the practical case of an erbium-doped-fiber amplifier. The analysis is
based on a quantum description of amplifiers developed by J. A. Mullen and
the author in 1962 [16]. The statistics of the photodetector current are deter-
mined by the photon statistics, from which the bit-error rate is derived. The
minimum number of photons per pulse required for a bit-error rate of 10~°
is determined. The analysis is backed up by recently obtained experimental
data from Lucent Technologies, Bell Laboratories. Engineering practice has
introduced a definition of a so-called noise figure for the characterization of
the noise performance of optical amplifiers. This definition is in conflict with
the definition of the noise figure used for the description of low-frequency and
microwave amplifiers as standardized by the Institute of Electrical and Elec-
tronic Engineers. In concluding the chapter we construct a definition that is
consistent with the IEEE definition [17].

Chapter 10 studies soliton propagation along optical fibers. Solitons pos-
sess particle-like properties as well as wave-like properties: one may assign
to them position and momentum, and amplitude and phase. In the quantum
theory of solitons, these four excitations are quantized in the same way as
they are quantized for particles on one hand and waves on the other hand.
The perturbation theory of solitons is established and from it we derive the
timing jitter of solitons in long-distance propagation, which is the main source
of error in a long-haul soliton communication system. Means of controlling
this effect are described. We show that periodically amplified solitons shed
so-called continuum that limits the allowed spacing between amplifiers. In
long-distance communications, the noise added by the amplifiers is always so
large that the system operates at a power level much larger than that of the
minimum photon number derived in Chap. 9.

Chapter 11 treats phase-sensitive amplification. One important example
is the laser above threshold, in which a fluctuation component in phase with
the signal sees a different amplification from the one seen by a fluctuation in
quadrature with the signal. The Schawlow-Townes linewidth [18] is derived.
Next, we turn to parametric amplification. This amplification is produced
via a pump excitation of a medium with a so-called second-order nonlinear-
ity, a nonlinearity with a response that is quadratic in the exciting fields.
The amplification can be nondegenerate or degenerate. In the former case,
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the amplification is closely analogous to linear phase-insensitive amplification.
Degenerate parametric amplification is phase-sensitive and thus need not add
noise to the signal. In the quantum description of such an amplifier we find
that it produces so-called squeezed states: the quantum noise in one phase
with respect to the “pump” is amplified, and the quantum noise in quadra-
ture is attenuated. Degenerate parametric amplifiers can produce “squeezed
vacuum”. We show how squeezed vacuum can be used in an interferometer
to improve the signal-to-noise ratio of a phase measurement.

Squeezed vacuum can also be produced by a third-order nonlinearity, such
as the optical Kerr effect. Fibers are particularly convenient for the use of
the Kerr nonlinearity because of their small mode volume and small loss. The
theory of the generation of squeezed vacuum in a fiber loop is presented in
Chap. 12. Experiments are described that have generated squeezed vacuum,
leading to a reduction of noise by 5.1 dB below shot noise. Further, a phase
measurement is described that used the squeezed vacuum so generated for an
improved signal-to-noise ratio. Chapter 13 discusses the squeezing of solitons.
Solitons behave as particles and waves as outlined in Chap. 10. The squeezing
that can be achieved can address both the particle and the wave nature of
the soliton.

The last chapter takes up the issue of the theory of quantum measure-
ment using optical measurements as an example. At this point, we can use
the formalism developed in the book to present a full quantum analysis of
the measurement process. We take the point of view that physical reality
can be assigned to an observable only with a full description of the mea-
surement apparatus, which in turn is a quantum system obeying quantum
laws. Further, we go through the analysis of a quantum measurement and the
evolution of the density matrix of the observable as it proceeds through the
measurement apparatus. We show that the reduced density matrix obtained
by tracing the density matrix over the measurement apparatus “collapses”
into diagonal form, an observation consistent with, yet different from, the von
Neumann postulate of the collapse of the wave function of the observable into
an eigenstate of the measurement apparatus. Pursuing this point further, we
analyze the effect of a cascade of two measurements of the photon number of
a signal. We show that with proper design of the measurement apparatus, the
conditional probability of observing m photons in the second measurement if
n photons have been measured in the first approaches a Kronecker delta, é,,,.
This is again consistent with, yet somewhat different from, the von Neumann
postulate that the measurement apparatus projects the state of the observ-
able into an eigenstate of the measurement apparatus. Finally we address
the Schrédinger cat paradox, using an optical realization of the measurement
apparatus, and show that the cat does not end up in a superposition state of
“dead” and “alive.”






1. Maxwell’s Equations, Power, and Energy

This book is about fluctuations of the electromagnetic field at microwave
and optical frequencies. The fluctuations take place in microwave and optical
structures. Hence a study of electromagnetic-field fluctuations requires the
terminology and analytic description of structures excited by microwave or
optical sources. The equipartition theorem of statistical mechanics used in
Chap. 4 in the derivation of Nyquist’s theorem is formulated in terms of en-
ergy. Hence, in the application of the equipartition theorem, an understanding
of the concept of energy is necessary. When media are present, the medium
stores energy as well. The excitation of a mode of the electromagnetic field,
as discussed in Chap. 2, involves both the energy of the electromagnetic field
and the energy in the excited medium.

We start with Maxwell’s equations, which characterize electromagnetic
fields at all frequencies. Media are described by constitutive laws which must
obey certain constraints if the medium is to be conservative (lossless). Such
media store energy when excited by an electromagnetic field. Poynting’s the-
orem relates the temporal rate of change of stored-energy density to the
divergence of the power flow. The characterization of dispersive media is
straightforward in the complex formulation, with frequency-dependent sus-
ceptibilities. The energy density in the medium involves the susceptibility
tensor and its derivative with respect to frequency. Finally, we look at the
reciprocity theorem, which provides relations among the scattering coeffi-
cients of a multiport network. The chapter contains topics from [19-24].

1.1 Maxwell’s Field Equations

The first two of Maxwell’s equations, in their familiar differential form, relate
the curl of the electric field E to the time rate of change of the magnetic flux
density B, and the curl of the magnetic field H to the sum of the electric
current density J and the time rate of change of the displacement flux density
D.
Faraday’s law is
oB
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Ampeére’s law is

oD

VxH=J+ 5 (1.2)
One may take the fields E and H as the fundamental fields, and the vectors
B and D as the hybrid fields that contain both the fundamental fields and
properties of the medium. Alternately, one may define E and B as funda-
mental and consider D and H as hybrid. The former point of view is that
of the so called Chu formulation; the latter is more widely accepted by the
physics community. It has been shown [19] that the two points of view give
the same physical answers and thus one is free to choose either. The difference
between the two formulations is hardly noticeable in a discussion of station-
ary media. However, when moving media and forces are taken into account,
the difference is both profound and subtle. While the issue involved does not
affect the discussion in the remainder of this book, the author nevertheless
takes the opportunity to discuss some of its aspects, since it played an impor-
tant role in his research in the 1960s, and the way the issue was eventually
resolved is typical of any fundamental research. Professor L. J. Chu modeled
magnetization by representing magnetic dipoles by two magnetic charges of
equal magnitude and opposite sign. In this way, a perfect analogy was es-
tablished between polarizable and magnetizable media. The formulation of
moving dielectric media, as developed by Panofsky and Phillips [20], could
be applied to moving magnetic media in a way that was consistent with rela-
tivity. Further, this point of view established an analogy between the electric
field E and the polarization density P on one hand, and the magnetic-field
intensity H and the magnetization density M on the other hand. Soon af-
ter the publication of this approach in a textbook on electromagnetism [21],
the approach was criticized by Tellegen [22]. He pointed out that magnetic
dipoles ought to be represented by circulating currents, because such cur-
rents are the sources of magnetism at the fundamental level. More seriously,
the force on a circulating current was shown to be different from that on a
magnetic dipole in the presence of time-varying electric fields. It turned out
that the difference between the force on a magnetic dipole and the force on
a current loop with the same dipole moment as found by Tellegen was small,
involving relativistic terms. However, if there were such a difference, the re-
placement of magnetic dipoles by magnetic charge pairs would be flawed.
The argument seemed valid at the time. It led Prof. P. Penfield and the au-
thor to study the problem more carefully. We assumed that Chu’s approach
was valid, and that there must exist a subtle error in Tellegen’s derivation
of the force on a magnetic dipole formed from a current loop. This “hunch”
proved correct. It turned out that a magnetic dipole made up of a current
loop in a self-consistent way, such as a current flowing in a superconducting
wire Joop, undergoes changes in a time-varying electric field, changes that
were omitted by Tellegen. The charges induced by the electric field create
currents when the field is time-varying. These currents, when exposed to the
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magnetic field, are acted upon by a force that cancels the critical term found
by Tellegen [22]. The force on a magnetic dipole made up of two magnetic
charges or of a circulating current was indeed the same, except that in the
case of the current model relativistic effects had to be included in the rest
frame of the loop, because there is motion in the rest frame of the loop. Thus,
Chu’s model was not only correct, but much simpler, since it did not need
to consider relativistic issues in the rest frame of the magnetic dipole. A full
account of this investigation is presented in [19]. As happens so often, related
work went on at the same time, resulting in publications by Shockley and
James [24] and Coleman and van Vleck [25].

Returning to the discussion at hand, we shall opt for Chu’s approach, in
which E and H are considered fundamental field quantities, whereas D and
B are hybrid quantities containing the polarization and magnetization of the
medium. In addition to Faraday’s law (1.1) and Ampére’s law (1.2), which
relate the curl of the electric and magnetic fields to their vector sources,
we have the two Maxwell’s equations which relate E and H to their scalar
sources by two divergence relationships.

Gauss’s law for the electric field is

V-D=p, (1.3)

where p is the charge density other than the polarization charge density.
Gauss’s law for the magnetic field is

V-B=0. (1.4)
The equation of continuity

dp

(1.5)
is a consequence of (1.2) and (1.3). The vectors and scalars appearing in (1.1)-
(1.5) are, in general, all functions of time and space. We use rationalized mks
units. The electric field E is given in V/m; H is given in A/m. A convenient
unit for the magnetic flux density B is V s/m?, the current density J is given
in A/m?.

The medium acts as a source of electromagnetic fields via its polarization
density P and magnetization density M:

D=¢FE+P, (1.6)

B = u,(H + M) . (1.7)

Equations (1.1)-(1.7) by themselves do not yet determine the fields. In addi-
tion one has to know the relations between M and H, and between P and FE,
and the relation between the fields and the current density J. These are the
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so-called constitutive relations. Once the constitutive relations are available
the set of equations is complete and the equations can be solved subject to
appropriate boundary conditions.

In the case of a linear anisotropic dielectric medium, the polarization P
is related to the electric field by linear equations:

Py = fo(X:c:cE:c + X:cyEy + X:czEz) ) (1-83)
P, = fo(Xy:cE:c + Xyy By + XyzEz) ’ (1.8b)
Pz = GO(XlicE.'C + XzyEy + XZZEz) . (1.8C)

These three equations are written succinctly in tensor notation:
P=¢X, E. (1.9)

It is convenient to combine the constitutive law (1.9) with the definition
of the displacement flux density (1.4) and write it in the form

D=%E (1.10)
with € defined as the dielectric tensor

ize (T+§e) , (1.11)

where T is the identity tensor. The dielectric permeability tensor € is sym-
metric, as will be proved later.

Analogous relations may be written between the magnetization M and
the magnetic field intensity H. Since there is symmetry between polarization
effects and magnetization effects in the Chu formulation, it is easy to treat
magnetization effects by analogy. One writes for the magnetic field

B=%-H, (1.12)

where T is the permeability tensor. At optical frequencies, magnetic effects
are generally negligible, except in the case of the Faraday effect.

In the special case of an isotropic medium, the tensors &z and € reduce to
scalars p and € times the identity tensor. Finally, in the absence of any matter
the constants € and p assume particular values, which are worth remembering

1 As
~ = x 107" = )
€o = Zo= X 0 Vo mho s/m , (1.13)
Vs
Wo = 4T X 10-7m = ohm s/m . (1.14)

The product of ¢, and p, has a fundamental significance:

1 2 2
Ho€o = = 8°/m* (1.15)
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where ¢ is the light velocity in free space. The value of ¢, is adjusted to
provide the correct value of the speed of light; it changes as the speed of light
is determined more and more accurately.

If the only currents in the medium considered are due to conduction and
if the medium is linear, we have the simple relation for the current density J

J=0FE, (1.16)

where ¢ is the conductivity of the medium in mho/m. This is the field-
theoretical form of Ohm’s law. A form of Ohm’s law more general than (1.16)
applies to anisotropic linear conducting media. In such media the current
density J and field E are related by a tensor relation analogous to (1.9):

J=%E, (1.17)

where 7 is a tensor. In general, 7 is not symmetric. However, in Sect. 1.3 we
shall show that @ must be a symmetric tensor if the material is resistive in
the true sense of the word.

Equations (1.1)-(1.7) in conjunction with (1.10), (1.12), and (1.17) are
sufficient to find the electromagnetic field in a linear medium, provided proper
boundary conditions are stated.

Before concluding this section, we note that Maxwell’s equations are time-
reversible if they do not contain a conduction current J and there is no free
charge p. Indeed, suppose we have found a solution E(r,t) and H(r,t) to
Maxwell’s equations (1.1) and (1.2), with the constitutive laws (1.10) and
(1.12) determining D(r,t) and B(r,t). Then, if we switch from ¢ to —t,
from E(r,t) to E(r,-t), H(r,t) to —H(r,—t), D(r,t) to D(r,—t), and
—B(r,t) to —B(r,—t), it is easy to verify that (1.1) and (1.2) are obeyed
automatically, along with the constitutive laws (1.10) and (1.12). The new
solution is called the time-reversed solution. It is obtained from the evolution
of the forward-running solution as if the movie reel on which the evolution is
recorded were run backwards. The B and H fields are, of course, reversed.

1.2 Poynting’s Theorem

In radiation problems or in problems of electromagnetic propagation, we are
often interested in the transmission of power from one region of space to
another. It is, therefore, important to clarify all concepts relating to power
and energy. Poynting’s theorem accomplishes this. Poynting’s theorem is a
mathematical identity which can be endowed with profound physical signif-
icance. We start with Maxwell’s equation (1.1) and dot-multiply by H. We
take (1.2) and dot-multiply by E. Subtracting the two relations and making
use of a well-known vector identity, we obtain

0B oD

. . H-— ¢ — . .
V(ExH)+E-J+H - +E-—-=0 (1.18)
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Equation (1.18) is the differential form of Poynting’s theorem. Integrating
over a volume V, bounded by a surface S, we obtain

f(ExH)-dS+/E-Jdv+/<H-B—B+E-3—D)dvzo.
(1.19)

In (1.19) we have made use of Gauss’s theorem. Equation (1.19) is the inte-
gral form of Poynting’s theorem. Let us turn to an interpretation of (1.19).
The integral fv E - JdV is the power imparted to the current flow J inside
the volume V. This power may be consumed in the ohmic loss of the material
within which the current flows; or, for example, if the current is due to a
flow of electrons in free space, the power goes into the time rate of increase
of the kinetic energy of the electrons. The second volume integral in (1.19)
is interpreted as the power that is needed to change the electric and mag-
netic fields. Part of it may be used up in the magnetization or polarization
processes, the rest goes into storage. With the integral f E - JdV interpreted
as the power imparted to the current flow and the last integral in (1.19) as
the power needed to change the fields in the medium, there is only one inter-
pretation for the first term in (1.19) on the basis of the principle of energy
conservation. The integral § E x H -dS over the surface enclosing the volume
must be the electromagnetic power flow out of the volume. Indeed, from the
principle of energy conservation we have to postulate that

(a) the power flowing out of the volume, through the surface enclosing the
volume,

(b) the power imparted to the current flow, and

(c) the power that goes into the changes of the fields in the medium (and
vacuum where there is no medium)

should all add up to zero. One may attach the meaning of density of electro-
magnetic power flow to the vector E x H, often denoted by S, the so-called
Poynting vector. The second volume integral in (1.19) can be separated into
a field part and a material part, using (1.6) and (1.7):

/(E.B_D+H.?_Bi)dv
v

ot ot
_d 1, 1,
= az . <'2-60E + '2‘N0H ) dy (120)

opP 0
+L<E—at—+H5t-MaM)dv,

where we have replaced the partial time derivative /0t by d/dt, since the
volume integral is independent of r. The first part of the right-hand side,
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involving the time derivative of 3¢, E? + $4,H?, can be considered to be the
rate of change of the energy stored in the electric and magnetic fields, and
the second part the rates at which energy is imparted to the polarization and
magnetization. Whether the energy imparted to the polarization is stored or
not depends upon whether E - dP integrated from a value P = 0 to a value
P = P is independent of the path of integration in P space. Indeed, consider
the energy imparted to P per unit volume. If P =0 at¢t = —oco and P = P
at t, we have

t P P
/ th-%—t-=/ E-dP. (1.21)

- 00

If P returns to zero at t = t', then

/t QE - %? — fE(P)-dP, (1.22)

-0

where the last expression is an integral over a closed contour in P space, with
E treated as a function of P. If the integral foP E - dP is independent of the
path of integration in P space, then § E - dP = 0 and no energy has been
consumed in raising P from zero to some value P and returning it back to
zero. In this case, the integral [ E - dP can be interpreted as energy stored
in the polarization. Analogous statements can be made about the magnetic
contribution H - d(p,M).

In a linear medium, it is more convenient to add the field part of the
imparted-energy differential, d(e,E?), to the polarization part, E-dP, iden-
tifying the total-energy differential, dW,, with

dW,=E . -de,E+ E-dP=E.-dD . (1.23)

In the next section we shall take advantage of this identification.

The physical conclusions drawn from Poynting’s theorem will enable us to
evaluate the electromagnetic power that passes through a given cross section
in space, say the cross section of a waveguide. However, Poynting’s theorem,
as a mathematical identity, can be used for purposes other than the evaluation
of power flow. An illustration of one of these applications is the so-called
uniqueness theorem of Sect. 1.4.

1.3 Energy and Power Relations
and Symmetry of the Tensor €

In Sect. 1.1 we introduced the dielectric tensor and the magnetic permeabil-
ity tensor as descriptive of the response of a linear medium. These tensors
must obey symmetry and positive-definiteness conditions imposed by energy
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considerations that follow from Poynting’s theorem, derived in the preceding
section. From Poynting’s theorem we know that the energy per unit volume
supplied to the field and polarizable medium is

D
We=/ E-dD. (1.24)
0

In the above integral, the electric field is considered a function of D. The
energy is obtained as a line integral of a field E in the space of D, D,, and
D,. Hence, the energy is naturally a function of the displacement density D.
In the case of a linear medium, however, it is more convenient to use E as
the independent variable. When the constitutive relation (1.10) between D
and F is introduced, we obtain

dD =%-dE . (1.25)

We thus have for the electric energy density, (1.25),
E —
Wez/ E-i-dE. (1.26)
0

The integral (1.26) is best visualized by considering it as a line integral in a
space within which the three components of the electric field are used as the
coordinates (see Fig. 1.1). Now suppose that we apply an electric field to the
dielectric material and then remove it. In doing so we obtain for the integral
(1.26)

]{Ei-dz«:=o, (1.27)

where the contour integral is carried out over a closed path in the space of
E. The contour integral (1.27) must be zero. The problem is identical to the
problem of defining a conservative force field F(r) in the three-dimensional
space 7(z,y, z). If the contour integral fc F - dr over any closed contour C
vanishes, then the force field is conservative. By Stokes’ theorem, the contour
integral can be converted into a surface integral over a surface S spanning
the contour C

]{F-dr=/curlF-da,
c s

where the curl is given in Cartesian coordinates by

_an_%-
oy 0z
OF. oF
l1F=VxF= r_ =z
cur 0z or
oF, _oF,
L 0z 0Oy |




1.3 Energy, Power and Symmetry 19

dE

Ex

Fig. 1.1. Integration path in E space

Since the integral vanishes over any arbitrary contour, a conservative field
has to be curl-free. This analogy can be used to obtain constraints on the
tensor €. The argument is cast into the space of coordinates E;, E,, and E,.
The “force field” is

(E . ?)z = €z By + EyzEy + €z E, y
(E -8y = €xyBr + ey By + €4 E, (1.28)

(E-§), =€ By + €y By + €,,E; .

This “force field” has to be curl-free in the Cartesian “space” of E, where
the partial derivatives are with respect to E;, E,, and E,:

Ve x (E-3) =0. (1.29)

It follows from (1.29) that

€yz = €zy , (1.30a)
€xz = €21 , (130b)
€yz = €xy - (1.30c)

The € tensor must be symmetric.
Next, we turn to the evaluation of the energy. We note that for a sym-
metric € tensor the order in the multiplication

E .5 - dE
is immaterial. But, since

d(E - €-E)=dE-¢-E+E - dE,
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we have

d(E-%-E)=2E-%-dE . (1.31)

Using the above expression, we can find immediately for the stored-energy
density

E__ 1 [E - 1. -

We:/ E-E-dE=—/ d(E-E-E):—éE-E-E. (1.32)
0 0

Since the stored-energy density must be a positive quantity for any field E,

the elements of € have to form a positive-definite matrix. A matrix is positive-

definite if all determinants of the principal minors of the matrix are positive.

In particular,
€xzz >0, €, >0, and ¢, >0

is necessary but not sufficient.

The preceding proof started from the postulate that the integral (1.26)
carried out over a closed contour must yield zero so that the medium returns
all the energy supplied to it in a process which starts with zero field and
ends up with zero field. In fact, an integral over a closed contour must always
yield zero if we do not permit the medium to generate power. Indeed, if the
integral happened to come out positive when the contour was followed in
one sense, indicating power consumption, then reversal of the sense would
result in a negative value, i.e. energy generation. Hence, the contour integral
must yield zero for all passive media. But, then, the medium is dissipation-
free. Therefore, one may state unequivocally that a linear dielectric which
responds instantaneously to the field, as in (1.10), is dissipation-free.

In the special case of an isotropic medium, where the tensor € can be
replaced by a scalar e (or rather by the identity tensor multiplied by the
scalar €), (1.32) reduces to

1
W, = §eE2 . (1.33)
In a very similar manner one can arrive at the conclusion that the per-
meability tensor fi is symmetric and that linear materials fulfilling (1.12) are
lossless, and one can obtain the expression for the magnetic energy stored
per unit volume:

B
Wm:/ H-dB (1.34),
0

is the energy supplied by the magnetic field in order to produce the magnetic
flux density B. The similarity of (1.34) and (1.24) shows that all mathemat-
ical steps performed in connection with the treatment of a linear dielectric
medium are applicable to linear magnetic media. For the density of magnetic
energy storage in a linear medium, we have
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1 —
W = 5H-ﬁ-H. (1.35)

As was found in the case of a dielectric medium, the elements of ZZ have to
form a positive definite matrix. Again, for an isotropic medium (1.35) reduces
to

1
W = §pH2 : (1.36)

Finally, consider briefly the power dissipated in a conducting medium
characterized by (1.17). The power per unit volume P is

P=E-J=E-5-E.

Only the symmetric part of the conductivity tensor contributes to the power

dissipation. Indeed, it is easy to show that for an antisymmetric tensor, o 5@ ),

E-7Y.E=o0.

If the medium is passive, the power must always be dissipated (and not
generated), and P must always be positive, regardless of the applied field E.
Accordingly, the elements of the symmetric & tensor must form a positive
definite matrix.

The Poynting theorem (1.19) was stated generally, and no assumption
about the linearity of the medium had been made. If we introduce (1.32) and
(1.34), we have

oD - 0 10 -
LR 2= (E.%T-E
B =Fe % —amE P
and
0B - 0H 190 =
H 2 -—H.3 ——=-_(H-T-H).
or ~H P = apH A H)
Introducing these two expressions into (1.19), we have for a linear dielectric
medium
}{(ExH dS+/E JdV+jt 1(E-?-E+H-ﬁ-H)dV=0.

(1.37)

In an isotropic medium within which € reduces to scalars, (1.37) assumes the
form

}{(E x H) dS+/E JdV + — d (eE2 +uH?*)dV =0. (1.38)

dt

In free space, in the absence of currents, J = 0, € = €, 4 = W, and (1.37)
reduces to

}fExH-ds+%/%(e,,E2+uoH2)dv=o. (1.39)
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1.4 Uniqueness Theorem

In the analysis of electromagnetic fields it is necessary to know what intitial
conditions and what boundary conditions are necessary to determine the
fields. It is also of interest to know whether a set of initial and boundary
conditions determines the fields uniquely. Energy conservation theorems or
their generalizations often serve to provide the proof of uniqueness. In this
section we use Poynting’s theorem to determine the necessary and sufficient
boundary conditions and initial conditions to describe the evolution of a field
uniquely.

Consider a volume V enclosed by the surface S. The volume is assumed
to be filled with a linear medium characterized by (1.10), (1.12), and (1.17).
The quantities €,7i, and 7 may be functions of position. Suppose that at the
time ¢ = 0 the magnetic field and the electric field are completely specified
throughout the volume V. Assume further that for all time the tangential E
field is specified over the part S’ of the surface S, and the tangential H field
is specified over the remaining part S”. The uniqueness theorem then states
that the £ and H fields through the entire volume are specified uniquely
through all time by these initial and boundary conditions.

The best way of proving the theorem is to suppose that it is not fulfilled.
When this supposition leads to a contradiction, the proof is accomplished.
Thus, suppose that, for given initial E and H fields throughout the volume,
and for tangential E and H fields over the surface given for all time, two dif-
ferent solutions exist inside the volume. We denote the two different solutions
by the subscripts 1 and 2. Since Maxwell's equations in the presence of lin-
ear materials are linear, the difference of the two solutions is also a solution.
Thus, consider the difference solution

Hy;=H,—H,, (1.40)

Ey=E, - Ey, (1.41)
with

Hy(t =0) = Eq(t =0)=0 (1.42)
and

nxE;=0 onS, nxHg=0 onS" forallt. (1.43)

The difference field must fulfill Poynting’s theorem, (1.37), applied to the
volume enclosed by the surface S:

fEdXHd dS+/Ed 7 -Egadv
(1.44)
dt / (Ed -Eq+Hy -7 Hy)dy =0.
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The surface integral in (1.44) vanishes for all time by virtue of (1.43),
and the volume integrals vanish at ¢ = 0 by virtue of (1.42). The volume
integral has the form of an energy storage of the difference solution, a positive
definite quantity since the matrices of € and [ are positive definite (Sect. 1.3).
Since the initial energy storage of the difference solution is equal to zero at
t = 0, the time derivative of the second volume integral in (1.44) can only
be positive (or zero). The first volume integral in (1.44) can only be positive
(or zero). It follows that the E field and H field of the difference solution
must remain zero through all time. Therefore, the original solutions 1 and 2,
by assumption different, must actually be identical. The uniqueness theorem
is proved. Once a solution of Maxwell’s equations is obtained for a linear
medium which fulfills the initial conditions and the boundary conditions over
all time, one can conclude from the uniqueness theorem that the solution
obtained is the only possible solution.

1.5 The Complex Maxwell’s Equations

In the study of electromagnetic processes in linear media, processes with
sinusoidal time variation at one single (angular) frequency w are of particu-
lar importance. The reason for this is the following. Microwave and optical
frequencies are extremely high. Any modulation of a carrier is usually at a
frequency low compared with the carrier frequency. Thus, in most cases, a
modulated microwave or optical process can be treated as a slow succession
of steady states, each at one single frequency. More generally, even if the
process cannot be treated as a slow succession of steady states, any arbi-
trary time-dependent process can be treated as a superposition of sinusoidal
processes by Fourier analysis.

In a linear medium a steady-state excitation at a single frequency w pro-
duces responses that are all at the same frequency. A field vector depends
sinusoidally upon time if all three of its orthogonal coordinates are sinu-
soidally time dependent. The three components of a vector are scalars. The
use of complex scalars for sinusoidally time-varying scalars is well known.
The following treatment of complex vectors is based on this knowledge.

Thus, suppose that we write the electric and magnetic fields in complex
form:

E(r,t) = Re(Ee™*t) = %(E et ¢ Eretivt) (1.45)
B(r,t) = Re(Be %) = %(B et  BYetivt) (1.46)

where the asterisk indicates the complex conjugate. Let us introduce the
expressions for E and B into Maxwell’s equation (1.1). We obtain
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V x (Ee ! + E™et*t) = iy(Be @t — B etivt) . (1.47)

Equation (1.47) must apply at an arbitrary time. Setting the time to t = 0,
we obtain

V x(E+ E")=iw(B - B"). (1.48)
Setting wt = —7/2, we obtain

V x (iE —iE") = iw(iB 4+ iB") . (1.49)
Dividing (1.49) by i and adding the result to (1.48), we finally have

VxE=iwB. (1.50)

In (1.50), the time does not enter. This equation is an equation for functions
of space only. The introduction of complex notation has thus enabled us
to separate out the time dependence and obtain equations involving spatial
dependence only. Thus far we have indicated the complex fields E and B,
which are functions of r, by an overbar. Henceforth we shall dispense with
this special notation. It will be obvious from the context whether the fields
are real and time-dependent or complex and time-independent.
In a similar manner we obtain for all Maxwell’s equations

Vx E=iwB, (1.51)
VxH=J-iwD, (1.52)
V-B=0, (1.53)
V-D=p, (1.54)
B=%-H, (1.55)
D=%E, (1.56)
V-J=iwp. (1.57)

The quantities in (1.51)—(1.57) are complex vector or scalar quantities and
are functions of space only.

The complex form of Maxwell’s equations can treat dispersive media in
a simple way that is not possible with the real, time-dependent form of
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Maxwell’s equations. The polarization of dispersive polarizable media is re-
lated to the electric field by a differential equation in time. Complex notation
in the Fourier transform domain replaces differential equations in time with
algebraic equations with frequency-dependent coefficients. For an instanta-
neous response, the polarization is related to the electric field by a suscep-
tibility tensor X as shown in (1.9). In a dispersive dielectric medium, the
dielectric susceptibility simply becomes a function of frequency, X, = ¥, (w):

P =¢,%.(w)-E. (1.58)

The dielectric tensor € becomes frequency-dependent through the definition
(1.11), € = €(w). The same holds for a dispersive magnetic medium; the
magnetic suceptibility tensor becomes frequency-dependent, X,, = X, (w)-
The magnetization density is given by

M =Xp,(w) -H. (1.59

~—

The magnetic permeability tensor 7 also becomes frequency dependent, i =
B(w)-

In Sect. 1.1 we mentioned the time reversibility of Maxwell’s equations in
their real, time-dependent form, in the absence of free charges and conduction
current. Time reversibility can also be extracted from the complex form of
Maxwell’'s equations. Replacing w by —w effectively turns the time evolution
around. This reversal of the sign of frequency leaves (1.51), (1.52), (1.55), and
(1.56) unchanged if E*, D*, —H*, and —B* are accepted as the new field
solutions, and the susceptibility and permeability tensors obey the relation

Xe(w) =X (—w) (1.60a)
Xom (@) = X (—w) - (1.60b)

The relations (1.60a) and (1.60b) are the consequence of the fact that
P,M,E, and H are real, time-dependent vectors. For this condition to hold

P*(~w) =X, (-w) - B*(-w) = X.(-w) - E(w) = X () - E(w) .

Since E(w) can be adjusted arbitrarily, it follows that X, (—w) = X,(w).

Another aspect of time reversibility is of importance. Note that —B*
replacing B implies also the reversal of any d.c. magnetic field present. If
this is not done, the field solutions are not time-reversible. This is the case
in the Faraday effect.

1.6 Operations with Complex Vectors

In order to get a better understanding of what is involved in complex-vector
Operations, we shall study a few special cases. As an example, consider the
dot product of a complex vector E with itself. Splitting the complex vector
into its real and imaginary parts, we can write
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E - E = [Re(E) +iIm(E))] - [Re(E) +iIm(E))
(1.61)
= Re(F) - Re(E) — Im(E) - Im(E) + 2i Re(E) - Im(E) .

Equation (1.61) indicates an interesting feature of complex vectors. It is quite
possible for the dot product of a complex vector with itself to be equal to
zero without the vector itself being zero. (This feature should be contrasted
with a dot product of a real vector with itself. If this dot product turns out
to be zero, one must conclude that the vector itself is a zero vector.) Indeed,
looking at (1.61) we find that its right-hand side can be equal to zero if the
following two conditions are fulfilled:

Re(E) - Re(E) = Im(E) - Im(E) , (1.62)

Re(E) - Im(E)=0. (1.63)

The first of the two above equations requires that the real part of the vector be
equal in magnitude to its imaginary part. The second of the two equations
requires that the real part of the complex vector be perpendicular to its
imaginary part. A complex vector whose dot product with itself is equal to
zero corresponds to a time-dependent vector with circular polarization.

Next let us study another interesting dot product of a complex vector
with itself, that is, with its own complex conjugate. In detail, we have

E .- E* = [Re(E) +iIm(E)] - [Re(E) — iIm(E)]
(1.64)
= [Re(E))? + [Im(E))? .

We find that the product E - E* is equal to the sum of the squares of the
real and imaginary parts of the vector. This important product is referred to
as the square of the magnitude of the complex vector. If E - E* vanishes, E
is a zero vector.

Equations (1.61) and (1.64) show how the rules of vector multiplication
and multiplication of complex numbers are combined in operations involving
complex vectors. Applying these same rules, one obtains easily

ExE=0. (1.65)

The cross product of a complex vector with itself is zero. This result is iden-
tical with the result obtained from cross multiplication of real vectors. Next,
considering the cross product of a complex vector E with its own conjugate,
we obtain

E x E* = [Re(E) + iIm(E)] x [Re(E) — iIm(E)]
1.66
= 2iIm(E) x Re(E) . (1.66)
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This product is not automatically equal to zero. It is zero if, and only if,
the real and imaginary parts of the vector E are parallel to each other. We
conclude that the product E x E* is equal to zero if, and only if, the time-
dependent vector E(r,t) is linearly polarized.

In (1.61)—(1.66) we have studied various products of a complex vector with
itself or its own complex conjugate. Next, we look at products of two differ-
ent complex vectors. We start with E(r,t) x H(r,t). Introducing complex
notation, we obtain

E(r,t) x H(r,t) = %[E(r)e-m B )
X%[H (r)e™ ¥t + H*(r)etivt]
- %[E(T) x H*(r) + E*(r) x H(r)]

+%[E(r) x H(r)e 2" + E*(r) x H*(r)et?].
(1.67)

Two terms have resulted on the right-hand side of (1.67). The first term does
not involve time. The second term is a sinusoidally time-dependent vector
varying at double the frequency. If we take a time average of (1.67), the
second term drops out and there remains

T
51;/ E(r,t) x H(r,t)dt = %Re(E x H*), (1.68)
0
where
=27
w

If E(r,t) is identified with the electric field and H(r,t) with the magnetic
field of an electromagnetic process sinusoidally varying with time at the fre-
quency w, we have found that the time average of the power flow density is
equal to $Re(E x H*).

In a similar manner, one can show, for two sinusoidally time-dependent
vectors A(r,t) and B(r,t),

T
% /0 A(r,t)- B(r, t)dt = -;—Re[A(r)-B*(r)]. (1.69)

Equation (1.69) has an important physical significance. Set A(r,t) = E(r,t),
the sinusoidal time-varying electric field in an anisotropic nondispersive di-
electric. Replace the vector B(r,t) in (1.69) with €- E(r,t) = D(r,t), the
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displacement flux density set up by the sinusoidal time-varying electric field.
We then have

T
% /0 E(r,t) % E(r, t)dt = %Re[E(r)-?-E*(r)]. (1.70)

The complex-conjugate sign has been omitted on the tensor €, since € is real
if the medium is nondispersive. Since € is a symmetric tensor, we have

E*(r) % E(r) = E(r)--E*(r) . (1.71)

The product of E - - E* is equal to its own complex conjugate according to
(1.71) and is, therefore, real. Instead of (1.70) we may then write

T
%%/ﬂ E(r,t)-E- E(r,t)dt = %E(r)-?E*(r)- (1.72)

Equation (1.72) expresses the time average of the electric energy storage in
terms of the complex electric-field vector. We obtain in a similar manner, for
the time average of the magnetic energy storage,

T
57 [ H)- T Hr = JH) F-H'(r). (1.73)

Having gained some experience with operations on complex vectors, we
are now able to derive various theorems involving products among complex
vectors. One such theorem is Poynting’s theorem, which is important for the
identification of power flow and energy density in dispersive media.

1.7 The Complex Poynting Theorem

We have mentioned before that the amplitude and phase information of a
real, time-dependent vector is contained in its complex counterpart. We have
also mentioned that it is often useful to gain an understanding of relations
existing among the complex vectors themselves. In this way we can often
obtain interpretations of physical processes without having to go back into
the real, time domain. The complex Poynting theorem is one of the theorems
that can be proved using the complex, time-independent vectors.

The conventional form of the theorem is obtained by assuming the fre-
quency w to be real. A more general theorem is obtained if one assumes w to
be complex, as we shall do here [26]. In particular, we shall replace —iw in
(1.51) and (1.52) by s and set

Re(s) = a, Im(s) = —w . (1.74)
Thus
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VxE=-sB, (1.75)

VxH=J+sD. (1.76)

The use of a complex value for the frequency s means that one is considering
sinusoidal processes that grow or decay exponentially with time. In order to
interpret physically the expressions in the Poynting theorem that are obtained
in this way, it is necessary to restrict o to small values

o] < fw| . (L.77)

Indeed, the term (1/2)Re(E x H*) can be interpreted as the time-averaged
electromagnetic power density only if the amplitudes of E(r,t) and H(r,t)
vary sufficiently slowly in time that an average over one period can still yield
unequivocal results.

Starting with (1.75), we dot-multiply it by H*. Further, we dot-multiply
the complex conjugate of (1.76) by E. By subtracting the two resulting equa-
tions from each other and using a well-known vector identity, we have

V(ExH")+E-J* +sB-H*+5s*D* -E=0. (1.78)

The integral form of the Poynting theorem is obtained by integrating (1.78)
over a chosen volume V enclosed by a surface S, and making use of Gauss’s
theorem to transform the divergence term into a surface integral. Since the
divergence of E x H* is essentially the surface integral of E x H* over a
small volume divided by the volume, we may conduct all power and energy
arguments on the basis of the differential form of the Poynting theorem. In
order to obtain a physical meaning for (1.78), it is convenient to separate out
explicitly the terms corresponding to the polarization of matter. Introducing
the polarization P, we may write for D

D=c,E+P. (1.79)

A time rate of change of the polarization leads to a motion of charge that is
equivalent to an electric current density, so far as its effects upon the field
are concerned:

J,=sP. (1.80)

In the same way a time rate of change of the magnetization produces an effect
analogous to a current density of magnetic charge:

Jm = spuoM . (1.81)

The polarization current is completely equivalent to an electric current.
It is convenient to add the polarization current density to the free current
density so as to obtain a total electric current density J:
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Jp+J=J. (1.82)

Introducing (1.79)-(1.82) into (1.78), we may write for the complex Poynting
theorem

VA(ExH*)+E-J:+H* Jp +4{(sW2 +s*W2)) =0. (1.83)

Here we have introduced the symbols W2 and W2 for the magnetic and
electric energy densities in free space:

1
(We) = e E-E, (1.84)

1
(W) = qu0H -H* . (1.85)

The angle brackets indicate a time average. In the real, time-dependent form,
the scalar product of E and J. is the power per unit volume imparted to
the electric current density. Analogously, the scalar product of H and J,,
gives the power per unit volume supplied by the magnetic field to the mag-
netic current density. It is reasonable, therefore, to introduce the following
definition for the complex power density:

1
P+iQ:§(E-J:+H*-Jm), (1.86)

where P is the time-averaged power density and Q) is the so-called reactive
power density. When we introduce the definition (1.86) into (1.83) and split
the latter into its real and imaginary parts, we obtain

V-%Re(E x H*) + P+ 2a(W2 + W?) = 0 (1.87)
and
V. %Im(E x H*) +Q — (W2 — W2 = 0. (1.88)

Equation (1.87) contains the divergence of (1/2)Re(E x H*). This is the
divergence of the time-dependent Poynting vector averaged over one period
of the (slowly growing, o > 0) sinusoidal processes. It shows that the elec-
tromagnetic power delivered per unit volume is equal to the time-averaged
power density P supplied to the medium and the time rate of growth of the
free-space energy density. Equation (1.88) contains phase information on the
divergence of the complex Poynting vector that cannot be obtained simply
from the time-dependent form of the Poynting theorem.

We shall now consider a medium that does not support a free current
density, so that J = 0. Thus, the current density J. is made up fully by the
polarization current density J,. Introducing the constitutive laws (1.58) and
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(1.59) into the expression for the real and reactive power densities supplied
to the medium (1.86), we obtain the following:

P+iQ==(E-s*P*+ H" - su,M)

[(a +iw)E - €,X, (w +ia) - E (1.89)

N = M| =

+(a — iw)H* - poXm(w+ia) - H] .

If the medium is lossless, then P = 0 in the steady state when s = iw. From
this requirement we find from (1.89) for a lossless medium that

Re [iwE - X, (w) - E*] =0. (1.90)
This condition is met when the x tensor is Hermitian, that is, when

Xo(W) = X.w) , (1.91)

where the dagger ! indicates complex conjugate transposition of the tensor.
Thus, we conclude that a lossless dielectric medium possesses a Hermitian x
tensor. This is a generalization of the condition of symmetry found for the
¢ tensor earlier, when we required that the energy be a single-valued function
of the integration path in the space of E;, E,, and E,. In that case we dealt
with a real ¢, i.e. a real X,. The polarization responded instantaneously to
the applied field. The same symmetry holds for the magnetic susceptibility
tensor %), .

In general, the susceptibility tensors in (1.89) have to be evaluated for
the complex frequency s = a — iw. The inequality (1.77) permits a Taylor
expansion of the susceptibility tensors up to first order in «, so that we obtain

P+iQ = %[(a+iw)E-eo(f:—iaaa%> -E*]

1 . rr* = . a?m
+§[(a—1w)H -,uo(xm+1a o ) -H]

1 = —
= —iw[H" X - H = E - €X; - E”] (1.92)

+la H* . yu, §m+w% H
2 ow

+E-eo(f: +wa¥8> E*] .
Ow
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In evaluating X, (w + i) one must note that an expansion of X, to first
order in Aw = ia is made first, and then the complex conjugate is taken.
When the medium is lossless, the first of the terms in the last expression of
(1.92) is pure imaginary. Further, when the frequency is complex, s = —iw+a,
then the field amplitudes grow with a time dependence exp(at). The energy is
proportional to products of fields and thus has the time dependence exp(2at)
and the rate of growth of the energy is 2. When this fact is taken into
account, and it is noted that P is the power density needed to supply the
rate of growth of energy, we find from (1.92) for the energy density in the
medium, Wy,

1 —  Ox 1
Wy =-6E-|X, +tw Xe CE* 4+ SpH* - X, +w?X—"-5 -H .
4 ow 4 ow

(1.93)

In a dispersive medium, the energy density involves the derivative of the
susceptibility tensor.

A simple example may illustrate the identification of energy density. A
neutral plasma made up of light electrons and heavy ions, excited by a si-
nusoidal electric field, experiences displacement of the electrons, whereas the
ions may be considered stationary. The system is isotropic and hence the sus-
ceptibility tensor is a scalar. Denote the density of the electrons by N, their
charge by ¢, their mass by m, and their displacement by §. The equation of
motion for the displacement is

d*s

m@' - qE
The displacement is § = —gE/mw?. The effective polarization density pro-
duced is

¢ E

P = Nq§ = —EE

Hence, the susceptibility is
N
meow? ’

Xe

and is negative. If one had naively identified the energy density as (e,/4)x E?,
one would have obtained a negative answer. Using the correct expression, one
finds

€ Oxe 2 _ 1¢?N 2
Wy = = | xe —FE°.
M=y (X e ) E 4 msz

It is easy to identify this energy density as the time-averaged kinetic-energy
density of the electrons:

1 mv? 1 5
WM_5 5 N—meé

where the additional factor of 1/2 comes from the time averaging.
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1.8 The Reciprocity Theorem

In Sects. 1.1 and 1.5 we showed that solutions of Maxwell’s equations are
time-reversible if the system contains only loss-free media and all d.c. mag-
netic fields, if present, are reversed. As we shall see later, time reversibility
also implies reciprocity. Reciprocity imposes constraints on the form that
scattering matrices and impedance matrices of a linear system can assume.
However, a system can be reciprocal even when it contains loss. In this sec-
tion we prove the reciprocity theorem for electromagnetic fields. In Chap. 2
we shall use it to arrive at symmetry conditions for impedance and scattering
matrices.

Consider a general volume V enclosed by a surface S, and filled with a
linear medium characterized by a conductivity o and susceptibility tensor €,
which are, in general, functions of position. If we specify the tangential E field
over the part S’ of the surface S and the tangential H field over the remaining
part S of the surface, we can solve Maxwell’s equations (1.51)—(1.57) and
obtain a unique solution inside the volume. Suppose that one such boundary
condition has been specified. We shall denote the solution corresponding to
it by the superscript 1. Next, suppose that another boundary condition over
the surface S enclosing the volume V is given. The tangential E and H
fields over the surface corresponding to the second boundary condition should
be different from those of the first one.- Denote the solution of Maxwell’s
equations corresponding to this boundary condition by the superscript 2. Let
us write down Maxwell’s equations for these two solutions:

V x E® =iwBM | (1.94)
V x HY = 6 E® — iy DO | (1.95)
Vx E® =iwB® | (1.96)
VxH® =¢E?® - iwD® | (1.97)

Now, dot-multiplying (1.94) by H® we obtain
VxEVD.H® =ijwBY . H® (1.98)

Dot-multiplying (1.95) by E(?, (1.96) by H(), and (1.97) by E(), we obtain
three further equations:

Vx HY.E® =¢E® . ED _ijyDV . D | (1.99)

VxE®D.HO = juwB® . O (1.100)
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VxH®.ED = ;g® . g0 _ju,pD® . EWD (1.101)

Now let us recall that we are dealing with linear media characterized by per-
meability and susceptibility tensors. Using this fact, adding (1.98) to (1.99)
and subtracting the result from the sum of equations (1.100) and (1.101),
and using a well-known vector identity, we finally have

V(ED x H?) -V . (E® x HD)
(1.102)
=iwHY . F-%,) H®+E®.EF-%) EV],

where the subscript “¢” indicates transposition. If the medium is character-
ized by symmetric € and [ tensors, the right hand side of (1.102) vanishes
and we have

V- (EDxH?) =V . (E®@ x HD) . (1.103)

Integrating (1.103) over the volume V enclosed by the surface S, we obtain
the theorem

fmeHmdsszmmeds (1.104)
S S
for

ﬁ:ﬁt’

E=¢.

The theorem (1.104) is the so-called reciprocity theorem. We shall have occa-
sion to use it when discussing properties of microwave junctions and optical
couplers. If the system contains lossless media with Hermitian dielectric and
permeability tensors that are not symmetric, the reciprocity theorem does
not apply. Such media are important for the construction of nonreciprocal
structures such as circulators and Faraday isolators.

1.9 Summary

We have presented Maxwell’s equations, both in their time-dependent form
and in the complex form as applicable to excitations at one single frequency.
The time-dependent form of the constitutive laws must be written in terms
of differential equations in time if the response of the medium is noninstan-
taneous. In the complex form, the constitutive laws become simple linear
relations between the polarization and the electric field, and between the
magnetization and the magnetic field.

An understanding of power flow and energy density is a prerequisite for
the analysis of thermal noise in electromagnetic structures as carried out in
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Chap. 4. We learned that the energy density is determined by the energy
storage in the field and in the polarizable and magnetizable medium. We
were able to derive a simple expression for the energy storage in terms of the
susceptibilities and their derivatives with respect to frequency. In fibers, the
energy storage in the material (silica) is an important part of the net energy
storage and determines the dispersion of the fiber.

A medium is dispersive if its polarization and/or magnetization does not
follow the electric and/or magnetic field instantaneously. A consequence of
dispersion is that the group velocity, which is also the velocity of energy prop-
agation, becomes frequency-dependent, as we shall see in the next chapter.
This kind of dispersion is an important characteristic of optical fibers.

Problems!

1.1* All vector identities used in this book are derivable from the following
relations of vector algebra.

(a) In a triple scalar product A x B - C one may interchange the - and x
without changing the product. A cyclic interchange of the order of the
vector factors leaves the product unchanged.

(b) Ax (BxC)=(A-C)B-(A-B)C 1)

(c) The chain rule holds

V(fg) = fVg+gVFf. (2)

Here, ¢ and f can be replaced by vectors and the multiplication by a
vector multiplication.

Using these facts, prove

Vx(VxA)=V(V-A)- VA,

V(ExH)=(VxE)-H-(VxH)-E.

Do not use decomposition into components in a coordinate system.

_—
1 : . . .
Solutions are given for problems with an asterisk.
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1.2*¥ A symmetric susceptibility tensor expressed in one particular coordi-
nate system can be put into diagonal form by expressing it in a new coor-
dinate system that is rotated with respect to the original one. To gain some
understanding of these transformations and to keep the analysis simple, we
shall confine ourselves to a two-dimensional example. Show that the trans-
formation of the components of a vector in coordinate system (1) into the
coordinate system (2) rotated by an angle 6 obeys the law

E' = ME,

where E’ is the column matrix [gz,], E is the column matrix [Ez], and
y/

Ey
the matrix M is

M= [ cos @ sine]

—sin@ cos @

(see Fig. P1.2.1).

Fig. P1.2.1. E field in two coordinate systems

(a) Show that the tensor transformation obeys the law € = MeM ™! with
the components of the dielectric tensor treated as components of a square
matrix.

(b) Show that a symmetric tensor can be put into diagonal form by proper
choice of 9. Find @ in terms of the tensor components.

1.3 Find the major and minor axes of the polarization ellipse represented by
the complex vector

E =i, +i(iy — aiy) .
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1.4 Determine the energy densities W, and W,,, and the Poynting vector
E x H for a plane wave i, E, cos(wt — kz) propagating in free space. Check
that Poynting’s theorem (1.38) is satisfied.

1.5 Construct the complex vector expression for the electric field of a right-
handed circularly polarized plane wave at frequency w propagating in free
space in the +z direction with its peak amplitude E, occurring at z = 0,t = 0.
Determine the complex magnetic field and the complex Poynting vector.

1.6 In Sect. 1.7, the example is given of a plasma of charged particles moving
within a neutralizing background. It is shown that the energy density formula
for a dispersive medium includes the kinetic energy of the plasma. Generalize
the example to a charge distribution that is bound to its unperturbed position
by a spring constant k. The equation of motion of each of the charges is
d2
m-&t—zé +ké =¢qF .

Determine all the energies and show that the energy density formula contains
all pertinent energies.

Solutions

1.1 The del operator can be treated as a vector, as long as it is noted that
differentiation is implied. Further, note that the del operator commutes with
itself. Using the first equation and identifying A and B with V, we obtain

Vx(VxA)=(V-AV-V?A.

As written, this equation does not make sense, since the del operator must
operate on a function. However, a scalar and a vector commute and thus the
above equation can also be written

V x(VxA)=V(V-A) - VA,

which is the desired result. Consider next the second expression. We use
differentiation by parts, and then use the fact that the cross and dot can be
interchanged in a triple scalar product. In this way we obtain a recognizable
Vector operation:

V. (ExH)=(VxE)-H-(VxH)-E.
1.2

(a) Multiplication of a vector by a tensor produces a new vector. Thus, for
example, the displacement flux density D results from the multiplication
of the E field by the dielectric tensor € : D = €- E. When expressed
in Cartesian coordinates, the product can be written in terms of matrix
multiplications. Without changing notation, we write for the D vector in
the new coordinate system D' = M D = MéM 'ME = MéeM~'E' =
€FE.
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(b) Consider the tensor transformation as matrix multiplication. Note: €, =
€y

cos @ sinB] [em ezy] [cos@—sine] _z

Zar—1
MeM™" = [—sin@ cos @ sinf cos@

€yz Eyy

€y = €25 COS2 0 + €4, 5In% B + €, 5in 20 ,

1
/ 7 .
€1y = €gy = €2y CO320 — 5(611 — €yy)8in 20,
€ = €yy c08% 0 + €55 5in? 0 + €5, 5in 20
yy — Cyy T Ty .

The tensor is put into diagonal form by a rotation by the angle 8, where

1 2e
§=—tan"! —¥ |
2 €xz — Eyy



2. Waveguides and Resonators

The preceding chapter introduced general properties of Maxwell’s equations.
It identified power flow and energy density and derived the uniqueness theo-
rem and the reciprocity theorem. This background is necessary for the analy-
sis of metallic waveguides and resonators as used in microwave structures. In
this chapter, we analyze the modes of waveguides with perfectly conducting
cylindrical enclosures. We determine the mode patterns and the dispersion
relations, i.e. the phase velocity as a function of frequency. We derive the ve-
locity of energy propagation and show that it is equal to the group velocity,
i.e. the velocity of propagation of a wavepacket formed from a superposition
of sinusoidal excitations within a narrow band of frequencies. Then we study
the modes in an enclosure, a so-called cavity resonator. We determine the
orthogonality properties of the modes. Next, resonators coupled to the exte-
rior via “ports of access” are analyzed. Their impedance matrix description
is obtained and the reciprocity theorem is applied to the impedance matrix.
This analysis is in preparation for the study of noise in multiports, which
begins in Chap. 5. Finally, we look at resonators in a general context. The
analysis is based solely on the concept of energy conservation and time rever-
sal. The derivation is applicable to any type of resonator, be it microwave,
optical, acoustic, or other. Most of the results obtained here are contained
in the literature {21,27-30]. The concepts of the waveguide mode and of res-
onant modes are necessary for the quantization of electromagnetic systems.
Even though the analysis in this chapter concentrates on waveguides and res-
onators in perfectly conducting enclosures, the generic approach to resonance
is independent of the details of the electromagnetic mode and is based solely
on the concept of losslessness and time reversibility. This is the approach
used in the analysis and quantization of the modes of optical resonators.

2.1 The Fundamental Equations
of Homogeneous Isotropic Waveguides

A uniform waveguide consists of a conducting envelope surrounding a uni-
form, in general lossy, medium. The cross section of the waveguide does not
change along its longitudinal axis. For the purpose of analysis we shall as-
sume that the conducting envelope forming the waveguide is lossless, that
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is, perfectly conducting. The assumption of a lossy conductor would lead,
on one hand, to prohibitive mathematical difficulties; on the other hand, the
disregard of loss in the walls is always a good approximation. The loss per
wavelength in waveguides at microwave frequencies is small and can be dis-
regarded to first order. It can be taken into account a posteriori by simple
methods of perturbation theory.

We shall assume that the medium filling the waveguide is uniform and
isotropic and characterized by a (scalar) conductivity o, permeability u, and
dielectric constant €. The region inside the waveguide is not necessarily singly
connected, i.e. we can allow for longitudinal conductors inside the conducting
envelope. In this way we can treat coaxial cables, multiconductor systems,
and hollow-pipe waveguides by one and the same theory (Fig. 2.1).

Fig. 2.1. Examples of waveguide geometries

We shall be concerned with the steady-state, sinusoidally time-varying so-
lutions inside the waveguide. Thus, we can make use of the complex Maxwell
equations. Under the assumption made about the medium filling the waveg-
uide, we have

Vx E=iwpH , (2.1)

VxH=(0c—iwe)E . (2.2)

In addition to (2.1) and (2.2), we need the divergence relations, which, under
the assumption of a charge-free, uniform medium, reduce to

V-E=0, (2.3)

V-H=0. (2.4)
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Equations (2.1)-(2.4), in conjunction with the boundary condition that the
E field tangential to the envelope is zero, determine the FE and H fields com-
pletely. We now turn to a formal solution of these equations. It is expedient
to introduce an auxiliary parameter into (2.1) and (2.2) so as to enhance their
symmetry. We define the propagation constant in the medium characterized
by o, €, u by

k= +vwplwe +io) . (2.5)

The quantity k is the propagation constant of an infinite, parallel, plane
wave, at the frequency w, within an infinite medium characterized by the
conductivity o, dielectric constant ¢, and permeability p. We further define
the impedance parameter £ by

iwp

= (2.6)

iwe—o0

£ is the ratio between the E and H fields of an infinite, parallel, plane wave
in the medium under consideration. For its inverse we use the symbol #:

1 iwe — o
17:5: / L (2.7)

The square roots in (2.5)—(2.7) are defined so as to give positive real parts
of the corresponding expressions. With the aid of these auxiliary parameters,
we can write (2.1) and (2.2) in the form

V x E = ik¢H | (2.8)

V x H = —iknE . (2.9)

Taking the curl of (2.8) and using (2.9) gives the Helmholtz equation for the
electric field,

V:E+K’E=0. (2.10)
In a similar way one obtains the Helmholtz equation for the magnetic field,
V’H+k'H=0. (2.11)

At this point, we can proceed with the solution of the Helmholtz equation for
the electric or magnetic field. Since the structure is uniform along one axis,
say the z axis, one has to expect that the z components of the fields and the
z dependence of the field will play an important role in the final solution. In
order to single out the z components of the E and H fields, it is expedient
to break up the fields into transverse and longitudinal components. This is
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done by multiplying the equations both scalarly and vectorially by the unit
vector along the z direction, 1,.
Considering first the dot multiplication of (2.8) by ., we have

i,- VX E=ik¢EH -1, . (2.12)
We separate the transverse and longitudinal components of the electric field
E and the magnetic field H in the manner shown below.

E= ET + izEz y

H=Hr +14,H, (2.13)

The subscript T indicates a vector that lies entirely in the plane transverse
to the z axis. The subscript z indicates the z component of the vector (a
scalar). In a similar manner we can split the V operator into a transverse
and longitudinal part:

0
= iy — 2.14
V=Vr+ti: 5 (2.14)
where, in Cartesian coordinates,
0 0
=i, T 2.15
Vr=1 o7 + 1y By ( )

Introducing the definitions (2.13) and (2.14) into (2.12), and noting that

0
1, (VT-l-’iza—Z) X (ET+iZEZ) =1,-Vrx Er,

we have the simple result
’l:z . VT X ET = ik&Hz . (2.16)

The dot multiplication of (2.8) by ¢, reduced its left-hand side to a transverse
derivative of the transverse E field alone. On the right-hand side only the z
component of the H field remains. In a similar manner we obtain, by dot
multiplication of (2.9) by 1,,

i,V x Hp = —iknE, . (2.17)

Next, let us cross multiply (2.8) by 7. For its left-hand side we obtain, using
the definitions (2.13) and (2.14)

i X (VxE)=1, X% [(VT +iz%) x (Er +izE,)]

=1, x (Vr x Er) 41, x (i, N —BBEZT> (2.18)

—iy % (i, x VTE,) .
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Noting that Vr x E is z-directed and making use of the expression for triple
vector multiplication, we have

i, x (Vx E)=VrE, — %ET . (2.19)
Introducing (2.19) into (2.8) cross multiplied by %, we finally have

VrE, - %ET = ikf(i, x Hr) . (2.20)
In a similar manner we obtain from (2.9)

VrH, — 6%HT = —ikn(i, x ET) . (2.21)

Equations (2.16), (2.17), (2.20), and (2.21) contain the same information as
the original equations (2.8) and (2.9). Whereas the two operations performed
on (2.8) and (2.9) can be performed on any system, the result is useful only
when looking for solutions whose boundary conditions are independent of z,
i.e. solutions in a uniform waveguide. In the treatment of uniform waveguides,
these operations lead to a systematic analysis that underscores properties
which are independent of the waveguide cross section.
The z components of (2.10) and (2.11) are

V2E, + ;—;Ez = -k’E,, (2.22)
V2H, + 6—sz =—k’H, . (2.23)
022
Since the Laplace operator can be written using definition (2.14) as
V2=V + Ll (2.24)
022"

independent equations hold for the longitudinal component of the electric
field and the longitudinal component of the magnetic field. If the waveguide
had instead been filled by a medium that was nonuniform throughout the
cross section, i.e. a function of z and y, or was anisotropic and, therefore,
characterized by a tensor dielectric susceptibility and a tensor magnetic per-
meability, a mutual coupling would have existed between the two equations
for the longitudinal fields.

A simple solution of (2.23) is H, = 0. Accordingly, there are solutions
for the electromagnetic field inside the waveguide which have no longitudinal
H field, provided we are able to match all boundary conditions. Similarly
E, = 0 is a solution of (2.22). Accordingly, there are solutions of Maxwell’s
equations inside a uniform waveguide which do not possess a longitudinal
electric field, provided that all boundary conditions can be matched with the
fields thus found.
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2.2 Transverse Electromagnetic Waves

In the preceding section we separated Maxwell’s equations into longitudinal
and transverse components directed along and across a guiding structure
enclosed by perfectly conducting walls. In this section we look at solutions
for electric and magnetic fields that are purely transverse, for which both
E, and H, are zero. Not all kinds of structure can support waves of this
transverse character, as we shall find in the course of the analysis.

When we set H, = 0, we find from (2.16) that

VrxEr=0. (2.25)

Hence, the transverse electric field must be derivable from a potential. We
attempt separation of variables, expressing the solution as a product of a
function of z and a function of the transverse coordinates:

Er =-V(z)Vr®(z,y), (2.26)

where @(z,y) is a scalar. Since the electric field is divergence-free, we must
have

V-Er=0=-V(2)Vig, (2.27)

and thus the potential function &(z,y) must be a solution of Laplace’s equa-
tion. The potential has to be constant on a perfect conductor so as not to
allow fields that are tangential to the conductor. A solution of Laplace’s equa-
tion cannot possess extrema in the region of its validity. Thus if the guide
consists of a hollow, perfectly conducting pipe, the only possible solution is
@ = const, which does not give rise to an electric field. Hence we conclude that
hollow, conducting pipes cannot support TEM waves. On the other hand, a
coaxial cable consisting of concentric cylindrical conductors of radii r, and
Ty, as shown in Fig. 2.2, supports the simple solution of Laplace’s equation

1 T
= ———In—. 2.28
In(re /) T (2.28)

If we introduce the ansatz (2.26) into the Helmholtz equation for the
electric field (2.10), we find that the function V(z) has to obey

d2

3V = -k*v, (2.29)

which is the one-dimensional wave equation. If the potential is normalized as
in (2.28), the value of V(z) gives the line integral of the electric field from
the inner conductor to the outer conductor; it is the voltage as measured
in a transverse plane. Note, however, that the electric field is not curl-free
globally, and hence a voltage can be defined unequivocally in terms of only a
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Fig. 2.2. Example of a waveguide geometry
line integral in the transverse cross section. We denote the normalized electric
field in the transverse plane by

er(z,y) = —Vro(z,y) , (2.30)
and write, for the electric-field solution in general,

E =V (z)er(z,y) . (2.31)

The solution for the magnetic field can also be written as a product of a
function of z alone and a function of the transverse coordinates alone:

H = I(z)hr(z,y) . (2.32)

We have, from (2.21),

d .1

EI = 1knEV (2.33)
with

hr = K(i, x er) , (2.34)

where K is a normalization constant. Similarly, from (2.20),

d .
I,V = ikeKI (2.35)
with
1.,
e€r = —T(-(’l,z X hT) s (2.36)

which is consistent with (2.34). We have found two coupled first-order differ-
ential equations for V(z) and I(z). Elimination of either V(z) or I(z) from
the two coupled equations leads to the wave equation for either V'(2), as in
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[y
i

Fig. 2.3. Field patterns in coaxial cable

(2.29), or I(z). Figure 2.3 shows the electric- and magnetic-field patterns in
a cross section of constant z for the coaxial cable.

The normalization constant K can be chosen by insisting that the complex
power flow be equal to the product of V and I*. The Poynting flux integrated
over one cross section reduces to

dSi, - Ex H*=VI* dSi, - Er x Hy
section section
(2.37)
=VI*K dS|Vrd|? .
section
Using integration by parts in two dimensions, we find
dS|Vrd|> = fdsn - P*Vrd — dS &*V2.p
section section (2‘38)
= den -P*Vrd,

where n is the unit vector normal to the contours of the coaxial-cable cross
section in the z~y plane. If the potential on the outer conductor is set equal
to zero, and that on the inner conductor is set equal to one, then the integral
is found to be the flux of the electric field per unit length and unit voltage.
If one introduces the capacitance per unit length C with

C= efdsn -P*Vrd (2.39)

and one requires the power to be equal to the voltage—current product, one
finds from (2.38) and (2.37), that VI*KC/e = VI*. Thus, K = ¢/C, and one
may write for (2.33) and (2.35)

4= (wC-G)V, (2.40)
dz

d .
EV = iwLl . (2.41)
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The conductance G is given by (o/€)C, and L = pK is the inductance per
unit length, obeying the constraint

LC =ep. (2.42)

The fact that the inductance per unit length L is indeed equal to pK follows
directly from an evaluation of the flux per unit length associated with the
current I. This flux ¥ is given by an integral between the inner and outer
conductor, from point (1) on the inner conductor to point (2) on the outer
conductor

@) @
¢=/ izxds-,uH=—/ i, x ds - Ku(i, x Vr®)I
(1) (1)

(2.43)

(2
=—-,U,KI/ dS'vT¢=MKI(¢1—¢2):yKI.
)]

Equations (2.40) and (2.41) are the well known transmission line equations
in complex form. In the absence of conduction, o = 0, their solutions can be
written

V = 2Y, (ae'® + be 7) | (2.44)
I =1/27, (ae* — be71P?) | (2.45)

with 8 = w,/z€ and Z, = +/L/C = 1/Y, and where a and b are the forward
and backward wave amplitudes so normalized that the time-averaged power
carried by the waves is given by

cross
section

1
5Re dSi, - Ex H* =|a|? - |b)?. (2.46)

2.3 Transverse Magnetic Waves

Transverse electromagnetic (TEM) waves propagate only in structures that
have two conductors. In a hollow pipe, the modes must possess either a
longitudinal E field or a longitudinal H field. In this section we derive the
€quations for modes with longitudinal E fields. For E, we assume a product
solution of the form

E, = exp(iB2)d(z,y) , (2.47)

which is in the form of a wave with the propagation constant 5. When this
ansatz is entered into (2.22) we obtain
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Vid = (5% — k)& . (2.48)
This is the scalar Helmholtz equation of the form

Vid +p*® =0, (2.49)
with p? defined as

p?=k* -2 (2.50)

and subject to the boundary condition that E, = & vanish on the wall,
the so-called Dirichlet boundary condition. It may be worth mentioning that
the same two-dimensional Helmholtz equation governs the displacement of a
membrane of uniform tension tied to a drumhead with the same cross section
as the waveguide. The frequencies of vibration of the membrane are found
by the solution of this eigenvalue problem.

The Helmholtz equation has solutions only for discrete values of p2, with
p? real and positive, as we now proceed to show. By integration by parts one
may derive the following Green’s theorem for two scalar functions ¢ and ¥:

cross
section section

/ dswvw:fdsn-wm—/ dSV¥-Vrd.  (2.51)

Now set & = & and ¥ = &*. Using (2.51) and the boundary condition obeyed
by @, one finds

dS &*Vid = —p? dS|o)? = - dS|Vrd|?  (2.52)

section section section

or

dS |V )2
S|

2 __ fcross section

D (2.53)

f cross section

Thus, the eigenvalue p? is indeed real and positive. This fixes immediately the
dispersion relation for the propagation constant 3. If the medium is lossless,
(2.50) gives for the propagation constant

b=t/ PP (2:54)

The dispersion diagram is shown in Fig. 2.4 for the case of a lossless
medium that is nondispersive (¢ and p independent of frequency). For fre-
quencies below the so called cutoff frequency, the propagation constant is
imaginary; the modes are decaying or growing. Above the cutoff frequency,
the modes are traveling waves. Since the square root has two values, two
waves are associated with each eigensolution, i.e. with each mode. If one takes
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Fig. 2.4. Dispersion diagram for lossless waveguide

a rectangular waveguide as an example, one finds the following solutions for
d:

¢ = sin (?x) sin (%y) : (2.55)

where m and n are integers. Figure 2.5a shows the potential surface &(z,y) of
the lowest-order TM mode. The lines of steepest descent are the lines of the
transverse electric field; the lines of equal height are the lines of the transverse
magnetic field. The latter are divergence-free (see Figs. 2.5b,c¢).

The electric field acquires longitudinal components that peak in intensity
at the center of the guide. The total electric field, transverse and longitudi-
nal, is of course divergence-free. An infinite number of solutions exists, each
with its own dispersion relation. The eigenvalues p2,,, = (mn/a)? + (n7/b)?
increase with increasing order, i.e. increasing m and n. It is easy to prove the
orthogonality of the solutions in the case of a rectangular waveguide. It is
of greater interest to show that two solutions with different values of p?, say
Pﬁ and p2, are orthogonal, where the Greek subscripts stand for the double
subscript mn. We use Green’s theorem (2.51) for each of the two solutions
and subtract the results. The contour integrals vanish when the boundary
conditions are taken into account, and thus one obtains
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Fig. 2.5. Field patterns of some lowest-order TM modes of rectangular waveguide.
(a) Plot of potential ¢ for mode m = n = 1. (b) The E field of the propagating
wave for m = n = 1. (c) The F field of the cutoff wave for m=n =1

* 72 * 72
dS $LV2P, — dS &:Vid,
Ccross Cross
section section

(2.56)

6= [,

section

dS &P, = 0.

The integral of the product of the field profiles vanishes for solutions with
different eigenvalues. Now, let us proceed to find the transverse fields. From
(2.21), we find for the transverse H field

—ipHTt = —ik?’](’i; X ET) . (2.57)
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From (2.20), we obtain

2
&PV ® — iBET = ik€(i, x Hy) = —i%ET (2.58)

or
s ﬂ i8z
ET = lpe VT¢ . (259)

The transverse E field is proportional to the gradient of @, or E,, with the
sign determined by the sign of the propagation constant. The magnetic-field
is obtained from the electric field using (2.57); the magnetic-field lines are
perpendicular to the electric-field lines.

It is convenient to define a transverse field pattern er(z,y) as

eT(m, y) x iVy® (2.60)

and normalize it so that

__ dSler(z, YP=1. (2.61)

Correspondingly, one defines the normalized magnetic-field pattern as
hT(Ia y) =1, X ET(-'L', y) . (262)

We shall specialize the discussion in the remainder of this section to lossless
media with ¢ = 0. In this case the characteristic admittance n and charac-
teristic impedance £ are real and the propagation constant § is either real
(above cutoff) or imaginary (below cutoff). For each mode above cutoff, we
may write the general field solution as the superposition of a forward wave

and a backward wave. If one defines a characteristic admittance of the mode,
Y,,

kn _ we
VE2=p?  Jwlue-p? ’

the electric field and magnetic field can be written in terms of forward- and
backward-wave amplitudes a and b:

Y, = (2.63)

Er = /2/Y, (ae®* + be™'P%) er(z,y) , (2.64)
Hp = \/2Y, (ae’®* — be 7%} hy(z,y) . (2.65)

The amplitudes are so normalized that the difference of their squares is equal
to the power flow
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1
3 daRe(ET x H%) = |a|? — |b]?. (2.66)
section

We shall use this normalization of the forward and backward waves through-
out the book. The modes possess power orthogonality, i.e. the powers of the
different modes add; there are no cross terms. This is shown easily via the or-
thogonality relation (2.56), but can also be seen on purely physical grounds.
Suppose one considers a solution made up of two waves of different modes
with different propagation constants 8, and §,. If cross terms existed, the
power would vary with distance as exp +i(8, — 5, )z. Since power is conserved,
this is impossible, and the cross terms must be zero.

Figure 2.5b shows the field pattern of a propagating wave for the m =
1,n = 1 lowest-order TM mode in a rectangular waveguide. We shall find it
useful to write the transverse electric and magnetic fields in terms of what
we shall call a voltage V(z) and a current I(2). Thus, (2.64) and (2.65) could
be written alternately as

Er =V(2)er(z,y), (2.67)

HT = I(Z)hT(.'L‘,y) . (2.68)

The ratio V(z)/I(z) defines an impedance Z(z) = V(z)/I(z), which can be
related to the reflection coefficient I'(2), defined by

I'(z) = —e™12P% (2.69)

Q| o

By comparing (2.67) and (2.68) on one hand with (2.64) and (2.65) on the
other hand, one finds the relation

Z(z) — Z,
I'(z) = 217, (2.70)
with Z, = 1/Y,. We shall find these relations useful further on.
Equation (2.66) is only valid for modes above cutoff. Mode solutions be-
low cutoff possess transverse electric and magnetic fields that are 90 degrees
out of phase and hence do not propagate power by themselves. Power is
transmitted only when the growing and decaying wave solutions are excited
simultaneously. The power is due to the cross terms between the fields of
these two waves, which are z-independent as required by power conservation.
Before we conclude this section, it is important to note that the orthogo-
nality condition (2.56) implies orthogonality of the transverse electric fields.
Indeed

ery ey, < Vrd, - Vrd} = Vr - (8, Vrd},) — 6, V5P} .

Thus, if we evaluate the integral
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/ dSer, -}, x / SV, - Vrd,

- / dSVr - (8,V18) - / dS 8,30

over the cross section of the waveguide, use Gauss’s theorem, and take into
account the boundary conditions, we find

/dSeT,, -ep, o« -/dsqsuv?TQS; :p?,/de5,,45;.

The right-hand side vanishes for p, # p,. In this way we have proven the

orthogonality of the transverse electric-field patterns of modes with different

eigenvalues as well. Orthogonality of the transverse electric-field patterns

implies orthogonality of the transverse magnetic-field patterns since e, -
*.. =hp, - R,

€Ty Tv ' Ty

2.4 Transverse Electric Waves

The analysis of transverse electric (TE) waves proceeds completely analo-
gously to that of transverse magnetic waves. Now, a longitudinal magnetic
field is assumed, and F, is set equal to zero. One assumes solutions of the
form

H, = exp(ifz)¥{z,y) . (2.71)

The scalar function ¥ must obey boundary conditions different from those
obeyed by the function ¢ of TM waves. On the perfect conductor, the tan-
gential electric field must be zero. Since the curl of the magnetic field is
proportional to the electric field, we must set

ov

5 =
Indeed, if this derivative did not vanish, if H, changed within a distance An
from the surface of the conductor as shown in Fig. 2.6, there would be a
nonzero line integral around the closed contour, the component of the curl
normal to the plane of the contour would not vanish, and there would be a
tangential electric field at the surface of the conductor.

Except for the change from Dirichlet boundary conditions to Neumann
boundary conditions (2.72), the analysis proceeds as in the case of the TM
Wwaves. In a rectangular waveguide one finds the solutions

¥ = cos (1%7::1:) cos (-nb—ﬂy) . (2.73)

In the present case, meaningful solutions are obtained with either m = 0 or
1 = 0. Thus the lowest eigenvalues pertaining to TE waves are smaller than

(2.72)
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Fig. 2.6. Derivation of boundary condition for ¥

those of TM waves. The mode with the lowest cutoff frequency is a TE wave.
This is true for any waveguide cross section since the Neumann boundary
condition (2.72) is less confining than the Dirichlet boundary condition. The
drumhead analogy may be helpful. The Neumann boundary condition allows
the membrane to move vertically along the rim of the drumhead without
friction, only its slope is confined to be zero.

The normalized dispersion diagram of TE waves is the same as that for
TM waves. Green’s theorem (2.51) can be used to prove the orthogonality
relation

(P2 -p2) e, =0. (2.74)
section

The general solution is the superposition of forward and backward traveling
(or decaying, if cutoff) waves. For one single propagating mode in a lossless
waveguide, one has

Er = /2/Y, (a”®? + be™#?) er(z,y) , (2.75)
Hr = /2Y, (ae’®* — be %) hr(z,y) , (2.76)

where hr(z,y) < iVry (compare (2.60)) and hr(z,y) = %, X er(z,y). Now,
the characteristic admittance is defined by

y = VE - wlue—p?
o~ ké Wik '

Some field patterns of TE modes are shown in Fig. 2.7. The power flow for
TM waves is as in (2.66). The power of modes with different eigenvalues is

(2.77)
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Fig. 2.7. Field patterns of some lowest-order TE modes of a rectangular waveguide.
(a) Plot of potential ¥ for m = 1,n = 0 mode. (b) The transverse field patterns of
the m = 1,n = 0 mode. (c) The E and H lines of the propagating m = 1,n =0
Wave. (d) The E and H lines of the cutoff wave m = 1,n = 0: the fields are 90°
out of phase
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additive; cross terms vanish. To prove this one may use the orthogonality con-
dition (2.74), or again resort to Poynting’s theorem and the z-independence
of the time-averaged power flow.

The TE modes and TM modes are power-orthogonal, even if their eigen-
values coincide. This follows from the fact that the transverse electric field of
a TM mode is the gradient of a potential, and the transverse magnetic field
of a TE mode is a gradient as well. Thus, consider the contribution of the
transverse electric field of the TM mode and the transverse magnetic field of
a TE mode:

dS‘iZ €érrTM X h’}'TE = ‘iz . ds VT45 X VTW*
cross ’ cross
section section

=i, dS Vg x (SV¥*) — i, - dS&(Vy x Voi*) .

(2.78)

The first integral is a curl that can be evaluated as a contour integral around
the boundary of the waveguide, on which @ vanishes. Thus this contribution
is zero. The second integral contains the curl of a gradient and thus its kernel
is zero. Hence we can conclude that TE and TM modes are power-orthogonal
even if they possess the same eigenvalues.

The orthogonality relation (2.74) refers to the scalar functions ¥, and ¥,.
Just as at the end of Sect. 2.3, a simple manipulation shows that orthogonality
of the transverse field patterns is implied as well. With proper normalization
one has

/dS hry - Ry = Oy -

As mentioned earlier, the orthogonality of the magnetic-field patterns implies
the orthogonality of the electric field patterns and vice versa.

2.4.1 Mode Expansions

We have found that a conducting enclosure supports an infinite number of
modes. We also found that not all the modes are propagating modes at a
given frequency of excitation w = k/,/fi€ (for a lossless medium). When
k < py, the mode is cut off. The existence of mode cutoff is important from
a practical point of view. If an excitation consisting of several propagating
modes travels down the guide, the different modes interfere differently at
different waveguide cross sections. If the excitation is composed of a band of
frequencies, the interference of the different modes is a function of distance
along the guide. Such a behavior is unacceptable if the signal propagation
is to be distortion-free. Hence, in most practical applications frequencies of
excitation are used that are in the band in which only the dominant TE
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mode is above cutoff, and all other modes are below cutoff. In the case of a
two-conductor transmission line this mode is, of course, the TEM mode.

We now look at the excitation of the modes at one cross section. In order
to determine the excitation of the modes, mode orthogonality conditions have
to be invoked. This exercise is then a good example of the use of orthogonality
conditions, which will be applied again in Sect. 2.9. The intent is to find the
power radiated from a wire across the waveguide carrying a current I, at
frequency w. The current can be thought to be produced by excitation of the
waveguide by a coaxial cable as shown in Fig. 2.8.

fe——b —f

!
i

| | I Io is current amplitude

at this plane
radiated power -w— y={ —» radiated power
—z
feeder cable

z2=0

Fig. 2.8. A waveguide fed by a coaxial cable

The problem can be formulated in terms of an excitation by a current
sheet K (rr) across the waveguide at one cross section, say at z = 0. The
field to either side of the sheet is a superposition of an infinite set of E and
H modes, propagating or decaying away from the sheet in the 4+z and —z
directions. The transverse fields are given by

ET(0+) = Z w %aueT(z! y) y

Hr(04) =Y V2Yo,a,hr(z,y) forz>0 (2.79)

and

ET(O._) = Z V %bueT(zv y) )
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Hr(0_) = - 2¥o,b,hr(z,y) forz<0. (2.80)

Across the plane of the current sheet, the magnetic field experiences a dis-
continuity (see Fig. 2.8)

i x [H(04) - HO.) = K, (2.81)
whereas the electric field is continuous:
x [E(04+) — E(0_)]=0. (2.82)

After multiplication by the mode patterns er, and hr, and integrating over
the cross section, one finds, using the orthogonality conditions,

a, +b, = 2Yo“ / dSi, x K - hr,, (2.83)

and a, — b, = 0. From these two equations one may compute the amplitudes
of the modes. If all modes but the dominant mode (denoted by v = 0) are
below cutoff, the power radiated in both directions by the current sheet is
simply

1 2
Y_() /dS'iZXK-hT()

power = 2|a,|? =

(2.84)

Let us now specialize to the problem at hand. The dominant mode of a
rectangular waveguide has the normalized transverse magnetic-field pattern

[2 . T
hT() = E'Lz CcOS (7) . (285)

A current in a thin wire is composed of waves with a propagation constant
equal to the free-space propagation constant of a plane wave in a medium
characterized by p,e. (To understand why this is the case, think first of
a coaxial cable with a thin center conductor. The propagation constant is
k = w,/ue. Now remove the outer conductor. If the center wire is thin, the
energy storage near the wire outweighs the energy storage farther away, and
hence the current distribution is not affected by the removal of the outer
conductor.) If the wire terminates, as in an antenna, the distribution is
[—1,/ sin(k£)] sin[k(y — £)] if I,, is the current at y = 0 and £ is the length of
the wire. Hence

—iy sirf(‘;c D sin[k(y — £)]6(z — a/2) . (2.86)
Combining (2.84), (2.85), and (2.86), we find
2 [1—cos(kf)]?

power = (2.87)

k2abYye  sin?ke
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2.5 Energy, Power, and Energy Velocity

The complex Poynting theorem of Sect. 1.7 developed expressions for the
energy stored in matter when the medium is dispersive. The approach was
in the form of a thought experiment in which excitations were applied that
grew or decayed at a rate a. The constitutive relations were evaluated to
first order in the growth or decay rate. In this way derivatives with respect
to frequency appeared in the energy density expressions. In this section we
follow a somewhat different approach. Derivatives are taken with respect to
frequency of the complex form of Maxwell’s equations and identities are de-
rived therefrom. One of the findings is that the group velocity of a waveguide
mode is the velocity of energy propagation.

2.5.1 The Energy Theorem

In the analysis of waveguide modes, we assumed that the waveguide was
filled uniformly with an isotropic medium with a scalar dielectric constant
and magnetic permeability. Had we not made this assumption, we would
have found that TE waves and TM waves do not exist independently, but
are coupled by the medium and/or the boundary conditions. The derivation
in this section is not more difficult if tensor media are included. Hence, we
shall develop the formalism in this, more general, context. Inside the volume
V of a waveguide, formed by the waveguide walls and two cross sections at
z =z and z = z3, Maxwell’s equations hold:

VxE=iwi H, (2.88)

VxH=-iwe E. (2.89)

The fields are functions of position r and of frequency w. First we take the
derivatives with respect to w of (2.88) and (2.89):

0E  [_ & . - 0H
VXE)——I(M‘FW%)'H'{-IW}L-—&—‘;-, (290)

oH = O¢ . = OF
VXE———I(E-FUJ%)'E—IWE'%. (291)

Then we dot-multiply (2.90) by H*, (2.91) by —E*, the complex conjugate
of (2.88) by AH /0w, and the complex conjugate of (2.89) by —0E/dw. We
then add the resulting equations and cancel terms (noting that 7 and Z are
Hermitian tensors). We obtain
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OF oH
V- | =—xH"+ E* x
(6w *H B0 >
=i|H*. p+w6—— -H+E*- ?+wE -E| .
ow ow

Integrating over the volume V and using Gauss’s theorem, we have

8E ... . OH

=i/[H*-(u+wZ> H+E*- (%+wﬁ>-E]dv.
ow ow

We may identify the integral on the right-hand side of (2.92) as four times
the time-averaged stored energy w in the volume V:

1 . Of . (= O¢
w=4/[H ( +w6_w> H+E (e+wa—w>-E]dV. (2.93)

Using this fact, we may write for (2.94)

oE .. .. OH o

(2.92)

Equation (2.94) is the energy theorem. It relates frequency derivatives of
the electric and magnetic fields on the surface S to the energy stored in the
volume enclosed by S.

2.5.2 Energy Velocity and Group Velocity

The theorem (2.94) can now be used to find a relation for the energy ve-
locity. We shall identify the fields E and H in (2.94) with a single wave
solution, with the propagation constant g3, in a uniform waveguide filled with
an isotropic, uniform medium characterized by u, €. The surface S is formed
by the waveguide walls and two reference planes at z; and z;, a distance
29 — 21 = L apart. We have for the left-hand side of (2.93)

8E ... _. OH

_ OEr OHr .
_/Cmss (6 x Hy + EF x % > 1,dS

section

(2.95)

Z2

Z1

The transverse electric and magnetic fields of a single wave of amplitude a of
either a TE, a TM, or a TEM mode can be written
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Er = V2/Yae™er(z,y) , (2.96)
Hr = \/2Yoaeiﬂth(x,y) . (2.97)

The integral on the right-hand side of (2.95) involves only quantities that
change between the two cross sections. The only z-dependent quantity intro-
duced by the frequency derivative derives from the factor exp(ifz):

. dg .
é%(e'ﬂz) = izage‘ﬂz : (2.98)
Therefore, using (2.94) and (2.98) in (2.95), we find

d
—'B-a2 dai, -er x hl = 4iw . 2.99
dw cross T

section

4i(z9 — 21)

Since the field patterns are normalized, and the power p in the wave is equal
to |a|?, we conclude that

w _ P
g~ * w/L’

The derivative dw/df is an energy velocity, the ratio of power flow to energy
per unit length. The same quantity is also known as the group velocity, the
velocity of propagation of a wavepacket with a spectrum consisting of a nar-
row band of frequencies. Indeed, if one adds two waves with the dependences
exp[if(w)z] exp(—iwt) and exp[if(w + Aw)z] exp[—i(w + Aw)t] one obtains

il

(2.100)

exp {i [B(w)z — wt]} + exp {i [B(w + Aw)z — (w + Aw)t]}

= exp {i [B(w)z — wi]} {1 +exp [iAw (g_gz _ t)] } _ (2.101)

The wavepacket has an envelope that goes periodically to zero at distances
A = 27(dw/dB)/Aw and travels at the so called group velocity dw/d3. The
energy theorem has shown that the group velocity is also the velocity of
energy propagation. This is not surprising. If one constructs a wavepacket
in the manner of (2.101), the fields vanish periodically at the nodes of the
wavepacket. No power can cross the cross sections of zero field. Hence the

energy of the excitation is trapped between the nulls and travels at the speed
of the nulls, at the group velocity.

2.5.3 Energy Relations for Waveguide Modes

Next, we derive a property of waves in uniform waveguides that follows di-
rectly from the complex Poynting theorem, (1.88) of Chap. 1, which is re-
Peated below:
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1
V-§Im(E><H*)+Q—2w(W7‘;—Wé’)=0. (2.102)

Q is the so-called reactive power generated per unit volume and is given in
(1.92). (Note that %, and %,,, are Hermitian tensors.)

1 = —
Q= §iw(E* €oXe  E— H* - pox,, - H) . (2.103)

Combining (2.102) and (2.103) and using the definitions of the dielectric and
permeability tensors, we obtain

1 _ ]
V- Im(Ex H*) - 2(H* -E-H-E-%-E’) =0 (2.104)
or

V- %Im(E x H*) — 2w(u|H|? — ¢|E|?) =0 (2.104a)

for the case of an isotropic medium as analyzed in the present chapter. We
integrate this equation over a volume of length L, between the cross sections
z1 and 2z in the waveguide. We further assume that the fields are those
of a single traveling wave and the guide is lossless so that all quantities in
(2.104a) are z-independent. The integral of the divergence is zero, because
the Poynting fluxes through the two end faces of the volume cancel, and there
is no Poynting flux at the waveguide walls. In fact, the theorem that follows is
not restricted to waveguides with metallic walls. The only requirement is that
no Poynting flux exit radially through a cylinder enveloping the waveguide.
In this more general sense, the theorem applies to dielectric waveguides and
optical fibers, as discussed in the next chapter. We obtain

waveguide ﬂlledS = /waveguide 6|E|2ds ' (2105)
cross section cross section

This equation can be interpreted as stating that the time-averaged electric
and magnetic energies per unit length in a traveling wave are equal to each
other. This interpretation holds only for a nondispersive medium. The energy
storages in a dispersive medium are more complicated and, as pointed out in
the example of a plasma, consist of both the field energies and the energies
stored in the excitation of the medium. In this more general case (2.105) still
holds, but cannot be interpreted so simply.

2.5.4 A Perturbation Example

Before we conclude this section we introduce some concepts of perturbation
theory, which we shall employ throughout the text. We can test the results
against the equations obtained for modes in metallic waveguides. As in the
case of (2.105), the perturbation theory developed here is applicable to any
waveguide that is uniform along the z direction, such as a dielectric waveguide
or an optical fiber.
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Modes of uniform, lossless waveguides always appear in pairs: a forward-
propagating wave a of spatial dependence exp(ifz) is paired with a backward
wave b of dependence exp(—ifz), where 3, the propagation constant, is real.
This is the direct consequence of time reversibility of Maxwell’s equations in
their complex form, as discussed in Sect. 1.1. (Note, however, the “caveat”
concerning the reversal of a d.c. magnetic field in the case of the Faraday
effect.) Let us concentrate on the solution for the forward wave a of a par-
ticular mode v. We shall omit the subscript denoting this particular mode
in the subsequent analysis for simplicity. Clearly, the amplitude a obeys the
differential equation

da

— =ifa. 2.106

dz iBa ( )
Suppose next that the waveguide has some small loss. The loss will introduce
attenuation, and (2.106) is modified to

da

-, = [-Im(8) +iRe(B)la, (2.107)
where Im(8) is the attenuation constant. The attenuation constant can be
computed from an energy conservation argument: the spatial rate of change
of power p along the waveguide must be equal to the power dissipated per
unit length:

le_p = —2Im(B)p = —power dissipated per unit length . (2.108)
z
Since the power is quadratic in the fields, its spatial rate of decay is twice
that of the fields. Now, the power p is equal to the product of the group
velocity and the energy w per unit length. Hence, we find from (2.108) and
(2.100)

d|[Re ower dissipated per unit length
2Im(B) = [dafﬂ)]p P w/;j £, (2.109)

where we note that the group velocity is to be evaluated for a lossless guide
for which Re(8) = 3. This equation determines Im(3). Let us determine how
it works in the case of a lossy, dissipative waveguide. In this case we can find
the complex propagation constant directly from (2.50), which is applicable
to both transverse electric and transverse magnetic waves:

B = k2 —p? = \Jwlpe + iwpo — p?

~ /wzue_p2+___i_w”_a__ _
2¢y/wipe — p?

Thus, we have found that

(2.110)
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2Im(B) = % . (2.111)

Next, we show that (2.111) is consistent with (2.109). The inverse group
velocity is

B _ 2wpe + w?(pde/Ow + ey /0w)
dw B ‘

(2.112)

The energy per unit length is

w1 Oe 9
f - Z[(E+wa_w) /wavegulde |E| dS

cross section

Op 2
+(p+wa—w) /wavegmde |H| dS] (2.113)

cross section

1 Oe € o 9
- 4 [(E+wa_‘d') + p(ﬂ+w3w)] /waveguide |E| dS’

cross section

where we have made use of the theorem (2.105). The power dissipated per
unit length is equal to

power dissipated per unit length = —;-a / waveguide |E|%dS . (2.114)
cross section

Combining (2.112), (2.113), and (2.114) with (2.109), we see that the per-
turbational formula gives a result consistent with the direct derivation of
the attenuation constant. The important fact to remember is that the incor-
poration of loss by means of a perturbation formula is a powerful method
applicable in all practical cases, since waveguides that have a large loss, a
large change of amplitude per wavelength, are of little practical use.

2.6 The Modes of a Closed Cavity

The problem of a microwave cavity fed by a number of incoming waveguides
can be conveniently formulated and solved by considering first the case of a
perfectly closed cavity, i.e. a region of space completely enclosed by perfectly
conducting walls. The present section is devoted to a study of the resonant
modes in such a closed cavity. Consider a region of space filled with a uniform
medium that is isotropic and characterized by a scalar dielectric permittivity
€, magnetic permeability g, and conductivity o. This region has a volume
V and the surface S bounding the volume is formed from lossless walls. For
the sake of generality, we shall assume that part of the surface, $’, is formed
from a perfect electric conductor and the part S” is formed from a perfect
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magnetic conductor. The inclusion of magnetic walls in the analysis gives it
greater flexibility, which will be of use later.

Inside the volume V enclosed by the surface S the electromagnetic fields
have to satisfy the source-free Maxwell equations

8
VxE=-uzH, (2.115)
8
VxH=0E+ezE, (2.116)
V.eE=0. (2.117)
V-uH =0 (2.118)

In the above equations the vectors E and H are space- and time-dependent.
This means that the dielectric constant €, the conductivity o, and the per-
meability 2 must all be constants, independent of time. Hence the analysis in
this section assumes that the medium in the resonator is nondispersive. This
is only a temporary restriction. We shall find out that the modes derived
in this section have purely geometric properties and hence are not medium-
specific. We shall be able to use them in an analysis of resonators containing
dispersive media. The fields in (2.115)—(2.118) have to satisfy the boundary
conditions

nxE=0, n-H=0 on§; (2.119a)
n-E=0, nxH=0 onS". (2.119b)
Combining (2.115) and (2.116) one finds
d? OE

We attempt a solution by separation of variables. The electric field is written
as a product of a function of time and a function of space:

E=V(te(r). (2.121)

The function of space has to satisfy the appropriate boundary conditions of
the enclosing surface and is assumed to obey the eigenvalue equation

V x [V x e(r)] = pe(r) . (2.122)

The mode pattern e(r) has nonzero curl. It is convenient to assign zero diver-
gence to this pattern, leaving the representation of fields with divergence to a
different set of modes. The modes with nonzero curl are called “solenoidal”.
Since the identity
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V x [V x e(r)] = V[V - e(r)] — Ve(r)

holds, we may rewrite the eigenvalue equation as
VZe(r) + p’e(r) = 0. (2.123)

Equation (2.123), subject to the boundary conditions (2.119a) and (2.119b),
has solutions that are functions solely of the geometry of the resonator walls
and are independent of the medium filling the resonator. One very simple
example is a cavity made of a rectangular waveguide of side lengths a and b
and shorted with two conducting planes at z = 0 and 2z = ¢. One may pick
standing wave solutions for the waveguide modes and choose the propagation
constant so that the tangential electric field at the two shorting planes is zero.
In this case one finds a triply infinite set of eigenvalues given by

= (77) + () + (%)
mng a b c/ ’
where m,n, and q are integers. In order to satisfy (2.120), the function of
time must satisfy the equation

2 d
—V —V+pV=0. 2.124
epzV +ouV+p (2.124)
The divergence-free modes found thus far are called solenoidal. If the cavity
contains free charges, the solenoidal modes are not sufficient to characterize
the field. There must exist modes with divergence and no curl, the so-called
divergence modes. They are derivable from a potential:

e(r) = —=V&(r) . (2.125)
The potential can be chosen to obey the Helmholtz equation:
V2 +p?d =0. (2.126)

This eigenvalue problem, subject to the boundary conditions on ¢ and the
normal derivative of @ on the surfaces S’ and S”, respectively, has an infinite
number of solutions.

Before we study the eigenvalue equations (2.122) and (2.126), it is of
interest to show that one could have proceeded by solving Maxwell’s equations
in terms of the magnetic field. One could have set

H(r,t) = I{t)h(r). (2.127)

Elimination of the electric field from (2.115) and (2.116) leads to an equation
for the magnetic field of the same form as (2.120):

a? 0
Vx(Vx H)+ EMWH +au;9—tH =0. (2.128)
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The magnetic field pattern h(r) is chosen to obey the eigenvalue equation
V x [V x h(r)] = p*h(r) , (2.129)

and the differential equation for the time-dependent amplitude I(t) of the
magnetic field is

12—1+ i1+ ’r=o0 2.130
engnl toum I +pI=0. (2.130)

Since the time dependence of I(t) as predicted from (2.130) must be the
same as that of V(t) in (2.124), it follows that the eigenvalue p? in (2.122)
and (2.129) must be the same.

There are also divergence solutions for the magnetic field. They are the
gradient of a potential

h(r)=-V¥. (2.131)
¥ can be chosen to obey the scalar Helmholtz equation
Vi +p*P =0, (2.132)

with the boundary condition that d¥/dn =0o0n S’ and ¥ =0 on S".

In concluding this section, we reemphasize that the eigenvalue equations
(2.122), (2.126), (2.129), and (2.132), with the associated boundary condi-
tions, involve only the geometry of the resonator and are independent of the
uniform material filling it. Thus, the modes obtained by solving the eigen-
value equations can be utilized for an expansion of the fields in a resonator of
the same geometry, but filled with an arbitrary medium; and, more generally,
in a resonator driven by sources.

2.7 Real Character of Eigenvalues
and Orthogonality of Modes

The divergence-free electric- and magnetic-field patterns, e(r) and h(r) de-
rived in the preceding section can be shown to satisfy certain orthogonality
relations. The proof of the orthogonality relations bears a close resemblance to
the previously presented proofs of the orthogonality properties of the waveg-
uide modes. One makes use of a three-dimensional vector Green’s theorem,
which we now proceed to derive. One starts with Gauss’s theorem:

/V-DdV=fD-dS. (2.133)
Here D is an arbitrary three-dimensional complex vector function of space,

restricted only by the stipulation that it be once differentiable. We substitute
for D the expression
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D=Ax(VxB), (2.134)

where, again, A and B are arbitrary complex three-dimensional vector func-
tions of the spatial variable, restricted only by the stipulation that they are -
once and twice differentiable, respectively. Making use of the following vector
identity (differentiation by parts),

V- [Ax(VxB)]=(VxA)-(VxB)-A-Vx(VxB), (2135)

we obtain, combining (2.133)—(2.135),

/[(VxA)-(VxB)-A-Vx(VxB)]-dv
(2.136)
:fo(vXB)-ds.

Equation (2.136) is the first vector Green’s theorem. The second vector
Green’s theorem can be obtained from this by interchanging the functions
A and B and subtracting the resulting relation from (2.136). Thus we obtain
the second vector Green’s theorem.

/[B-Vx(VxA)—A-Vx(VxB)]dV
(2.137)
=]{[Ax(VxB)—Bx(VxA)]-dS

Now let us substitute for A in (2.136) an electric-field pattern E, which
is a solution to (2.122) pertaining to a particular eigenvalue p,. For B, we
substitute its complex conjugate:

A=e¢,, B=e¢e]. (2.138)
The equation satisfied by e, is
V x(Vxe,)=ple,. (2.139)

We interpret the integration in (2.136) as being carried out over the entire
volume of the closed cavity enclosed by the lossless wall. By virtue of the
boundary conditions satisfied by e, on S’ and by V x e, which is proportional
to hy,, on §”, (2.119a) and (2.119b), the surface integral on the right-hand
side of (2.136) vanishes:

]f e, x (Vxel) dS=0. (2.140)
S/,S//

Solving the remaining expression for p2, we obtain
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s J(Vxe,) (Vxe)dV
Py = e, erdv )

(2.141)

Equation (2.141) shows that the eigenvalue p? of (2.139) must be real and
positive for fields satisfying the boundary conditions (2.119a) and (2.119b).

Next, we turn to the proof of the orthogonality relationships. In (2.137)
we make the substitutions

A=e,, B= e; . (2.142)

Again, extending the integral over the entire volume of the closed cavity, the
surface integral on the right-hand side of (2.137) vanishes and there results

(P - pi)/eu e dV =0, (2.143)

where we have taken into account that the fields e, and e, have to satisfy
equations of the form of (2.139) with real eigenvalues p?. From (2.143) we
conclude that

/e,,-e;dV:O, Pv # Dy - (2.144)

Field patterns pertaining to different eigenvalues are orthogonal in the sense
of (2.144). The case in which two distinct field patterns have the same eigen-
value p is called degeneracy. In such a case, orthogonality is not automatically
assured. It is possible, however, to construct an orthogonal set of field pat-
terns even in a degenerate case by using linear combinations of the degenerate
modes. Assuming that such an orthogonalization has been carried out on the
entire set of modes, one may express the orthogonality condition in the form

/e,, e, dV =Vd,, , (2.145)

where in addition it has been assumed that the field patterns have been
normalized so that the volume integral of the square of the field pattern is
equal to the volume of the cavity. Analogous orthogonality conditions can be
proved for the magnetic-field patterns.

It is clear that the magnetic-field patterns are proportional to the curl of
the electric-field patterns. Setting

V x e, (r)=ph,(r), (2.146)

one finds that the magnetic-field patterns are automatically normalized. In-
deed, introducing (2.146) into (2.136), we find

PupL / hy - hodV - pﬁ/eu endV =0, (2.147)
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This leads to the orthogonality condition
/h,, -h,dV =V4é,, . (2.148)

Since the eigenvalue p? of (2.139) is real, it is always possible to choose
the field patterns e, to be real, i.e. linearly polarized at every point in the
cavity. The direction of the polarization may vary from point to point. Indeed,
suppose that we have found a complex solution of (2.139). Then both the real
and the imaginary parts of the complex solution must be solutions of (2.139).

An analogous analysis can be carried out for the divergence modes of the
electric and magnetic fields. One finds that they have real, positive eigenvalues
p? and also obey orthogonality conditions.

The solenoidal modes are orthogonal to the divergence modes as well.
We shall prove this in the case of the modes of the E field. We denote the
solenoidal mode by the subscript » and the divergence mode by the subscript
a, and evaluate the volume integral f e, - €, dV over the volume of the res-
onator. The divergence mode can be expressed as the gradient of a scalar
potential. We thus have

/e,,-eadv=-—/e,,-V45adV

- _j{ diae,,-dS+/45aV-e,,dV.
SI+SII

Both integrals on the right-hand side of (2.149) are zero. The second integral
contains the divergence of the solenoidal mode, which is zero by definition.
The surface integral contains no contribution from the surface S”, over which
the electric field is tangential to the surface. The contribution from the surface
S’ looks, at first, as though it is not equal to zero. However, since the potential
must be constant on S’ to satisfy the boundary condition, this integral is
proportional to the net flux of the mode » passing through the surface S’.
This flux must be zero for a solenoidal mode, for which field lines do not
appear or disappear. Since no flux can escape through S”, no net flux can
pass through S’. Hence, we have proven the orthogonality of solenoidal and
divergence modes. An analogous analysis can be applied to the modes of
the magnetic field to prove that the solenoidal and divergence modes are
orthogonal.

The proof that the eigenvalues of (2.123) and (2.126) are real and the
proof of the orthogonality of the eigensolutions is the framework for the
mode expansion of any electromagnetic field in a closed cavity. It is also the
starting point for the quantization of electromagnetic fields, as is done in
Chap. 6. In anticipation of the quantization, we shall limit the subsequent
analysis to lossless closed resonators, o = 0. In a closed cavity containing no
sources, the divergence modes remain unexcited, since they require electric

(2.149)
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and magnetic charge distributions for their existence. The electric field in the
resonator can be written

E(r,t) =) Viteu(r), (2.150)

and the magnetic field can be expressed by

H(r,t) = > L(t)h,(r) . (2.151)

The E field patterns e, (r) and the magnetic-field patterns h,(r) are, of
course, related to each other. If one inserts (2.150) and (2.151) into (2.115)
and (2.116) one obtains

Zv )V x e, (r) = #Z dtI ), (r) (2.152)
and
ZI (t)V x h,(r) = —ez dtv t)eu(r) . (2.153)
From (2.139) and (2.146), one sees that V x h,(r) = p,e,(r). One then finds
d
CEEV“ =p,1, . (2.154)

Further, from (2.146) and (2.152) it follows that

S A (2.155)
with
V x h(r) =p,e(r) . (2.156)

Equations (2.154) and (2.155) are the equations of a harmonic oscillator,
with V,, identifiable with the position and I, with the momentum. This is
the starting point for the quantization of the electromagnetic field.

If the fields are specified at ¢ = 0, then the use of the orthogonality
conditions provides the initial values for the coefficients V,,(0) and I,,(0):

VM(0)=/dVE(0,r)-eM(r)/V; I,,(O):/dVH(o,r)-h,,(r)/v
(2.157)

In a closed resonator, modes can always be defined so that their field
patterns are real. Then the electric field and the magnetic field of a mode
are 90° out of phase. Ring resonators formed from waveguides closing on
themselves propagate traveling waves. These can be constructed from two
standing waves that are spatially displaced by a quarter wavelength. The
preceding equations are equally applicable, but note has to be taken that the
field patterns e(r) and h(r) are complex functions of space.
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2.8 Electromagnetic Field
Inside a Closed Cavity with Sources

Next, we determine the fields inside a closed cavity within which there are
electric and magnetic current distributions varying sinusoidally with time.
The current distributions are assumed to be specified. They play the role
of driving currents, capable of supplying power so that a sinusoidal steady
state is established within the cavity. The power dissipated by the losses in
the cavity is supplied by the current distribution. This idealized problem will
find an application in the next section when solving for the fields in an open
cavity driven through a waveguide. Denote the electric current density dis-
tribution by J. and the magnetic current density distribution by J,. These
current distributions are complex vector functions of the spatial variable r.
The electric and magnetic fields inside the cavity satisfy the equations

VXE=iwuH — Jp, , (2.158)

VxH=0cE-iweE+J,. (2.159)

The cavity is assumed to be filled with an isotropic medium characterized by
a scalar dielectric permittivity €, magnetic permeability u, and conductivity
o. Since the equations are cast in the frequency domain, the material param-
eters may be functions of frequency in the analysis to follow. We shall take
advantage of this fact at an appropriate stage.

The electric field has, further, to satisfy the divergence relation

V-eE=p. (2.160)

Since we have assumed a magnetic current distribution, we must include the
possibility of the existence of a magnetic charge density. The magnetic field
has to satisfy the equation

V-uH = p,, . (2.161)

In order to solve the present problem we take advantage of the complete set
of solenoidal and divergence modes found for the empty, undriven cavity. We
expand the electric- and magnetic-field patterns within the cavity in terms
of these:

E=Y Ve, (2.162)
H= )Y Ih.. (2.163)

K=a,v



2.8 Closed Cavity with Sources 73

We distinguish solenoidal modes from divergence modes by the subscripts v
for the former and « for the latter. In these equations V,, I, V,, and I,
are complex expansion coefficients, as yet undetermined. In contrast to the
expansion carried out in Sect. 2.7, these coefficients do not have the time
dependence e*t which is natural to any one of these individual modes when
undriven. Indeed, now the time dependence is sinusoidal by assumption, at
the frequency w of the driving current distribution.

Introducing (2.162) and (2.163) into (2.158) and (2.159), one obtains
expressions for the expansion coefficients V,; and I;. It is convenient here
to separate the analysis of the solenoidal-mode expansion from that of the
divergence-mode expansion. Dot-multiplying (2.158) by h}, using (2.146), in-
tegrating over the volume of the cavity, and using the mode orthogonality
property, one obtains

1
pV, =iwpl, — v /Jm -h}dV. (2.164)

Similarly, using the expansions (2.162) and (2.163) in (2.159), dot-multiplying
by e}, and integrating over the volume of the cavity, one obtains

o1, = (0 —iwe)V, + Yl)- /Je e, dV . (2.165)

Similar expressions can be obtained for the expansion coefficients of the di-
vergence modes:

1
0 =iwpl, — Y)-/Jm-h;dv, (2.166)

0=(a—iwe)Va+%/Je-e;dV. (2.167)

Equations (2.164)—(2.167) suggest the equivalent circuits that are shown
in Fig. 2.9. It should be noted that the expansion coefficients V, and I,
that play the role of voltage and current in the equivalent circuits are in-
terconnected by (2.164) and (2.165). In contrast, the coefficients I, and V,
are independent and, correspondingly, the equivalent circuits of (2.166) and
(2.167) are independent. Solving for V,, and I, separately, from (2.164) and
(2.165) one obtains

(iwﬂ/v)f*]e‘e:dv_(pu/v)f']m'h:dv
P2 — k2 ’

V, = (2.168)

- (pV/V)fJe-e;dV—[(a—iwe)/V]me-h;dV .

j
’ P — k?

(2.169)
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+ Vq
p—‘i pl = f3, - eqdv
Fig. 2.9. Equivalent circuits for modes of dri—\-/en cavity
Correspondingly, we have for I, and V,
o= iwLV /Jm -hdV, (2.170)
Vo = _m /Je -epdV . (2.171)

The equations developed in this section will find direct application in the
analysis of an open cavity driven through a number of input waveguides.

2.9 Analysis of Open Cavity

The analysis in the preceding sections was devoted to the study of completely
closed cavities. The case of an undriven cavity was taken up first. Then
cavities containing driving current density distributions were studied. The
case of a driven cavity was an application of the mode analysis of the undriven
cavity. The study of the open cavity to be undertaken in this section can be
reduced to the previously analyzed problem of a closed, driven cavity. This
we now proceed to show.

An open microwave cavity is a metallic enclosure with one or more holes,
through which electromagnetic energy may be supplied to, or extracted from,
the cavity via feeding waveguides. Consider the cavity of Fig. 2.10. It is fed
by N waveguides, in which we choose convenient reference planes. Now, form
a closed cavity from the open cavity of Fig. 2.10 by placing at all reference
planes in the incoming waveguides perfect magnetic shorts. The closed cavity
possesses a complete set of solenoidal and divergence modes. Any field inside
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reference plane (1)

Fig. 2.10. Cavity fed from N waveguides

the region of the closed cavity that satisfies all the boundary conditions can
be expanded in terms of these modes. The fields in the open cavity have a
nonzero tangential magnetic field on the reference cross sections and, there-
fore, violate the boundary conditions imposed on the fields (and modes) in
the closed cavity. These fields cannot be expanded directly in terms of the
modes of the closed cavity. However, we may adapt the fields of the open
cavity so that they can be expanded in terms of the complete set of modes
of the closed cavity by constructing an artificial field which is identical, in
every respect, to the actual physical field in the open cavity throughout the
volume of the cavity, but has a tangential magnetic field that vanishes on the
reference planes. Accordingly, the tangential magnetic field of the artificial
field experiences a discontinuity at the reference planes. Denote the field of
the open cavity at the ith reference plane by Hp;. At the ith reference plane,
the artificial field constructed from the field of the open cavity changes from
Hr; to zero within a very small (theoretically infinitesimally small) region
in front of the reference plane. Such a discontinuity is created by an electric
surface current of magnitude

K,’ =-nX HT‘i y (2172)

where n is the normal to the reference plane pointing outwards from the
cavity. The artificial field is expandable in terms of the closed-cavity modes.
It is a field in the closed cavity driven by the current distributions on the
various reference planes. We have reduced the problem of the analysis of an
open cavity fed by incoming waveguides to the problem of a closed cavity
driven by surface current distributions in front of the N reference planes of
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the original open cavity, with the reference planes themselves replaced by
perfect magnetic conductors.

Equations (2.168)—(2.171), developed for the case of a closed, current-
driven cavity are thus directly applicable to our present problem. The electric
current distribution density J. consists of surface current density distribu-
tions (2.172) at the N waveguide cross sections. The surface current density
distributions (2.172) can in turn be related to the fields existing in the feeding
waveguides. Indeed, the transverse magnetic field appearing on the right-hand
side of (2.172) must be expressible in terms of the waveguide modes of the
ith waveguide. One has

Ti = ZIn,ith,i 3 (2173)

where the subscript n denotes the nth mode in the ith waveguide and the
origin of the z coordinate is chosen conveniently at the reference cross section
in the ith waveguide with the z axis directed into the cavity. Using (2.172)
and (2.173) in (2.168)~(2.171), one has

Vv, = “‘”Zzw ZI . /eTn,j -e*dS, (2.174)
1 x
v, = mzf"’f /eTn,,- el ds . (2.175)
n’J

In (2.174) and (2.175) we have made use of the fact that
n= —'I:Z and 'I:Z X th,j = —€rnj - (2.176)

In order to find a relation between the amplitudes V;, ; and I, ; of the modes
in the feeding waveguides, we have to express the electric field at the reference
cross section in terms of the waveguide modes on one hand, and in terms of
the cavity modes on the other hand. One has

Zvn,jeT,n,j = Z Vnen . (2177)

K=a,v

Using the orthogonality condition on the transverse field patterns of the mag-
netic field in the waveguide, ey, j, one obtains from (2.177)

g = Z Ve Z/en € ; 4 (2.178)

where the integration is carried out over the jth reference cross section. In-
troducing (2.178) into (2.174) and (2.175), one has
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Vi, = ZZmn;jiIn,i (2.179)
n,t

_ —wp
mn,Jz Z (p ——k2 v eTmJ e, dS/eT,” e ds

1 . .
*;F_Te)v/jew-eadS/ieTn,z-eads.

Equations (2.179) and (2.180) will be exploited in Chap. 5 in connection with
the analysis of multiports. Equation (2.179) is the impedance matrix descrip-
tion of a multiterminal network. The terminal “voltages” are proportional to
the terminal “currents”; the proportionality constants are the elements of an
impedance matrix. The matrix is of order M x N, where M is the number of
cavity modes and N is the total number of waveguide modes in all waveguides
coupled to the cavity. In principle, there is an infinite number of resonator
modes; in practice it suffices to include only a few in the analysis.

(2.180)

2.10 Open Cavity with Single Input

We illustrate the general formalism that led to (2.179) and (2.180) with the
example of a resonator connected to a single waveguide within the frequency
regime in which only one dominant mode propagates in the waveguide. It is a
rich example which connects with the energy theorem, serves as another illus-
tration of perturbation theory, and leads to the definition of the dimensionless
quality factors, in terms of which resonances can be defined irrespective of
whether they are electromagnetic, acoustic, or descriptive of any other reso-
nant phenomenon. Equation (2.179) reduces to a simple impedance relation
of a two-terminal-pair element. One has

V=2zI, (2.181)

where the impedance Z is given by

—1wu
Z = Z(pz ‘/eT e dS

(2.182)

1 . a?
+;(T~iw_e)v|/”'ead5

An equivalent circuit representing the impedance (2.182) is shown in Fig.
2.11.
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Fig. 2.11. Equivalent circuit of cavity with single port of access

Equation (2.182) has an interesting structure. It has poles in the lower half
of the complex w plane, located symmetrically with respect to the imaginary
axis. In the absence of loss, i.e. ¢ = 0, k? = w?ue, the poles move onto the real

axis. If the impedance Im(Z)/+/u/e = X/+/u/€ is plotted against frequency
(Fig. 2.12), it goes from negative infinity to positive infinity, crossing the
abscissa in between. The slope of the function is negative throughout.

2.10.1 The Resonator and the Energy Theorem

The dependence upon frequency of the impedance illustrated in Fig. 2.12 is
a direct consequence of the energy theorem (2.94). Let us write the electric
and magnetic fields at the waveguide reference plane in the form

E =Ve(rr), (2.183)

H = Ih(rr) . (2.184)

Next, we note that the field patterns e(r7) and h{rr) in a metallic waveguide
are frequency-independent. Finally, we assume an excitation with a magnetic-
field amplitude I that is also frequency independent. Then, in (2.94},

8E ... . OH 202 i o
(2.185)

and, using the fact that hr =1, X er, we find

oX 4w

—_———— 2.186

Ow 1|2 fer-e%dS ( )
The derivative of the impedance is proportional to the stored energy, and is
negative. It is this negative definiteness of the derivative that gives rise to
the form of the graph in Fig. 2.12.
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Fig. 2.12. Plot of normalized X, i.e. Xn = Vp1/(\/1t/e| [ er - €)=, dS|?) versus
k/p1; p2/p1 = 2.5 p1| [ er - ev=2dS|* = 2p;| [ er - €y=1 dS|?

2.10.2 Perturbation Theory and the Generic Form
of the Impedance Expression

Equation (2.182) was derived for a particular choice of reference plane in the
incoming waveguide. A different choice of reference plane leads, in general,
to a different set of values of w, and of | [ er - e}, da|?. Indeed, these quan-
tities are characteristic of the modes of the closed cavity formed from the
open cavity by placing a magnetic short at the reference plane. Clearly, any
choice of reference plane has to lead to an impedance Z with the correct de-
pendence upon frequency as viewed from the chosen reference plane. Among
the various choices of reference planes, one is particularly convenient and,
therefore, is usually the one taken: the choice which makes all terms in the
two summations in (2.182) negligible in the neighborhood of one particular
resonance frequency except for a single one, say, the one pertaining to the
resonance at the frequency w,. For such a choice of reference plane, (2.182)
assumes a simple form in the neighborhood of the frequency wy,:

e lwﬂli;)v'/eT erdS|>. (2.187)
"

This particularly simple form of the impedance of the resonator in the vicinity
of the resonance frequency w,, can be put into “generic” form by making use
of its physical implications. Let us first assume that the waveguide presents an
open circuit (infinite impedance) to the resonator. This could be accomplished
by placing a perfectly conducting shorting plane a quarter wavelength away
from the reference plane. In this case, the denominator has to vanish. This

leads to an equation for the frequency of resonance of the closed resonator.
We obtain
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k= pi = w?pe + iwpo . (2.188)

In general, the loss represented by o will be small if the structure is to act as
a resonator. Thus, the frequency of resonance w,, will be given approximately
by (2.188) with o = 0:

wip(wa)e(w,) = pi - (2.189)

Here we have been careful to indicate that the material may be dispersive
and thus the dielectric constant and magnetic permeability have to be eval-
uated at the pertinent frequency. Equation (2.189) defines the frequency of
resonance. Now, we introduce the loss and assume that the frequency shifts
to w, + Aw owing to the loss. Introducing this ansatz and the definition of
w,, into (2.188), we find, to first order in Aw and o,

0 o)
2w, Aw pe + wiAwai—u + wiAw egg +iw,po =0. (2.190)

Solving for Aw, we find

Aw . o
2on = T A 2yl T w0pde)Bw) ¥ (/) (i + wpBnjEw)]

The frequency is negative imaginary. The field decays owing to the loss. In
fact, (2.191) could have been derived by standard perturbation theory. The
time-averaged power dissipated in the resonator is

2
IV‘Z‘l a‘/eu-e:dv. (2.192)

(2.191)

time-averaged dissipated power =py =

The energy storage in the resonator is

stored energy = w

! * 8w U Sl (2.193)

x/ep-e;dv,

where we have used (2.154) to express the magnitude of |I,| in terms of |V,,|,
with p, = w,./pe€. If the field decays at the rate —Im({Aw), the energy decays
at twice this rate. The decay of the energy accounts for the dissipated power:

NmMM:—%. (2.194)

Combining (2.192), (2.193), and (2.194), we arrive at (2.191). But now the
relation is the consequence of a standard perturbation theory that can be
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applied to resonators of all kinds, acoustic, mechanical, etc. It is in this general
context that one associates a so-called “unloaded” quality factor @ with the
resonance, which is defined by

Qo = wuw _ (1/2)w,[(ew,0€e/0w) + €/ (i + w, Op/0w)) ‘

~ - (2.195)

The adjective “unloaded” refers to the fact that the output waveguide has
been closed off and thus does not load the resonator. In terms of this @ factor,
the rate of decay is given directly by
Im(A 1
_om(dw) _ 1 (2.196)
Wy Qou

Next, consider the resonator when it is connected to a matched guide so that
Z = —Z, in (2.187). An initial excitation in the resonator will decay more
rapidly, since energy is lost not only to the conduction process but also to
the power escaping through the output port. Instead of (2.190), we find from
(2.187)

O¢ ou

2 2 .

2w, Aw pe + quw%ue + quw%e + iw,puo
+iw,,uY},|/eT e dSI*/V=0,

which, solved for Aw, gives

Aw _ o+, fer-e,dS|?/V

—_— = =] .

e (/20 + 0,06/ 0) + (e]A) (1 + 0,0/ )]

It is clear that the rate of decay has increased owing to the coupling to the
resonator mode. A power p, escapes from the resonator, contributing to the
rate of decay. Now that the decay is caused by both the dissipated power py
and the power escaping from the waveguide, we must have

2

(2.197)

Pd _ Pe

2Im(Aw) = — o w

(2.198)

Comparing this expression with (2.197), we find that the power escaping from

the resonator is given by
2
/ v) . (2.199)

—M Y, |e,-edV| | er-e’dS
DPe = 5 o u €y T €y

We may define a Q factor analogous to (2.195) which expresses the rate of
decay due to the escaping power:

Q,, = e _ (1/2)wy]e + wue/0w + (/1) (1t + w,Op/0w)]
T ope Yol fer-e;dS|?/V '

(2.200)
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The impedance relation (2.187) can be written in generic form, using the
definitions of @ and the expansion of pﬁ — k2% to first order in Aw as in
(2.190). One finds the very simple relation

A Qou/Qeﬂ

Z,  —i(2Aw/w,)Qou +1°

(2.201)

This relation involves Aw/w,, and the @Qs. The relation can be made even more
generic by removing the reference to normalized impedance and replacing it
with the reflection coeflicient, which has a more general meaning. We have

_ Z =2, _ 1/Qeu - 1/Qou +i(2Aw/wu)

F= Z+2Z, 1/Qeu+1/Qou —i(24w/w,,)

(2.202)

Suppose that the cavity is excited by an oscillator of adjustable frequency
w, well “padded” by an isolator which ensures that the oscillator emits a
forward-traveling wave ¢ unaffected by the impedance presented to the oscil-
lator by the cavity. The power absorbed by the cavity is

2 B2 —1nl2(1 _ |2y 4/QeuQop 2
Ial Ibl - Ial (1 |Fl ) - (1/Qe,u + 1/Qo,”)2 + (2Aw/w#)2lal .
(2.203)

This expression contains the sum of the inverse external () and the inverse
unloaded Q:

1,1 _ 1
Qou Qeu QLu,

which defines the inverse “loaded” @Q. The name stems from the fact that the
loaded Q determines the rate of decay of a resonance at the frequency w, set
up in the cavity when the source is removed from the cavity and replaced
by a matched load. Equation (2.203) is in a form entirely independent of
an equivalent circuit or of the specific electromagnetic example. A reflection
coeflicient, the ratio of the reflected and incident waves, is a general concept
applicable to any system propagating waves. The Qs were defined in terms
of decay rates for different terminations of the resonator. These rates, again,
need not be specifically associated with electromagnetic fields but could be
acoustic, such as those associated with surface acoustic waves (SAWs), or
purely mechanical.

A measurement of the frequency separation of the half-power points de-
termines the loaded @ (2.204). A measurement of the reflection coefficient at
resonance gives the ratio of the unloaded @ to the external ). Thus, from
these two measurements the external @ and the unloaded @ of the uth reso-
nance can be determined.

(2.204)
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2.11 Reciprocal Multiports

In the analysis of resonators, we arrived at an impedance matrix description
of a resonator connected to a number of waveguides. The fields inside a per-
fect enclosure were expanded in terms of the modes of a lossless resonator.
The result was an impedance matrix for a resonator containing a conducting
medium described by a conductivity o. Active systems with gain are obtained
when the conductivity is made negative.

The expansion in terms of resonator modes gave the full frequency de-
pendence of the impedance matrix. One need not go to this degree of detail
to obtain some important relations among the elements of the impedance
matrix describing a multiport. If an electromagnetic system has N ports of
access via N single-mode waveguides, or via waveguides with a total number
of N propagating modes, then one may describe the excitation in each of the
waveguides or modes by the amplitudes of the electric and magnetic fields
at reference planes sufficiently far from the structure that the cutoff modes
excited at and near the connection to the system are of negligible ampli-
tude at the reference planes. The electric fields can be expressed in terms of
their mode amplitudes Vj, the magnetic fields in terms of their amplitudes
Ijy7 = 1,2,... N. By the uniqueness theorem, the excitation is described
fully by the tangential electric field over the part S’ of the surface enclosing
the volume of interest, and the tangential magnetic field over the remaining
part S”. If the system is in a perfectly conducting enclosure, S = S’, then
the tangential electric field vanishes over the perfectly conducting enclosure
S’, and the tangential magnetic field is fully described by the amplitudes I;
of the waveguide modes over the surface S’ containing the reference cross
sections. From the knowledge of the magnetic fields across the reference cross
sections, the electric fields can be determined uniquely. This means one must
have a linear relation between the I; and the Vj:

Vi = Zjly (2.205)

where the Z;;s are complex coefficients representing the network in terms of
an impedance matrix description. If the network is lossless, then one must
have

Z(V +vi)=rzi+I1'z1=0. (2.206)

Since the currents can be chosen arbitrarily, one must have
Z+2Z'=0. (2:207)

One may determine other constraints on the impedance matrix imposed
by the reciprocity theorem of Sect. 1.8. The reciprocity theorem for a struc-
ture containing media with symmetric dielectric and magnetic permeability
tensors is
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7{13(” x H® .48 = 7{13@) x HY .48 . (2.208)

If we now consider two different excitations of the structure, indicated by
superscripts (1) and (2), (2.208) can be written

(1) () _ @ 7(1)
DA/ RED P A (2.209a)
i J
or
INZ 1 = 1P Z,10 = 1V Z1® | (2.209b)

where the subscript “t” indicates transposition of a matrix. Since the excita~
tions are arbitrary, one must have

Z,=Z. (2.210)

The impedance matrix of a structure obeying the reciprocity theorem must
be symmetric. The impedance matrix (2.180) of a resonator with multiple
ports of access obeys the reciprocity theorem if the mode patterns of the
cavity and waveguide are taken to be real. Then the proper phase relation is
established between the E fields and the voltages and between the H fields
and the currents.

2.12 Simple Model of Resonator

The preceding analysis was a formal derivation from Maxwell’s equations of
the terminal characteristics of a resonator. At optical frequencies, the phys-
ical conductors (metals) that model adequately the behavior of a perfect
conductor at microwave frequencies are too lossy to provide loss-free enclo-
sures. Instead, open dielectric structures are used for resonators at optical
frequencies. An optical Fabry-Pérot resonator may be formed from dielectric
mirrors that capture free-space Hermite Gaussian modes as described in the
next chapter. These share many properties of enclosed structures.

Further, resonators occur in other realizations than perfectly conducting
enclosures. They may be acoustic resonators. There is a generic commonality
to all these that can be brought out using only three principles: (a) energy
conservation, (b) time reversibility, and (c) perturbation theory. In this sec-
tion we use these principles to arrive at the equation of a resonator coupled
to incoming and outgoing waves [31].

Denote the amplitude of a mode in a closed resonator by U(t). It obeys
the following differential equation in time:

dU
dt
where w, is the resonance frequency. We normalize the amplitude so that
|U(t)|? is the energy in the mode. When the resonator is opened by connecting

= —iw,U , (2.211)
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to it a waveguide, or by making the mirrors partially transmissive in the case
of a Fabry—Pérot resonator, the amplitude of the mode must decay at the
rate 1/7. because of the escaping radiation. Equation (2.211) changes into

‘-f% = —(iwo + 1/7)U . (2.212)

The time rate of change of the energy is

2
M = —£|U|2 .

= - (2.213)

In the spirit of Sect. 2.10, we may define an external ¢} which relates the
rate of decay of the mode due to coupling to a waveguide to the resonance
frequency:

1 2

TR (2.214)
€ ole

Thus far we have studied a resonance and its decay due to escaping radiation
when there is no excitation of the resonator from the waveguide. Next we
study the case of excitation of the resonator by an incident wave. Denote the
amplitude of the incident wave by a. As usual, we normalize a so that its
square is equal to the power. The system is linear, and thus the excitation
through a can be expressed by modifying (2.212):

‘fi—[tj = —(iwo + 1/7e)U + Ka , (2.215)
where & is a coupling coeflicient. One may ask why we have chosen to express
the coupling in terms of a, rather than its time derivative or integral. This
choice is justified for all systems that have high Q. Indeed, if the @ is high,
only excitations at and near the resonance frequency can produce a response.
If the coupling is due to da/dt, one may replace it by —iw,a to lowest or-
der, and incorporate the factor —iw, into the coupling coefficient. A similar
argument applies to coupling to the integral of a.
We may solve (2.215) for an excitation a proportional to exp(—iwt):

Ka

U= Mo —w) + 1 (2.216)
Now, let us revisit the case of the unexcited resonance as it decays by cou-
pling into the external waveguide. We assume that the incoming waveguide
Propagates only one mode. It is clear that the escaping energy excites an
outgoing wave of complex amplitude b whose power is equal to the rate of
decay of the energy:

du|? _

2
= _7__1U|2 = —|bj2. (2.217)
€
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Next, consider the time-reversed solution. Decay becomes growth, and an
outgoing wave b becomes an incoming wave a (whose amplitude is made to
grow exponentially). The frequency of the excitation is w,+i/7.. We introduce
this frequency into (2.216) and find

|5[%]al?

U = @/ (2.218)

Since the outgoing wave became an incoming wave, we have, from (2.217),

2
laf* = =[UI*. (2.219)

Comparing (2.218) and (2.219), we find for the coupling coefficient

2
N e 2.220
ez (2.220)
We can set this real by proper choice of the reference plane in the waveguide.
Thus, combining (2.215) and (2.220), the equation of the open resonator
coupled to an input waveguide becomes

du . /2
e —(iw, +1/7e)U + Za. (2.221)

Finally, consider the relation for the reflected wave b. The system is linear,
and thus we must have

b=cia+c,U. (2.222)

Again, we skirt the possibility that the relationship is in terms of derivatives
or integrals by noting that in the narrow frequency interval of interest these
operators can be replaced by multipliers. We already have the results of the
thought experiment for a = 0, the decay of the mode into the waveguide.
Thus we may set a = 0 in (2.222) and use (2.217), with the result

b=c,U = ,/TEU , (2.223)

and thus

Cu = \/Tz : (2.224)

We dispose of a phase factor by noting that the phase of the mode U is arbi-
trary and can be chosen so as to make the coefficient ¢, real. The coefficient
¢, is determined by power conservation. We have from (2.215)

dJue 2 5
2 _ @222 2 Z * *
|al® — {B| o Te|U| + - (aU* + a*U)
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or

lal? ~ leal*lal* — leu PIUI? ~ (caclalU™ + €eua™U)

2
= —7_3|U|2 + ‘/T— (aU* 4+ a*U) ,

for an arbitrary a. Using the value (2.224) for ¢,, we find ¢, = ~1, and thus
the relation between the incident and reflected waves becomes

2
b=—a+ ,/T—U. (2.226)

The equations can be modified to include internal loss by supplementing the
decay rate 1/7, due to the escape of radiation into the coupling waveguide
by a decay rate 1/7, due to the internal loss:

(2.225)

dUu 2
— = ~(wo + 1/7e + 1/o)U + ’/T_“ . (2.227)

Equation (2.226) remains unaffected. Equations (2.226) and (2.227) fully de-
fine the behavior of the resonator in the neighborhood of its resonance fre-
quency. It is this pair of resonator equations that connects classical electro-
magnetic fields to quantum fields. Not surprisingly, it is also the appropriate
quantum description of phononic excitations. If we ask for the reflection co-
efficient I" as a function of frequency of excitation, we find

_ (1/7e) = (1/75) + i{w — wo)
(1/7e) + (1/75) — i{w — wo) '

This is the same result as obtained from the formal analysis (2.202), with the
identification of the unloaded Q as

1 2
Qo WoTo
and the external Q as that given by (2.214). The analysis can be generalized

to multiple resonances in one cavity with one input. An equation of the form
of (2.227) is written for each resonance:

(2.228)

(2.229)

du,; . . .
—d—t’ = —i(Wo,j = 1/7e,j = 1/70,;)U; + 1/2/7e 50 - (2.230)

The coupling between the forward and backward waves is generalized to

b=caa+ Y 72_Uj. (2.231)
j €]
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The reflection coefficient can be written as

b 2/Te j
I'=-=¢, + »J - . 2.232
a @ ; l/Te,j + 1/"'o,j - l(w - wo,j) ( )

The reflection coefficient in the absence of loss, i.e. for 1/7, ; = 0, must be of
unity magnitude. This gives a relation for the coefficient c,.

2.13 Coupling Between Two Resonators

The preceding section developed the equations for the excitation of a res-
onator from an input waveguide using the constraints of time reversal and
energy conservation. It also established the formalism necessary to develop
the equations for a transmission resonator, a task left for one of the problems.

(1) @

Fig. 2.13. Two resonators coupled by a hole

When two resonators are coupled by a hole, such as the two resonators
shown in Fig. 2.13, the formalism is slightly different, and in some ways
simpler than in the preceding section. For the purpose of the analysis we
assume that the two resonators are lossless, their resonance frequencies are
real. Loss can be taken into account by choosing complex frequencies, as
has already been done in Sect. 2.12. The derivation of the equations for the
modes of the two resonators requires only energy conservation considerations.
It is clear that the evolution of the mode in resonator (1) is affected by
resonator (2). If the coupling is weak, one may supplement the equation for
the uncoupled resonator (1) by a coupling term proportional to the excitation
in resonator (2):

dU,

—E—t— = —iw Uy + k1203 . (2233)

In a similar way one may describe the excitation of resonator (2):
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dU,

—dt— = —iwgUsy + ko1 U7 . (2.234)

These are the coupled-mode equations of the two resonator modes. The cou-
pling coefficients depend on the geometry of the coupling hole. Energy con-
servation imposes a constraint. Indeed, from energy conservation we have

2 2
Ui, dual _
dt dt (2.235)

= K:12U2Uf + k21U U; + KZT2U5U1 + K:;lUikU2 .
Since the amplitudes U; and U, can be chosen arbitrarily, one must require
Kl = —Kj =K. (2.236)

If we assume a time dependence exp(—iwt) for the amplitudes U; and U,
and use (2.233), (2.234), and (2.236), we obtain the determinantal equation
for the frequency

(Ww—w)(w—ws)—|s2=0, (2.237)

with the solution

2
p=Giter (O w2) L, (2.238)
) )
25 r
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Fig. 2.14. The solutions to the determinantal equation (2.237); || = 0.1
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Note that the frequencies of the coupled system depend only upon the
magnitude of the coupling coeflicient, not its phase. One can imagine a situ-
ation in which one of the cavities, say cavity (1), is tuned by a plunger and
its frequency is varied, while the second cavity remains unchanged. Then one
may construct a diagram, as shown in Fig. 2.14, for the frequency w of the
coupled system as a function of wq, with ws fixed. The greatest deviation
from the natural frequencies of the two resonators occurs in the case of de-
generacy, wi = wg, where we find that the two frequencies of the coupled
system are separated by 2|«|. The solutions for the amplitudes U; and U, in
the degenerate case are

Ul = [A+€—i|n|t + A_6+i|n|t] e‘i“"’t y (2239)
U, = il—ﬂl(A.;_e’i"‘“ — A_éllnlt)gmiwot | (2.240)
K

where w, = w1 = ws.

From the nature of the solutions one may draw conclusions as to the phase
of the coupling coefficient in some specific cases. Take for example the case of
two identical resonators coupled by a hole between them in a structure with
a symmetry plane containing the hole. The mode solutions must be either
symmetric or antisymmetric. From (2.240) we conclude that the coupling
coefficient must be pure imaginary.

For a better understanding of the coupled-mode formalism it is helpful
to look at the analysis of the electromagnetic fields, as was done in Sect. 2.9
for the impedance matrix of the open resonator. We start with the example
in Fig. 2.13 and define the modes in the uncoupled resonators by placing a
perfect magnetic short across the hole. Now that the coupling is removed,
the tangential magnetic fields vanish across the hole. We denote the electric-
and magnetic-field patterns of the uncoupled modes of resonance frequencies
wq and wy by ej(r), ex(r), hi(r), and ha(r). The magnetic fields of the un-
coupled modes have zero tangential components at the hole. When the hole
is opened, mode (2) causes a nonzero tangential magnetic field to appear in

resonator (1). Denote this field by Izhgp)('r). It is clearly proportional to the
amplitude of the magnetic-field pattern in resonator (2). As in the treatment
of the open cavity, the appearance of this field in resonator (1) is represented
by a surface current

K.=-nxH=-Lnxh®(r) (2.241)

inside the closed resonator (1), over the surface of the hole. This case has
been treated in Sect. 2.8, and the resulting equations for the amplitudes of
the electric and magnetic fields are

avy

I (p)
— = - = n-ej hpdS, 2.242
€ it pii1 V Jioke 1 X g ( )
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dI .
po = -mVi with py = w1 /o€, . (2.243)

In a similar way we may write down equations for the perturbed mode of
resonator (2). Next we introduce the canonical amplitudes U; and Us, which,
in the absence of coupling, reduce the second-order differential equation of
each resonator to uncoupled first-order differential equations. Note that U;
and Uz have the unperturbed time dependences exp(—iwit) and exp(—iwst).
The transformations are

Uj x VeV +iul; §=1,2. (2.244)

When (2.242) and (2.243) are put into canonical form and only the term with
positive frequency is retained in the coupling term, since the excitation by the
coupling term with negative frequency is off-resonance and can be neglected,
we find

dU, U,

— = —iwnU; +1i
dt V/B€ Jhole

Comparison with {2.233) shows that the coupling coefficient is

n-e} x hPds . (2.245)

i
K12 =
V\/ HE Jhole

Similarly, we find for the coupling coefficient k23

n-el x hds . (2.246)

i
V\/ HE Jhole

Note that the coupling coefficients are imaginary when es, e, hgp), and hﬁ”’
are real, as pointed out earlier on the basis of symmetry of the mode solutions.
Energy conservation requires, according to (2.236),

n-e} x h{Pds . (2.247)

K21 = —

/ n-elx hPds = — (/ n-ejx h§”)ds) . (2.248)
hole hole

This is a constraint on the perturbation fields. For symmetric resonators, this
constraint is automatically satisfied. However, the interesting fact is that it
holds for asymmetric resonators as well.

2.14 Summary

This chapter was a brief introduction to the theory of modes in microwave
waveguides and resonators. The emphasis was on modes and mode expan-
sions. In microwave design it is common to use coaxial cables or waveguides
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within the frequency regime within which only the TEM mode or the dom-
inant waveguide mode, respectively, propagates, while all other modes are
below their cutoff frequency. The response of the system simplifies to that of
one represented by simple equivalent circuits.

We derived the dispersion relations and considered energy and power.
These concepts are fundamental to the analysis of thermal noise and quan-
tum noise, since energy considerations are the basis of statistical physics and
thermodynamics.

The analysis of waveguides and resonators included the presence of media
in the enclosure. The media could be dispersive and lossy. They could also
be made active if the conductivity ¢ was made negative. Thus, the analysis
includes the description of active devices such as amplifiers and lasers, as
discussed in connection with noise performance in Chap. 5 and subsequent
chapters. The structures could be equipped with many input waveguides and
thus are electromagnetic models of multiports.

The exact analysis of waveguides and resonators filled with a uniform
medium was helpful in gaining an understanding of perturbation methods,
which, on one hand, gave the attenuation constant of a waveguide mode
due to loss and, on the other hand, derived the equations of a resonator
at and near one of its resonance frequencies using power conservation and
time reversibility. These perturbation approaches are particularly useful and
accurate in optical structures, because in such structures the losses per wave-
length, or per cycle, have to be small if the structures are to be of any practical
use.

Problems

2.1 Monolithic microwave integrated circuits (MMICs) contain transmis-
sion line structures with piecewise uniform dielectric media as shown in Fig.
P2.1.1. The purpose of this problem is to show that such structures cannot
support TEM waves.

[ / metal
727 7
 Nmetal

Fig. P2.1.1. A transmission line in an MMIC

(a) Prove that the electric field obeys the following differential equation in a
(piecewise) uniform dielectric medium:

V2?E 4+ w?p,eE =0. (1)
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(b) Inan axially uniform structure solutions exist that have the z dependence
¢'#%. Then (1) reduces to

V2E + (wpe —f)E =0. (2)

A TEM wave has no longitudinal component of E and H. Thus F and
H are purely transverse. £ = Ep, H = Hr.

(c) Prove that Vr x E = 0. Therefore E7 = —VTQS(z,y)eiﬁz.

(d) Show that the divergence relation in a piecewise uniform dielectric re-
duces to

Vi$ =0. (3)

(e) Prove that a conductor pair in a piecewise uniform dielectric system
cannot support a TEM wave, unless € is constant throughout all of space.

2.2* In a square waveguide, the modes Ey,,, are degenerate with the modes
E..., and the modes H,,,, with the modes H,,,.

(a) Show that the H,,, mode with

mm nmw
W,.n = — COS ——I COS —1Y (1)
a

b

is orthogonal to the mode with

Y,m = COS n_7rz cos T—n—7—r-y , (2)
a b
for m # n, even when b = a.
(b) Consider the mode ¥;9. Construct the new function Y19 + Wp1. Sketch
the Hr field and Er field of the mode.
(c¢) Find another linear combination giving a mode that is orthogonal to that
of part (b). Sketch the Hr field and Er field.

2.3 Find the power radiated in one direction by a short wire at the center
of a rectangular waveguide of dimensions a, b, i.e. the extension of the center
conductor of a “feeder” coaxial cable (see Fig. 2.8). The waveguide is shorted
at a distance A\;/4, where Ay = 27/f, and

. . sink(£—-y) a
K =i, in Kl 6(2: 2)f01ry<£,

K=0 fory>1¢.

2.4* A resistive sheet of 1000 {2 square (i.e. o times the thickness 6 is 1073 S;
S stands for siemens or mho) is to be used in an attenuator. For an attenuation
of 10 dB, evaluate the length of the sheet required at 10 GHz (see Fig. P2.4.1).
Use a perturbation approach. Compute the loss from 1 [ o|E|2dV over the
volume of the sheet using the unperturbed field.
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- 2] b=1cm
’ 4

a=23cm

Fig. P2.4.1. An attenuator

2.5

(a) Write down the potential functions for all modes Eppnp and Hyppp of a
rectangular cavity resonator (see Fig. P2.5.1).

(b) If b < a < £, which mode has the lowest resonance frequency?

(c) Describe the E and H field patterns of this mode in the z,y plane at
z=0and z=£¢/2.

Fig. P2.5.1. A rectangular cavity

2.6* A waveguide partially filled with an anisotropic medium does not sup-
port TE or TM waves. However, if the medium does not change along the
waveguide axis, the z axis, the waveguide possesses translational symmetry
and propagates waves with the dependence exp(ifz).

Show that energy velocity for such modes is still equal to dw/df.

2.7 A cavity at resonance presents a reflection coefficient I'ys = +0.33. The
frequencies at which the power absorbed by the cavity is half of that at
resonance lie 10 MHz apart. The resonant frequency of the cavity is 5000
MHz. Find the unloaded @ and the external Q. Neglect the losses far off
resonance.

2.8* Generalize equations (2.227) and (2.226) to a resonator with two inputs.
You can shut off one port at a time, reducing the resonator to a one-port,
and obtain the parameters of the two-port in this way. You should permit
two, in general different, decay rates 7.; and 7., for the two ports.

Derive the power transmitted through the resonator for an incident wave
a1 = Aexp —iwt as a function of frequency. When is the power transmission
through the resonator 100%?
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2.9 A lossless “Y”, as shown in Fig. P2.9.1, is a three-port. The three-port
can be matched from port (1) by slow tapering. Show that if it is matched
as seen from port (1), it cannot appear matched as seen from ports (2) and
(3). Find the scattering matrix.

—// 2
—\<\ ®

Fig. P2.9.1. A tapered “Y”

M

2.10 Consider a lossless propagation system formed from a multimode
waveguide that transforms incident waves a into transmitted waves b via
the transfer matrix T'.

(a) Prove that T'T = TT' = 1.
(b) Consider excitations at w and w + Aw, with a{w + Aw) = a(w). Using
the energy theorem, show that

Tf-‘%ziw,

where W is a positive definite Hermitian matrix.

Solutions

2.2

(a) The product of the potential functions can be written as

e (B2 b ()]
X [cos ((m—;n)zy) + cos (m_—l-a_r_z)_wy)] .

The integrals with respect to x and y extend over an interval a. They
vanish because of the periodicity of the functions.

(b) Figure S2.2.1a shows the potential surface. The lines of equal height are
the E lines, the lines of steepest descent are the H lines.

(c) Figure S2.2.1b shows the potential surface for the orthogonal mode, ¥;¢—
Yo1.
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Fig. S2.2.1. (a) Plot of ¥10 + %o1; (b) plot of ¥10 — Y1

2.4 For an E field of complex amplitude E, in the center of the guide, the
power dissipated per unit length is

Py = %UGIEolzb. (1)

The power flow in the waveguide is

1 [e p? 2
P,=~,/—4/1—- E,|“ab . 2
4 Ho wzﬂ'ofol ola @)

The power decays with an attenuation constant 7, which is given by

_ P _200 Jpo 1 (3)
P, a Ve /1-p2/ulpoe,

The net attenuation over a length L is exp(yL). We find v = 0.432 cm™! and
L =533 cm.

2.6 By superimposing two modes of differentially different frequencies w and
w + Aw with equal amplitudes, one may construct a wavepacket whose fields
go to zero at distances spaced by (2m/Aw)dw/dp. The energy stored in this
packet cannot escape and the packet travels at the group velocity. Thus the
argument that the energy travels at the group velocity is a very general
argument and only breaks down when the propagation constant cannot be
differentiated with respect to frequency.

2.8 If there are two ports of access, each port causes a decay of the mode,
and each port feeds the mode. The generalization of (2.227) is

au 2 2
-Zt—=—'(-wo+1/T0+1/Tel+1/T52)U+”—a1+”——a2. (1)
Tel Te2

There are two reflected waves, each of which can be evaluated from time
reversal and energy conservation
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=t f @)

When a; = Aexp(—iwt) and az = 0 we find from the above, for the power
escaping from port (2)

U1 4|AIP1% [1e17en

2 =
B2] Ten (W—wo)?72+1"° (3)
where
1 1 1 1
e — @)

T Tel Te2 To

All of the power is transferred if, and only if 1/7, = 0 and 1/7e; = 1/7es.
The resonator must be loss-free and the two external Qs must be the same.






3. Diffraction, Dielectric Waveguides,
Optical Fibers, and the Kerr Effect

Physical conductors (metals) that model adequately the behavior of a per-
fect conductor at microwave frequencies are too lossy at optical frequencies to
provide low-loss enclosures. The same holds for reflectors. Whereas a metallic
reflector is perfectly adequate at microwave frequencies, at optical frequen-
cies reflectors have to be constructed using layered dielectrics of the proper
thickness and dielectric constant. Total internal reflection is utilized in the
construction of dielectric waveguides at microwave frequencies as well as at
optical frequencies. At optical frequencies these dielectric waveguides are real-
ized as fibers. Optical beams can also be contained in free space, if periodically
refocused by lenses or mirrors. Optical resonators can be built with two or
more curved mirrors that balance the diffraction of the beam bouncing back
and forth and maintain a resonance mode in the space between the mirrors.
The modes in dielectric waveguides and the modes of optical resonators share
many of the properties of microwave waveguides and resonators discussed in
the preceding chapter.

We start with a discussion of optical beams propagating in free space,
the so-called Gaussian and Hermite Gaussian beams. We discuss the modes
in optical fibers and derive their dispersion relations, i.e. the propagation
constants as functions of frequency. We present both the standard derivation
in terms of coupled TE and TM waves and the simplified linearly polarized
(LP) approach. This is followed by the derivation of the perturbation formula
for the change of the propagation constant due to an index change of the
fiber. We study the propagation of waves in the presence of group velocity
dispersion. We look at the coupling of two waves of orthogonal polarization
in an optical fiber.

The detailed study of wave propagation in fibers is preliminary to the
study of optical-fiber communications in Chaps. 9 and 10. High-bit-rate op-
tical communications have made enormous progress in recent years. The low
loss and low dispersion of optical fibers make the fiber an ideal transmission
medium, permitting much higher bit rates than is possible with microwave
transmission. Recently, designs for repeaterless transoceanic fiber cables have
been implemented with a bit rate of 5 Gbit/s. The loss of the fiber is com-
pensated by erbium-doped fiber amplifiers spaced roughly 40 km apart; the
transmission wavelength is at the gain wavelength of erbium, 1.54 ym. These
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technical advances in transoceanic transmission will influence the usage of
terrestrial fibers, 10 million km of which are already in the ground. Ter-
restrial fibers have been designed to have zero group velocity dispersion at
1.3 pm. It was anticipated that all communication over the fibers would be
accomplished at a wavelength of 1.3 um, using laser diode amplifiers, even
though the minimum loss of the fiber is at around 1.5 pm [32] (see Fig. 3.1).
With zero dispersion, the pulses propagate with no distortion, except for the
effects of third-order dispersion. It has turned out, however, that the erbium
doped fiber amplifiers perform much better than the diode amplifiers. They
have long gain relaxation times of the order of 1 ms and thus have no inter-
symbol crosstalk. Thus, it is likely, that most of the terrestrial network will
also be ugraded to operate at 1.54 ym wavelength.
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Fig. 3.1. The loss of a single-mode fiber as a function of wavelength (from [32])

3.1 Free-Space Propagation and Diffraction

In preparation for the study of optical-beam propagation, we solve Maxwell’s
equations in the paraxial limit, in the limit when all wave vectors composing
the beam have small angles of inclination with respect to the axis of the
beam. By solving for the vector potential along an axis transverse to the
beam axis, a scalar equation is obtained. All three components of the electric
and magnetic fields can be derived from the solution of this scalar equation.
Optical Fabry—Pérot resonator fields can be constructed from these same
solutions.

Propagation of optical beams is in everyone’s daily experience. Sun rays
passing through clouds delineate straight line designs in the sky. Thus, the
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dominant impression is that light propagates as rays, the foundation of the
mathematical theory of ray optics. However, observation of light diffracted by
a sharp edge or small holes (such as the weave of a parasol) is also a common
experience, and these effects call for a refinement of ray optics by diffraction
theory.

Maxwell’s equations contain both ray optics and diffraction optics in cer-
tain limits. In diffraction optics, waves of different propagation vectors in-
terfere with each other to produce collectively a beam. These beams do not
maintain their cross section, they diffract. However, the diffraction may be
small if the transverse dimension of the beam is many wavelengths. Since
metals are too lossy at optical frequencies to provide efficient guidance of
optical waves, as they do for microwaves, free-space beams are a convenient
way to transmit power from one region of space to the other. The diffraction
solutions of Maxwell’s equations also provide the framework for the quanti-
zation of electromagnetic fields in free space. These are the reasons for the
study of diffraction here.

Maxwell’s equations are repeated here, as specialized to free space:

H
VxE= —po%— (Faraday’s law) , (3.1)
VxH-= eoaa—lt;} (Ampere’s law) , (3.2)
V. eE =0 (Gauss’s law) , (3.3)
V.-poH =0 (Gauss’s law) . (3.4)

From these equations one may derive the wave equation for the electric field

0’E
VZE = €oblo s (3.5)

or an analogous relation for the magnetic field. We are interested in solutions
that are plane-wave-like, but confined to a finite cross section that measures
many wavelengths across. Under these conditions, one may make the paraxial
wave approximation. It is more convenient to make this approximation in the
wave equation for the vector potential than in the equation for the electric
field, since then one may deal with a single-component vector field and a
scalar wave equation, as we proceed to show [31].

The curl of the vector potential is defined by

HH =V xA. (3.6)

In order to define a vector field completely, one needs to specify both its
curl and its divergence. Equation (3.6) defines only the curl, in terms of the
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H field. One may use this freedom to choose the divergence of the vector
potential so as to obtain simple equations for the evolution of the vector
potential. This is done by first noting that (3.1) and (3.6) give

0A

where @ is an as yet unspecified scalar potential. Introducing (3.6) and (3.7)
into (3.2), one finds

2A
Vx(VxA)= _‘“060%2— - MOEO%VQS . (3.8)

Using a well-known vector identitity, the curl of the curl of A can be written
Vx(VxA)=VV-A-V?A. (3.9)

Thus, if one chooses the so-called Lorentz gauge,

V-A+uoeo%§z—S =0, (3.10)

a simple wave equation is obtained for the vector potential:

92A
V32A - Pofoz = 0. (3.11)

Gauss’s law (3.3), in combination with (3.7), gives
0
V. §A+V¢ =0. (3.12)

When this relation is combined with the Lorentz gauge (3.10) one obtains
the wave equation for the scalar potential &:

0?d

2 —
v ¢—ﬂ0€0'5t7 =

0. (3.13)

Next we apply the wave equation obeyed by the vector potential, (3.11),
to propagation of a beam in free space along the z direction of a Cartesian
coordinate system. We assume a vector potential with a single component
along the x axis. Substituting this ansatz into (3.11), we obtain a scalar wave
equation for Ay:

0% A,
otz -

We now look for a solution of A, in the form of a quasi-plane wave, i.e. we
assume

V2Aac = €ollo (314)
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Ay = Y(z,y, z)e Welk? (3.15)
and obtain the differential equation for the field envelope v

Py Py o Py
— +2ik—+— =0 .
522 t g Tk g =0 (3.16)
where k is defined by k = w,/li0€,, Which is the dispersion relation of plane
waves in vacuum. From the Lorentz gauge (3.10), one then obtains for the
scalar potential ¢ the following expression:

i oy
o w3z exp(—iwt + ikz) ,
which manifestly satisfies the scalar wave equation (3.13).
If the beam has a cross section much larger than a wavelength, the
z dependence of i is approximately given by e'*2, and thus the correction
to the z dependence, dy/dz, is relatively small. The second derivative of v
with respect to z can be ignored, with the result

LU P

522 T B2 EP (3.17)

This is the paraxial wave equation. This equation also happens to be the
Schrédinger equation of a free particle in two dimensions, if z is replaced by
t. Equation (3.17) is of first order in z and thus describes waves that travel in
the +2z direction only. A corresponding equation with k replaced by —k gives
waves traveling in the —z direction. The simplest solution of the paraxial
wave equation is a beam of Gaussian cross section

_ —ib ik(z? + y?)
1/)(I’y’z) —Aoz—ib exp( Z(Z—lb) ) bl (318)

where A, and b are integration constants. The former is the amplitude at
the beam center, x = y = 0, at z = 0; the latter is the so-called confocal
parameter. This parameter determines the minimum diameter of the beam. In
order to see this, we rewrite (3.18) by separating the real part and imaginary
part of the exponent in the form

Ao 2 2 . 2 2 .
'l/)(I,y,Z) = W exp (— %) exp (15@%2) exp(—l¢) .

(3.19)

Here the meaning of the parameters is easily identifiable: w is the radius at
which the field amplitude is decreased from its peak value by 1/e; R is the
radius of curvature of the phase front surface defined by k[(z2+y?%)/2R]+kz =
0;¢ is a phase advance. All these parameters are related to the confocal
parameter b. Indeed,
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2b 2 1
w2=—(1+z), == and ¢ =tan!

k b2 R~ 22402’ (3.20)

z
5
The minimum beam diameter is

Y L b (3.21)
Wo = E Var° )

where A = 2n/k is the free-space wavelength. Equation (3.19) can also be

written
22 + 2 k(22 + y?) '
exp ( -0 ) exp (1—2R—-——) exp(—i¢) . (3.19a)

Y(z,y,2) =

Ao

w/ W,

The denominator w/w, takes care of power conservation: the power flow
density has to decrease with the square of the beam radius. The phase advance
¢ imparts to the beam a phase velocity larger than the speed of light. This
is due to the the fact that the Gaussian beam is made up of a superposition
of plane waves whose wave-vectors are inclined with respect to the z axis,
and thus possess phase velocities as measured along the z axis that are larger
than the speed of light. The group velocity is, of course, less than the speed
of light (see Appendix A.1). One may say that vacuum is dispersive for a
beam of any given beam radius w,.

Fig. 3.2. Electric field of Gaussian beam in z—z plane at one instant of time. The
pattern moves to the right as a function of time; b/\ = 10/6

Figure 3.2 shows the electric field in the z—z plane of the fundamental
Gaussian for a wave traveling in the +z direction. The field has both z and
r components, which are evaluated from (3.7) using the vector potential
solution and the scalar potential associated with it according to (3.10). The
electric field is found to be
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E=iw (izzp + ;%zz%%) exp(—iwt + ikz) . (3.22)
The derivation from the vector potential has paid off. We have found the
total electric field from one single vector component of the vector potential.
Had we set up the paraxial wave equation for the electric field, we would have
had to solve three scalar wave equations separately and would have had to
make the three solutions consistent with each other by setting the divergence
of E equal to zero.

Fabry—Pérot resonators support Gaussian beams when formed from curved,
spherical mirrors spaced at the appropriate distance so as to match the phase
curvature of the Gaussian. The nodal surfaces of the modes fit the mir-
ror surfaces, which may be thought to function as perfect conductors. One
uses dielectric mirrors with periodic layers of dielectrics of different dielectric
constant to construct highly reflecting surfaces at optical frequencies. These
Fabry—Pérot resonators are the laser resonators for gas and many solid-state
lasers, in which the medium cannot provide guidance of the optical wave.

In many cases it is possible to ignore the refractive properties of the
medium and compute the electric field solely from the vacuum field. The
laser medium supplies only the gain that balances the losses in the medium
and the loss due to radiation passing through the partially transmitting end
mirror used as the laser output mirror. The emitted laser beam outside the
resonator does not experience vacuum dispersion, as we now discuss. We have
pointed out that a Gaussian mode is supported between two curved mirrors of
some given radius R. If we look at a symmetric resonator, with both mirrors
of the same curvature R, spaced a distance d apart, then (3.20) yields a value
for the b parameter

b=+/Rdj2 - (d]2)? . (3.23)

The b parameter is fixed by the geometry; it is wavelength-independent.
Hence, if many axial Gaussian modes of different frequencies are excited si-
multaneously within the laser by mode-locking the laser [31,33], a short pulse
is produced within the laser. The different frequency components of the pulse
all have the same b parameter, which means that they have different beam
radii. If a group velocity is computed from the phase shift of the pulse in
one pass, 2kd + 2 tan~!(d/2b), one finds that it is equal to the speed of light
c. The additional phase shift 2¢) does not contribute to the group velocity
since it is frequency independent. A pulse of this type emitted from the laser
(if one of the mirrors is partially transmissive) does not experience “vacuum
dispersion”.

The paraxial wave equation has a complete set of solutions that are com-
posed of products of Hermite Gaussians:

Pm(§) = Hn(£) exp (— %i) : (3.24)
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The solutions are

Pmn(T, Y, 2) = %%({?)%(%) exp [i(m2 + yz)]

2R (3.25)

x exp[—i(m +n + 1)4] ,

with w, R and ¢ given by (3.20). They have the same phase profile as the
fundamental Gaussian, but different phase velocities. The fields experience
a greater phase advance per unit distance of propagation the greater the
order of the Hermite Gaussian. The reason for this is that the higher the
order of the mode, the greater the inclination with respect to the z axis of
the plane waves composing the mode. Thus, the higher order modes acquire
phase velocities larger than the speed of light.

The Hermite Gaussians form a complete orthogonal set. The orthogonality
could be proved by mathematical manipulation. However, there is a simple
physical argument for the orthogonality. The power flow in the beam is formed
from the integrals of complex-conjugate products of field profiles. A product
of two mode patterns of different propagation constants has a z dependence.
Since the time-averaged power flow must be z independent, such cross terms
must be equal to zero.

An excitation described by a transverse electric-field distribution can be
expanded in terms of this set. The radius w of the Hermite Gaussians is ar-
bitrary, but should be chosen so that the number of terms in the expansion
with appreciable amplitudes is minimized. For simple profiles of the excita-
tion, the rule is to maximize the excitation of the fundamental Gaussian mode
by proper choice of w. Some important relations among Hermite Gaussians
are summarized in Appendix A.2.

3.2 Modes in a Cylindrical Piecewise Uniform Dielectric

A dielectric rod can guide microwaves. A rod of refractive index higher than
that of the surrounding space confines the field in the rod and in its immediate
vicinity. The eigenmode solutions for a dielectric rod are the same as those
for an optical fiber of uniform core index. A fiber has a dielectric core of
slightly higher index than that of the surrounding cladding. In ray optics
parlance, optical radiation can be confined to the core and its periphery
by total internal reflection if the rays constituting the mode have incidence
angles greater than the critical angle. Figure 3.3 shows schematically a ray
bouncing around in a dielectric cylinder with a step discontinuity in the
index [34].

In terms of Maxwell’s equations, guided modes appear as eigensolutions of
the wave equation that decay exponentially towards infinity in the transverse
plane. This analytic approach yields mode profiles and dispersion relations
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e

n,> ny
Fig. 3.3. Path of ray in single mode circular cylindrical step-index fiber
for the modes. We shall follow it here, using some of the results from [35].

The vector field E(r,t) is assumed to be sinusoidally time-dependent (any
general time-dependence can be built up by Fourier superposition):

E(r,t) = Re[E(r) exp(—iwt)] . (3.26)

From Maxwell’s equations,

VxE =iwuoH , (3.27)
V x H = —iweE , (3.28)
V.eE=0, (3.29)
V-uH =0, (3.30)

one may derive the wave equation for the electric field if the dielectric is
uniform. In a piecewise uniform dielectric this condition is obeyed separately
in each region with a uniform medium:

V2E(r) + w?u.eE(r) =0. (3.31)

Similarly, a wave equation (or Helmholtz equation) can be derived for the
magnetic field. If we consider a cylindrical waveguide of radius p = a with
index n,, and an index ny, outside that radius (see Fig. 3.4), one may find
solutions of (3.31) for the z component of the electric field. This equation,
written in cylindrical coordinates, is

E, = A(w)F(p)e™®e? | (3.32)

in which the equation for F' becomes

d*F 1dF , m?
d—p2+;d—p'+<f€ —-?)F=0 (3.33)
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cladding index ny

core index n,

Fig. 3.4. Geometry of fiber with index step

with
k2 =n2k? - g%, (3.34)

where k = w,/lio€,. The solutions for F are

Im(Kp) p<a
F= 3.35
{Km(w) o p>a (3.35)
with

v = g% — nik?. (3.36)

The J,,s are Bessel functions of order m and the K,,s are modified Bessel
functions of order m. The modified Bessel functions K,, decay exponentially
as p — oo and are singular at the origin, but because they are not used
to express the field at the origin the singularity does not occur in the field
solution. The specific p—¢ dependence of the z component of the electric field
has associated with it a definite H field which is purely transverse. There is
also an associated F field, which appears curl-free in the transverse plane,
because H, = 0. The solution thus obtained is a so called E wave. If the core
were enclosed in a perfect conductor, the E wave could be made to satisfy
all the boundary conditions. In an open structure, however, it is not possible
to provide continuity of the tangential components of £ and H at p = a,
using only an E wave with two adjustable constants. Instead it is necessary
to develop an analogous H wave solution of the same kind, with the same
radial and ¢ dependence. The boundary conditions can be matched using a
mixture of E and H waves. We do not present the details here, but refer the
reader to the literature [35-37]. We simply state the determinantal equation
that results from matching of the boundary conditions:
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Jn(ka) | Kh(va) \ [ Jula) | nd K. (ya)
(nJm<na) * vam)) (nJm<na) Tz vama))

(3.37)
_ (mBk(n2 —n})\?
B ark?y2n,
with
K24+ 4% = (n2 —n2)k?. (3.38)

This is a rather complicated-looking determinantal equation. It is clear
that it is the result of two-wave coupling, the two factors in parentheses
representing some forms of limiting solutions in the limit n, — n,. Of course,
in this limit, no bound solution could in fact exist. Yet, the factors suggest
that there may exist simpler, approximate determinantal equations related
to either one of these factors. We shall show that this is indeed the case after
some more discussion of the meaning of the determinantal equation.

As mentioned earlier, the modes along a fiber are mixtures of E waves
and H waves, and hence it seems appropriate that they have been dubbed
HE,.. and EH,,, modes. At any specific frequency only a finite number of
these modes is guided. Below a certain frequency, the cutoff frequency of the
first higher-order mode, only one mode propagates, the HE;; mode. This is
the dominant mode used in single-mode fiber propagation. It is, therefore,
the most important mode and deserves further scrutiny. We shall derive its
properties by the much simpler, approximate method of the next section.

3.3 Approximate Approach

The determinantal equation (3.37) is complicated because it expresses the
interaction of E waves with H waves, coupled by the index discontinuity.
One cannot arrive at normalized graphs that are independent of the ratio
Ng/np, something possible with approximate analyses. If the index discon-
tinuity is small, the coupling between E and H waves is weak, and either
one or the other wave predominates. This is the reason that approximate ap-
proaches, which deal essentially with one type of wave, produce satisfactory
answers. They arrive at graphs that are normalizable and universal (they do
not depend on ng/np) and give simple dispersion relations.

One of the approximate analyses is the approach that arrives at linearly
polarized (LP) waves [38] by solving the wave equation for, say, an z directed
field. It gives a scalar wave equation of the same type as the one solved for
the z component of the electric field in the exact analysis. The electric field
is exactly matched at the boundary, while the magnetic field is allowed to be
slightly discontinuous.
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The determinantal equation is

KImi1(£p) _ YKm+1(7p)
Jm(kp) Km(7p)

The graphs are universal, they do not depend on the ratio n,/ns. The lowest-
order, dominant mode is the one with the slowest transverse variation, with
m = 0. The determinantal equation is

£Jy(kp) _ YKo (vp)
Jo(kp)  Ko(7p)

where we have used the Bessel function recursion relation given in Appendix
A3

(3.39)

(3.40)

HE,, Electric Field Vectors
ng=15, n =1485 a =5pum, wavelength = 1.3 um

LR B R A

- e e

B b T I
e

Fig. 3.5. The F field of dominant mode (courtesy of Sai-Tac Chu of Waterloo
University). The lengths of the arrows indicate the magnitude of the electric field

The transverse field is illustrated in Fig. 3.5. In fact, the figure was ob-
tained using the exact solution, but to the eye the difference is not noticeable.
The fact that the dominant mode is identified with m = 0 in this approximate
solution and with m = 1 in the exact approach is, at first, rather puzzling. In
the exact analysis, Bessel functions of order m = 1 express the z component
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1.0

[
0 2
V —

Fig. 3.6. Dispersion in normalized units for the propagation constant b and fre-
quency V obtained from LP analysis (from [38])

of the field. The divergence relation connects the derivatives of the transverse
field to iBE,, and hence the transverse F field involves integrals of F,. The
integrals lead from J; to J,, and K, to K,.

The determination of the field is only one of the steps in the charac-
terization of a fiber mode. Another important piece of information is the
dispersion relation 8 = S(w). Figure 3.6 shows the normalized propagation
constant with n, and n;, considered frequency-independent. The figure uses
the normalized frequency

V = (n? - nd)Y%ka (3.41)

2
and the normalized propagation constant

b= (8/k—ny)/(ng —ns) . (3.42)

At low frequencies, the mode extends far into the cladding and acquires a
Propagation constant characteristic of a plane wave in a medium of index
ny. At very high frequencies, the mode is very effectively reflected at the
boundary between the two media and is essentially confined to the medium of
index n,. This explains the asymptotic behavior of the propagation constant
for low and high frequencies. Note that a dispersion curve with zero group
velocity dispersion (GVD) would be a horizontal, straight line in this graph,
because V is proportional to &, and b is independent of k over the frequency
range of zero GVD. Since the propagation constant is not a linear function of
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frequency, the inverse group velocity #’ is a function of frequency. The system
has GVD. Clearly, the geometry of the fiber imposes GVD. In practice, the
situation is complicated by the fact that the index of silica is itself a function
of frequency. It rises toward short wavelengths as the frequency gets closer
to absorption bands in the ultraviolet. This greatly modifies the dispersion
curve, the propagation constant as a function of frequency.

32

D (ps/km-nm)

32/ 1

) L | 1 $
11 1.2 13 14 (5 416 47 18

WAVELENGTH (um)

Fig. 3.7. Total dispersion D and relative contributions of material dispersion
D and waveguide dispersion Dw for a conventional single-mode fiber. The zero-
dispersion wavelength shifts to a higher value because of the waveguide contribu-
tions (from [39})

Figure 3.7 plots the parameter D), for plane wave propagation in silica [39,

40], where
A d?n
Dy=-—-—. 3.43
A= Do (3.43)

The parameter is derived from 8" by noting that the second derivative of 3
with respect to w can be written in terms of the second derivative of n with
respect to A (whereas when written in terms of derivatives of n with respect
to w it would involve dn/dw as well). The second derivative of § with respect
to frequency is

- (R @)

and thus D) is proportional to 8”. Figure 3.7 includes both the “waveguide
dispersion” due to fiber geometry and the material dispersion.
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3.4 Perturbation Theory

We are often interested in the change of the propagation constant caused by
a small change of the index distribution. Thus, for example, the Kerr effect
which changes the index as a function of electric field intensity, can change
the propagation constant. The E field obeys the vector Helmholtz-equation.
If we separate the Laplacian into longitudinal and transverse components we
obtain

VZE + wlu.cE - B*E =0. (3.45)

In this equation we treat € as a continuous function of the transverse coordi-
nates z and y. We suppose that e changes by de¢, F by F, and 3 by 6. These
perturbations obey an equation that is derived from (3.45) by perturbing it
to first order:

V2 6E + W€ SE + W, 8¢ E — B 6E — 285 E =0 . (3.46)

We dot-multiply (3.46) by E* and the complex conjugate of (3.41) by 6F
and subtract, and integrate over the cross section. Solving for 63, we find

f cross w2/lo (56|E|2 dS

2 — section , 3.47
hop [ e |E]7dS (347)

section

where dS = dxdy is an area element in a plane transverse to z. Note that
JE has dropped out. We need not know the change of E to first order to
be able to evaluate the change of the propagation constant. This is a very
important finding that facilitates the introduction of perturbations into the
propagation equations.

3.5 Propagation Along a Dispersive Fiber

Uniform waveguides propagate waves in both directions along the axis of the
waveguide. We have had ample opportunity to study such modes in metallic
waveguides. The propagation along dielectric guides and optical fibers is com-
pletely analogous. Here we develop the propagation equation for a traveling
wave of a mode in a phenomenological way. Waves in metallic waveguides are
just one special case in this more general approach. We consider a wave of an
eigenmode in a lossless, uniform (with respect to z) wave-guiding structure,
with the amplitude spectrum A(w, 2). Its z dependence is simply e**. The
wave obeys the differential equation

A7) = 1B(w) A, 2). (3.48)



114 3. Diffraction and Dielectric Waveguides

The propagation constant is a function of frequency. We concentrate on an
investigation of a wave of narrow bandwidth within a frequency interval cen-
tered at the nominal carrier frequency w,. Carrying out an expansion to
second order in the deviation Aw from the carrier frequency, we obtain (see
Fig. 3.8)

1
Bw) =B+ Aw ' + A B, (3.49)
where we use the following abbreviations:
Bo = B(wo) , (3.50a)
,_4d8_ 1 .
B = o (inverse group velocity) , (3.50b)
9
1" d2,8 . . . '
g’ = o2 (group velocity dispersion) . (3.50c)
B
B, | ~—slope
-— Ao
s

)]
\\N

(6]
) °
(s

—0

Fig. 3.8. Definition of parameters

In the next step, we take advantage of the narrowness of the spectrum.
The spatial dependence at the carrier frequency is exp(if,z). The spatial
dependence of the entire spectrum will deviate from this dependence, because
the frequencies of the Fourier components differ from w, by Aw. We write

Alw, 2) = a(Aw, 2) exp(ifo2) . (3.51)

When we introduce the ansatz (3.51) and the expansion (3.49) into (3.48),
we obtain

1
%a(Aw, z) =i <Aw B+ EAw2 ﬂ”) a(Aw, 2) . (3.52)
We find that the spatial dependence of a(Aw, z) is much slower than that of
A(w, z). Next we look at the temporal dependence of A(w, z) by taking its
inverse Fourier transform:
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m .
Alt, 2) :/ dwe ™ A(w, 2)
-0

(o]

= exp(—iwot +i6,2) / dAw exp(—i Aw t)a(Aw, z)

- 00

(3.53)

— e—iwot+iﬂoza(t,z) ,

where a(t, z) is the inverse Fourier transform of a(Aw, z). The fast space—
time dependence of the wave amplitude is removed from a(t, z), the so-called
envelope of the wave. We further note the relation

e m
/ dAwexp(~i Awt)(i Aw)"a(Aw,2) = (- ea(t2) . (3.54)
- 00
Multiplication by (i Aw)™ of the Fourier transform a(Aw, z) produces (—1)™

times the mth derivative of the inverse Fourier transform. Using this fact, we
may inverse Fourier transform (3.52) to obtain

0 1 da _ ,B”

—_ . 3.55
52" t o g at 6t2 ( )

If we introduce a new time variable that removes the time delay z/vg,

z
=t — 3.56
T=t o (3.56a)
E=1z, (3.56b)
we obtain the equation
da 0
% = ___,3 67‘2 . (3.57)

This is the propagation equation for a mode in a fiber with group velocity
dispersion. It also happens to be the Schrodinger equation of a free particle
in one dimension.

3.6 Solution of the Dispersion Equation
for a Gaussian Pulse

We shall now solve the group velocity dispersion equation. For simplicity and
flexibility in notation we again denote the distance variable by z and the time
variable by ¢, writing for (3.57)

da i _,0%
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This equation has the simple solution

(6,2) = Agy] —2 it
R A T Y )

(3.59)
2
~ o2 e (- 5 ) e (00020 +1602))
where
72 =12 (1 + -2—2) (3.60)
o b2 ’ .
G(t,z) = mt2 f (361)
2 =28", (3.62)
and
1 1 (Z
¢ =5tan™ (5> : (3.63)

A pulse that is initially of constant phase at z = 0 acquires a time-dependent
phase given by (3.61); it becomes chirped. Since 86/0t can be identified with
the instantaneous frequency, a Gaussian pulse propagating in a dispersive
system acquires a time-dependent frequency (chirp). In doing so, it broadens
(see (3.59)). The chirped pulse acquires a width that is greater than would
be inferred from the width of the spectrum for an unchirped (transform-
limited) pulse. The system being linear, the spectral width cannot change
with propagation.

The propagation of a Gaussian pulse along a dispersive fiber bears a close
analogy to the diffraction of a beam as discussed in Sect. 3.1. The paraxial
wave equation (3.17) resembles the propagation equation along a dispersive
fiber, except that the diffraction equation contains two second derivatives
instead of one. If the diffraction equation is applied to a slab beam with one
transverse dimension, the analogy becomes complete. Comparison of (3.18)
and (3.59) shows the close resemblance. In two dimensions, the amplitude of
the mode must decrease asymptotically linearly with 1/z; in one dimension
the amplitude must decrease asymptotically as 1/1/z. This fact accounts for
the multiplier —ib/(z —ib) in (3.18) and the multiplier /ib/(z + ib) in (3.59).

The equation for dispersive propagation, analogously to the equation for
diffraction of a one-dimensional slab beam, has a complete set of solutions.
An initial excitation can be expressed as a superposition of these solutions.
In analogy with the problem of a beam in two dimensions, with the solutions
(3.25), the solutions of the equation of dispersive propagation are
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T, V2t . .
Ym(t, 2) = ?"qﬁm (—T-) exp[—i6(t, z)] expli(m + n + 1)¢(2)] , (3.64)
where we again denote the Hermite Gaussian of mth order by ¢,,. The
solutions are orthogonal, permitting the evaluation of the coefficients of
the Hermite Gaussians for an input excitation a(t,0) from the integrals
[ dta(t,0)¢m(v/2t/7,). Identities that help in the evaluation are presented

in Appendix A.2.

3.7 Propagation of a Polarized Wave
in an Isotropic Kerr Medium

The simplest model of a Kerr medium is an isotropic medium in which the
polarization is an instantaneous function of the cube of the electric field:

P(t) = e, x P EX(H)E(t), (3.65)

where x(® is the third-order susceptibility and the alignment of the polar-
ization and field is implied by using scalars. The endpoints of P and E could
follow complicated temporal curves, depending upon the temporal evolution
of the E field. Suppose that at a particular instant the F field points in the
(general) direction

E = Egiy + Eyiy + Esi, . (3.66)

The polarization points along the E field and is given by

P, = XM EL(EL + EX + E?), (3.67)

P, =XV E,(EX + El + E?), (3.68)
and

P, = eoxWE,(E2 + E2 + E2). (3.69)

Suppose next that the E field has one single frequency and lies in the z—y
plane. Then

E.(t) = %[EI (w)e™ @t + E*(w)]etit (3.70)

where F,(w) is a shorthand for |E,(w)|e™¢=, etc. When we introduce the
above expression into (3.67)—(3.69) and retain only the terms with an e=**
dependence, we obtain
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(3)
%P,(w) = € X BB ()P Ea(w) + 21 By () B ()
(3.71)

+E;‘;(w)E; (w)] -

This expression consists of three types of term. There is the self-modulation
term x(*)3|E;|?E,, which is the only term surviving when the field is polar-
ized along z. Then there is the cross phase modulation term, which looks like
a change of index produced by the E, component and seen by the z com-
ponent of the E field, namely 2|E,|?E,. Finally, there is a “coherence” term
which produces an z polarization due to E and depends on the phase of E,,.
This is a term utilized in four-wave mixing. In a birefringent fiber, in which
the two orthogonal polarizations have different propagation constants, with
the slow axis along x and the fast axis along y, these effects will cancel on av-
erage, because they will contain spatial dependences like exp i(2ky, — k1)z, and
the optical nonlinear effects take place, generally, over distances much larger
than the period of intrinsic birefringence of even so-called nonbirefringent
fibers.

Now let us relate this expression to the commonly employed Kerr nonlin-
earity in which the index is written

n=mn,+ nyl (3.72)

and [ is the intensity (power per unit area) of the field. The polarization P
is defined by

P =¢o(n? = 1)E 2 [eo(n — 1) + 2eon,n2 | E (3.73)

where the last term is clearly the contribution of the nonlinearity. Thus

X(B) 2
2¢,non0l = 350—4—|Ez| (3.74)

in the case of a linearly polarized field. Therefore, since the intensity I is
given by

1 1
[ = 2e|E 2L = Zeonoc| Exl?, (3.75)
2 Mo 2

we have for n,

3 x®
T deynlc’

ng (376)

In glass, the coefficient ny has the value [40-46]
ng = 2.2 x 10716 cm?/W .
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3.7.1 Circular Polarization

It turns out that it is convenient to introduce circularly polarized modes by
means of

E, = 7§'(E+ +E_), (3.77a)

E, = %(& _E.), (3.77b)
so that

E, = %(Ez +iB,), (3.782)

E. =2 (B, -iB). (3.78b)

If we then evaluate

—\}—i(Pz +iP,) = Py (3.79)

we find from (3.71) that

x®
Py =e,X— (|Ed:|2 +2|B¢|*) Ex (3.80)

The presence of a circular polarization of opposite sense of rotation affects
the index twice as strongly as the original polarization. We find the very
interesting result that circular polarization does not exhibit a “coherence”
term that depends on the relative phase between the two polarizations of E,
unlike the coherence term for linear polarization. There is a simple reason
for this fact which it is well to remember. Consider a linear polarization
in an isotropic medium. The linear polarization can be represented by two
counterrotating circular polarizations of the same amplitude. Suppose that
there were a coherence term in (3.80) involving E} or E* . Then the evolution
of the polarization would depend upon the relative phase between E, and
E_. But this is not possible, because a change of the relative phase means
rotation of the linear polarization, and we know that the evolution of the
polarization cannot depend on the orientation of the linear polarization in an
isotropic medium.

The analysis of the propagation of polarized light in a uniform medium
can be applied directly to the propagation of the fundamental mode in a
weakly guiding fiber. Indeed, the mode is essentially linearly polarized; two
orthogonally polarized modes experience coupling very much like plane waves,
except that the coupling coefficient must now include the mode profiles. The
ratio of the coefficients of the self-phase modulation, cross phase modulation
and coherence terms still remains 3 to 2 to 1.
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3.8 Summary

In this chapter we have presented the analysis of Hermite Gaussian modes in
free space. These are used to construct optical resonators and hence are basic
to laser operation and to the quantization of optical fields in such resonators.
We have presented an analysis of modes in optical fibers and discussed their
dispersion. The dispersion is caused partly by the geometry of the index pro-
file and partly by the material dispersion of glass. It is possible to manipulate
the net dispersion by changes in the index profile. Whereas the zero-dispersion
wavelength of a glass fiber with a step index profile is roughly 1.3 pm, it is
possible to shift the zero-dispersion wavelength to 1.5 ym, the wavelength re-
gion of the erbium-doped fiber amplifier, by proper choice of the index profile
of the fiber core.

An isotropic Kerr medium with an instantaneous response has a very
specific response to signals with two orthogonal polarizations. The response
contains a “coherence term” which is a function of the phase between the two
signals. In the circular-polarization basis the response is much simpler, and
no coherence term is present. Even though the analysis holds strictly only for
plane waves, the formalism can be applied to modes in optical fibers, which
are almost entirely linearly polarized. The change of propagation constant
follows from the perturbation formula developed in Sect. 3.4. The Kerr effect
is a nonlinear effect that affects long-distance fiber communications. It is
either combatted by group velocity dispersion management (varying GVD
along the fiber), in the so-called non-return-to-zero format of communications
currently installed in repeaterless transoceanic cables, or used to balance the
group velocity dispersion of fibers in long-distance soliton communications,
as taken up in Chap. 10. The Kerr effect is also used to generate squeezed
states of radiation, as discussed in Chaps. 12 and 13.

Problems

3.1 An optical wave passing through a thin convergent lens in the z—y plane
acquires the phase profile

$(z,9) = o %(x? Y, (1)

where f is the focal length. This means that the complex wave amplitude is
multiplied by

k
exp {i [d)o - ﬁ(ac2 + yz)] } . (2)
Prove this statement by considering the ray-optical picture of rays, normal
to the phase front, heading for a focus.
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3.2* The z dependence of a diffracting Gaussian beam is twofold.

i. The solution contains the factor 1/(z — ib). This multiplier gives a phase
advance ¢ = arctan(z/b), and a change in amplitude to compensate for
the beam expansion. These parameters are of lesser interest than the next
item.

ii. The solution also contains the exponential dependence exp[ik(z? + y?)/
2(z—1b)], which represents the changing beam diameter and phase profile.

The parameter z — ib is the so-called q parameter and contains all the
above information: Re(1/q) = 1/R, where R is the radius of the phase front,
and Im(1/q) = A\/mw?, where w is the beam diameter.

(a) As the beam passes through a set of lenses and free-space intervals, the g
parameter transforms very simply. Propagation over a distance d yields
q¢' = q+d; passage through a lens of focal length f gives 1/¢’ = 1/q—1/f.
Prove this statement.

(b) For a beam A, exp{—(z? + y?) /w?] passing through a lens of focal length
f, find the position of the minimum beam diameter and its magnitude.

3.3* Show that, in the paraxial approximation, a mirror of radius R focuses
a normally incident beam like a lens of focal length R/2.

3.4 A Fabry—Pérot resonator mode between two curved reflecting mirrors of
radius R, a distance d apart, their concave sides facing each other, supports a
mode with a minimum beam diameter w, in the symmetry plane. The beam
propagation can be broken down into a sequence of focusing lenses of focal
length R/2.

(a) Evaluate the g-parameter transformation for propagation from the sym-
metry plane to the mirror, reflection by the mirror, and propagation back
to the symmetry plane.

(b) Evaluate the ¢ parameter that repeats itself under this transformation.

(c) Show that beyond a certain critical distance d, there are no Gaussian
beam solutions.

3.5 The Gaussian solution for two-dimensional diffraction, such as for a slab
beam, is

1 [ik(z2 +y2)]
2z —ib 2(Z — ib)

(1)

Two-dimensional diffraction is in one-to-one correspondence with dispersive
propagation of a pulse of the form A, exp(—t2/72) along a fiber of dispersion
B". A filter that puts a phase profile exp[—i(t?/277)] onto the pulse affects
the dispersive propagation similarly to the way a lens affects diffraction. The
q parameter describes dispersive propagation equally well.

Describe how the pulse A, exp(—t2/72) propagates after passage through
a filter that puts a phase profile (¢2/277) onto the pulse.



122 3. Diffraction and Dielectric Waveguides

3.6 The electric field of a Gaussian beam (3.22) has an  component and a
z component. The z component can be separated into a part that is in phase
with 1 and one that is in quadrature with 1. The in-phase component is
responsible for the curvature of the field lines, which is equal to the curvature
of the phase fronts. Prove this statement by evaluating Re(E,/E;) and noting
that (see Fig. P3.6.1)

~ Nz__ EZ_
tanG:G_R— Re(EI). (1)

90° -0 —Rel[E, /Ex]=1an®

Fig. P3.6.1. The phase front and the definition of 6

3.7* Determine the dispersion parameter d3/dw? for the model of a dielec-
tric developed in Prob. 1.6. Sketch wyc(d?8/dw?) versus w/w, for wy/wy, =
0.5.

3.8 Use the perturbation approach to evaluate the change of the propagation
constant of the dominant-mode wave above cutoff in a square metallic wave-
guide of dimensions a X a caused by a dielectric rod of radius R and dielectric
constant € at the center of the waveguide. Assume R < a.

3.9 The major and minor axes of a polarization ellipse rotate under the
influence of the Kerr effect. Find the ellipticity of the ellipse, |E|min/|Elmax;
for which the product of the rate of rotation and the transmission contrast
(Tyax — Tmin) is maximized at a given power (assuming that the field is
transverse to the direction of propagation).

3.10 This problem is relevant to so-called polarization mode dispersion in
fibers. Consider the excitation column matrix

o] =

containing the excitations of the £ and y components of the E field of the
mode. The output b is related to the input by a transfer matrix T obeying
the losslessness condition.
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Show that there are two orthogonal “principal” polarization state pairs
oV (w) = aV(w+Aw) and a'? (w) = a® (w+ Aw) that transform into b (w)
and b)) (w+Aw) = bD(w)+(db'D /dw) Aw, with db'!) /dw = ADHD | [ =1,2,
where A is pure imaginary. Use the results of Probs. 2.6 and 2.10. The proof
forms the basis of the analysis of pulse propagation in birefringent fibers.
The two principal polarization states have distinct group delays. The energy
trapped beween the two nodes of the wave packet remains trapped. Thus, the
two principal polarization states have definable energy and group velocities.

Solutions

3.2

(a) The fact that ¢ = g + d when the beam travels over a distance d follows
from its definition. Next, consider the inverse of the g parameter z — ib.
The imaginary part of the inverse of the g parameter gives the beam
radius

1 b A "
z—ib 22+ b muw?

Im

and the inverse phase front radius is

1 z

- 2
Rez—ib 22 + b2 @)

The lens transforms 1/q into 1/q’, where

1 z 1 b 1 1

—_—= e = =t = - = =, 3
e Ry e A ®)
(b) The minimum beam diameter is found where the g parameter becomes
pure imaginary. The initial value of g is given by
1 A
S =i 4
2 (4)
After passing through the lens, the ¢ parameter is

1 A 1

7 rwr IR (5)
After passing through a distance d, the new ¢ parameter is

L Fime?)

T /mw?) - 1/f T 12+ (M rw?)?

_ /i /mw?) — d[1/ £ + (Arw?)]
172+ (A ru?)? '

q +d

(6)
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The position of the minimum beam diameter is where ¢’ is pure imagi-
nary:

f

4= AT ™

The value of the minimum beam diameter is obtained from (6) for the
value of d given by (7):

’_ i()\/7rw2) - -7rwr2nin
N VI PV CR ©
or
(F)/mu?)
Tmin = M T30 Fro?) ©

3.3 Figure S3.3.1 shows two rays, one along the axis of the mirror, the other
parallel to it. If the separation is small compared to R (paraxial approxima-
tion), it is easily seen that the two rays intersect at a distance R/2 in front
of the mirror. This proves the fact that a spherical mirror acts as a lens of
focal length R/2.

f— R ——————

Fig. S3.3.1. Ray construction for focus of spherical mirror

3.7 The dielectric constant of the medium has been obtained in Sect. 1.7

w2
€=€0[1+w2—p‘—‘2’}, (1)

where w? = ¢?N/e,m is the square of the so-called plasma frequency. The
propagation constant is

w2
B =w\le€t =w ,u,,e,,<1+:)2—_p—w5>. (2)
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Over part of the frequency range the propagation constant is pure imaginary.
In this frequency regime no propagating waves exist. The second derivative

is (Fig. S3.7.1)

gl L |0e 1 &% 1 0\ 3
T ceg, |Ow 2 Ow?  4e \Ow ) @)
The individual derivatives are

Oe 2ww?

A ted T
Ow (w2 — w?)?

2 2 2,2
0%¢ —e 2wy 8w wy, ‘ @
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Fig. $3.7.1. A plot of wycf” versus w/wy






4. Shot Noise and Thermal Noise

It is well known that electronic amplifiers introduce noise. The noise can be
heard in any radio receiver tuned between stations. Some of the noise comes
from the environment, but most of the noise is generated internally in the
amplifiers. One source of amplifier noise is the shot noise that accompanies
a flow of electric current. Another source is thermal noise, emitted by any
resistor at any given temperature. Amplification is a nonequilibrium process,
and thus amplification involves noise sources other than thermal sources.

Shot noise was first analyzed by Schottky in 1918 [2]. He was studying the
noise associated with the emission of electrons from a cathode in a vacuum
tube and set himself the task of deriving a quantitative description of the
effect. The name derives from the sound made by a fistful of gunshot dropped
on the floor (der Schrot Effekt, in German) and not from an abbreviation of
the name of its discoverer. In his paper, Schottky was asking the question
as to whether there are fundamental limits to the signal-to-noise ratio set by
the noise in vacuum tube amplifiers.

It is a fact that shot noise can be reduced by utilizing the mutual repul-
sion among the negatively charged electrons. An electron emitted from the
cathode can inhibit the emission of electrons following it. This process is uti-
lized to reduce the noise emission from cathodes in traveling-wave tubes [47].
On the other hand, if both the amplitude and the phase of an optical wave
are to be detected in a heterodyne experiment (Chap. 8), one cannot rely on
the repulsion effect if the amplitude changes of the wave are to be faithfully
reproduced at frequencies as high as optical frequencies. In this case the full
shot noise level has to be accepted. It turns out that shot noise is the funda-
mental noise process required to satisfy the uncertainty principle applied to
a simultaneous measurement of the amplitude and phase of an optical field
in heterodyne detection, as discussed in Chap. 8.

The power radiated by a “black body” at thermal equilibrium was derived
by Planck. In order to arrive at a formula that agreed with Wien'’s law, he
postulated the quantization of the electromagnetic energy. The classical limit
of the Planck formula applied to a single mode of radiation gives the Nyquist
formula [48]. The Nyquist noise is present in electronic circuits operating at or
near room temperature. Electronic amplifiers are nonequilibrium devices and
hence may be affected by other forms of noise in addition to shot noise and
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thermal noise. For the analysis of the signal-to-noise ratio of such amplifiers
it is sufficient to know the mean square fluctuations of the amplitudes of the
various noise sources expressed in terms of their spectral densities. This will
be discussed in detail in Chap. 5.

The energy fluctuations of a mode at thermal equilibrium are predicted
by the Bose—Einstein formula, which is derived at the end of this chapter. The
Bose-Einstein fluctuations play an important role in the optical amplification
of a digital bit stream (pulses and blanks), as discussed in detail in Chap. 9.

In this chapter we derive the spectrum of shot noise. Next we find the
probability distribution of photoelectron emission from a thermionic cathode
or the current in a p—n junction. We derive the power spectrum of the thermal
noise associated with the waves of a uniform waveguide and the modes of a
resonator from the equipartition theorem. We show that loss in a waveguide
or a circuit calls for the introduction of noise sources if the circuit is to be at
thermal equilibrium, and we derive the spectra of these so-called Langevin
sources. We consider lossy multiports and identify the noise sources required
for thermal equilibrium.

Finally, we derive the probability distribution of photons at thermal equi-
librium, the so-called Bose-Einstein distribution, by maximization of the en-
tropy. This is the energy, or power, distribution of thermal radiation. In the
classical limit, the distribution becomes exponential. With a slight modifica-
tion, the derivation can be used to show that a Gaussian amplitude distribu-
tion maximizes the entropy. It is also easily shown that the energy distribution
of a Gaussian-distributed amplitude is exponential, the classical limit of the
Bose-Einstein distribution.

4.1 The Spectrum of Shot Noise

Schottky assumed that the emission of the electrons was purely random. In
deriving the shot noise formula, we shall adhere to the same assumption. We
consider a diode consisting of a cathode and anode as shown in Fig. 4.1. The
anode is a.c. short-circuited to the cathode. An electron emitted from the
cathode induces a current in the short circuit that is a function of time, h(t),
extending from the time of emission to the time of collection, a time r later,
where 7 is the transit time. The current in the short circuit within a time
interval T is

it)y=q» ht—t;), (4.1)

where —q is the electron charge, ¢, is the time of emission, and the summation
is over all emission events within the time interval T'.

The function h(t) has area unity, fj:: h(t)dt = 1. The shape of the func-
tion depends on the velocity of the electron during transit. Figure 4.2a shows
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Fig. 4.1. Schematic illustration of diode emitting electrons

how one would evaluate the function. The point charge traveling between
the two perfectly conducting plates of the cathode and anode induces image
charges in the plates. The distance between the electrodes is assumed to be
much smaller than the transverse dimensions of the electrodes. In order to
satisfy the boundary conditions of zero tangential electric field on the elec-
trodes, the charge and the image charges have to be repeated periodically
along the z direction. The charge and its images are spatial unit impulse
functions. These impulse functions can be represented by a Fourier series in
the transverse dimensions y and z. The leading term in the Fourier expansion
is a uniform surface charge density. All other Fourier components have zero
net charge and do not contribute to the net charge. Hence, the net induced
charge in the plates can be evaluated from the sheet charge model as shown
in Fig. 4.2b. The FE field is uniform on either side of the charge sheet, as
shown in Fig. 4.2b, with a jump at the sheet:

€o(Bey — Bz )A=—q, (4.2)

where A is the area of the electrodes (of transverse dimension much larger
than their spacing). The fields on the two sides have to give zero net potential
difference. Therefore

E, z=-E; (d-1x). (4.3)
Solving for E,_, one obtains from these two equations

d—z
a !
On the left-hand side is the net image charge in the cathode. Its time rate of

change is given by the derivative and gives the current that passes from the
anode to the cathode:

it) = —q% , (4.5)

€ A=

(4.4)
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Fig. 4.2. (a) The charge and image charges in the space between the electrodes (in
fact, there is an infinite number of image charges repeated periodically). (b) The
set of sheet image charges

where v is the velocity of the electron. The integral over all time of the
current is equal to —g¢, irrespective of the time dependence of the electron’s
velocity. The simplest case is when the velocity is a constant. Then the time
dependence of the current is a square-wave function of duration 7, the transit
time, and of unity area. The analysis applies equally well to the carrier low
in a p-n junction diode, either electrons or holes.

Next, we evaluate the autocorrelation function of the current induced by
charges entering at times ¢,. The spectrum of the current is then obtained
by a Fourier transform of the autocorrelation function (Appendix A.4). The
current is the superposition of the individual current pulses:

i(t)=q) h(t—t), (4.6)

where h(t) is the temporal dependence of the current induced by a charge,
and the sum is extended over a long sample of duration T, ideally infinitely
long. Figure 4.3 shows samples of filtered shot noise. The autocorrelation
function is



4.1 The Spectrum of Shot Noise 131

()it — 7)) = ¢ <Z h(t —t,)h(t — t,,)> with ¢/ =t—7, (4.7)

ror!

where the angle brackets indicate a statistical average over an ensemble of
sample functions. If the arrival times are random, then one must distinguish
between product terms referring to the same event at t, and different events
that occur at different time instants, r # r':
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Fig. 4.3. Filtered shot noise as a function of time; filter center frequency 1 MHz,
filter bandwidth 50 kHz

((t)i(t — 7)) = ¢ <Z h(t — t)h(t' — tr,)>

r=r’

+q° <Z h(t —to)h(t' — t,,> :

r#r!

We look first at the case in which the probability of events is time-
independent, a stationary process. The events occur at times randomly dis-
tributed over t,.. Within the infinitesimal time interval dt, the probability of
occurrence is Rdt,, where R is the average rate of occurrence. We have

h(t =t h(t' —t) Y =R [ dt, h(t =t )h(t —t, — T
<§ (t - t)h( )> [ dte bt -2 )nq e
- R/dt R(E)h(t - 7) .

The summation over different events calls for averaging of each of the factors,
since the events are assumed to be statistically independent:
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<Z h(t — t,)h(t' — t,,)> ~ <Z h(t — tr)> <Z h(t' — t,,)>

r#r’ (4.10)

=/Rdt,h(t—tr)/Rdt,, h(t' —t.) = R?.

We have used the approximation sign, since for N events in the time interval
T, the double sum contains N(N — 1) terms, with the terms r = r’ omitted.
If the samples are very long, as assumed, and N — oo, the approximation is
a good one. Thus, we find for the autocorrelation function

()it — 7)) = ¢° [R/dt h()h(t — T) + R2J . (4.11)
The spectral density is the Fourier transform of the autocorrelation function:
2
P (w) = % /dT(i(t)i(t — 7)) exp(iwT) = ;I—ﬂ_[R|H(a.1)|2 + 27 R%5(w)]
(4.12)

with

[H(w)]? = /dT/dt h(t)h(t — T) exp(iwT)

= / dt h(t) exp(iwt) / d(t — 7Y h(t — 7) exp|—iw(t — 7)] (4.13)

= H(w)H"(w) ,

where H(w) is the Fourier transform of h(t). Note that H(0) = 1. The first
term is the shot noise spectrum; the second term is the delta function at
the origin expressing the deterministic part of the spectrum associated with
the d.c. current. If the current pulses are short compared with the inverse
bandwidth under consideration, the functions h(t) can be approximated by
delta functions and the noise spectrum becomes flat, i.e. “white”:

®;(w) = %[R + 27 R%6(w)] . (4.14)

If the spectrum is measured by a spectrum analyzer with a filter of band-
width Aw centered at a frequency w,, both sides of the spectrum, correspond-
ing to positive and negative frequencies, are accepted. The measured mean
square current fluctuations are

2
26, (wo) Aw = q;RAw =291,B, (4.15)
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with I, = ¢R, the d.c. current. This is the famous shot noise formula, where
the bandwidth B in Hz is B = Aw/27.

If the current consists of a distribution of different response functions,
all of unity area, that are independent of the time of the event, then the
analysis changes very little. A second average has to be taken over the spectral
response, so that |H(w)|? = (|H(w)|?).

If the rate R of the charge carrier flow is itself a function of time, the
analysis can be modified to accommodate this time dependence. Consider
the expectation value of the current

(G(t)) = q <Z h(t — t,)> =q / dty R(t,)h(t —t,) . (4.16)

Next, construct the autocorrelation function of the current. First, we evaluate
the summation over the same events, t, = t,:

e <Z h(t — t)h(t — T ~ t,,)> = ¢ /dtr R(t)h(t — to)h(t — T — t,) .
= (4.17)

This is a convolution of the function R(t) with the function h(t)h(t — 7). The
summation over independent events at different times gives

(Dt =t )h(t — 7 —tp))
il (4.18)
= q2/dtr R(t,)h(t vtr)/dtr: Rty )h(t — 7 —t,) .

Therefore the correlation function becomes
(@)t — 7)) = q2 /dtr R(t.)h(t —t)h(t —T7—t;)

(4.19)
+q° / dt, R(t,)h(t — t,) / dtR(ty)h(t ~T —tp).
The autocorrelation function depends not only on the time difference 7, but
also on the time t, since the emission rate is time-dependent.
If the rate R(t) is deterministic, then the second term in (4.19) can be
recognized as the product of {(i(t)) and (i(t — 7)). The fluctuations of the
current are obtained by subtraction of (i(t)){i(t — 7)) from (i(¢)i(t — 7)):

()it — 7)) — () (i(t — 7)) = ¢ / dt, R(tr)h(t — tr)h(t — b, — 7).
(4.20)

In the case where the emission rate itself is a stationary statistical function,
an additional average over the ensemble of R(t) renders the process stationary
and makes the autocorrelation function time-independent [49):
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(i(t)i(t — 7)) = g*(R(t)) /dt h(t — t,)h(t — T — t,)

(4.21)
+q /dt /dt (tr)R(t))h(t -t )h(t — T —ty) .
In preparation for the evaluation of the spectrum of (4.21), we transform the
second term by noting that (R(t;)R(t,/)) is a function of the time difference
t, —t,» = 7/ only, if the signal statistics are stationary. One then has

/dt /dt (tr)R(t+ ))h(t — tr )Wt — T — t,)

(4.22)
=gq /dr (t-)R(t, — T'))/dt Rt)h(t —T+ 7).
This term is the convolution of the autocorrelation functions of the rate
function R(t) and of the detector response h(t). Its Fourier transform is the
product of the Fourier transforms ®g(w) and |H(w)|?. We obtain for the
spectrum of the current, the Fourier transform of (4.21),

2,(u) = L (REW) + 2mBp(@)| HWF (423)

The first term is the shot noise contribution to the spectrum; the second term
is the contribution of the signal. It is remarkable that the shot noise part of
the spectrum still has the form for a process with a constant rate R, except
that this rate is replaced by its average.

4.2 The Probability Distribution of Shot Noise Events

In the preceding section, we derived the spectrum of shot noise. This spec-
trum would be measured by a spectrum analyzer responding to the current
fluctuations of the diode. There are other ways of interpreting the statistical
process of the current, or charge, fluctuations. One may ask for the probabil-
ity p(n, 7) that n charge carriers have been emitted from one of the electrodes
if the rate of emission is R. This is obtained by deriving appropriate differ-
ential equations for the probabilities p(m, 1) for m < n [50,51]. Consider,
first, a very short time interval A7, in the limit A7 — 0, and ask for the
probability of emitting one electron in this time interval. This probability is

p(1, At) = RAT . (4.24)

The probability of emitting more than one electron is negligible, and thus the
sum of the probabilities of emitting no electron, P{0, At), and of emitting
one electron, P(1, At), must be equal to one:

p(0, A7)+ p(1,A7)=1. (4.25)
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Next, let us find the probability p(0,7 + A7) of no emission in a total
time interval 7 + Ar. Since the events in adjacent time slots are assumed
to be independent, the probability is the product of the probabilities of no
emission within 7 and no emission within Ar:

p(0,7 + A1) = p(0, 7)p(0, A1) . (4.26)
Substituting for p(0, A7) from (4.24) and (4.25), one finds

p(0,7 + At) — p(0,7)
At

In the limit A7 — 0, this reduces to a differential equation, which can be
solved to give

= —Rp(0,7) . (4.27)

p(0,7) = exp(—R7) , (4.28)
where the following boundary condition has been used:
p(0,0)=1. (4.29)

Next, consider the probability that n electrons have been emitted in a
time interval 7 + A7. This is clearly

p(n, 7+ Ar) = p(n — 1,7)p(1, A1) + p(n,7)p(0, AT) . (4.30)
Upon substituting from (4.24) and (4.25), we find in the limit A7 — 0
d—p%"’—T) + Rp(n,7) = Rp(n — 1,7) . (4.31)
-

The solution of this equation gives a recursion formula
T
p(n,7) = exp(—RT)R/ drexp(RT)p(n - 1,7) . (4.32)
0

Evaluating p(1,7) from the above, using the expression for p(0, 7), and con-
tinuing the process, we end up with

p(n,7) = (R;!)n exp(—Rr) . (4.33)

This is the Poisson probability distribution for a process with the average
number {n) = Rt:

n)y* _
pPoisson(n) = %3 n . (4.34)

We shall encounter this distribution in the quantum analysis of coherent
radiation. Figure 4.4 shows the Poisson distribution for different average num-
bers (n). One sees that the distribution becomes more and more symmetric
around the average value (n) with increasing (n).
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4.3 Thermal Noise in Waveguides
and Transmission Lines

In this section we arrive at the formula for the thermal noise in a bandwidth B
in a system supporting single forward- and backward-propagating modes. The
TEM mode of a transmission line is a good example, and so is an optical mode
of one polarization in a single-mode fiber. The fundamental Gaussian beam
of one polarization is another example. The derivation is the one-dimensional
analog of the black-body radiation law that applies to radiation in a large,
three-dimensional enclosure.

The derivation of the mean square fluctuations of thermal noise is based
on the equipartition theorem [52]: every degree of freedom must have, on
average, an energy of %ké’ at the absolute temperature 6, where k is the
Boltzmann constant. The simple interpretation of the equipartition theorem
is that, at thermal equilibrium, all degrees of freedom have the same proba-
bility of excitation. We refer the reader to the literature (52| for the derivation
of the equipartition theorem. Here we present a simple plausibility argument
as to the validity of the theorem. A system containing N point particles
has 3N degrees of freedom. If the particles are of finite size and have finite
angular momenta, then the system has 6N degrees of freedom. If such a
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system is coupled to another one and the two systems are at thermal equilib-
rium, then both systems acquire the same temperature. A given temperature
corresponds to an average energy of each of the component particles. This
statement holds for any two macroscopic systems for which averages can be
taken over all the particles. A degree of freedom is a microscopic concept
that does not permit an average over all particles. However, it permits a time
average. The energy associated with the degree of freedom can be averaged
over arbitrarily long time intervals. At thermal equilibrium, this average must
yield a value of energy that is consistent with the average energy of each of
the degrees of freedom of each particle.

An electromagnetic mode of a resonator obeys a simple one-dimensional
oscillator equation and thus has the same number of degrees of freedom
as a one-dimensional oscillator, i.e. two. The equipartition theorem as-
signs an energy k@ to the mode in the low-frequency limit, and an energy
Fw/lexp(fw/k6) — 1] in the quantum limit. Since the thermal noise is caused
by coupling to a thermal reservoir of many degrees of freedom, the central
limit theorem [52] implies that the field amplitudes must have a Gaussian dis-
tribution. A Gaussian distribution is fully characterized by its mean square
value, and thus the distribution is known when its mean square value is
specified. At the end of this chapter we shall show that the classical electro-
magnetic field of a mode has a Gaussian distribution without appealing to
the central limit theorem.

Consider a mode of amplitude A, with propagation constant 3, of a
single-mode waveguide (in a multimode waveguide the following analysis ap-
plies to each of the modes). The propagation constant is a function of fre-
quency w, = w(f,), and not necessarily a linear function of 3, if the waveg-
uide is dispersive. The amplitudes A,, of the modes are so normalized that
|A,|? are the energies in the modes. We consider a ring waveguide closing on
itself, of very long length L. The nth mode obeys the periodicity condition

PnL = 2mn . (4.35)

Each mode has two degrees of freedom, the electric field and the magnetic
field. By the equipartition theorem, the statistical average of the square of
the amplitude, which is equal to the expectation value of the energy, is the
energy assigned to two degrees of freedom:

(|An|?) = k6 . (4.36)

Stationarity of the process requires that the amplitudes of any two different
modes are uncorrelated. Indeed, two modes of different 3 values 3, and 8,
have different frequencies w, and w,, and thus different time dependences.
The statistical average of the energy would vary as cos{{(wy, — wm)t +¢] unless

(AnAL) =0, (4.37)
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and thus different modes of a stationary process must be uncorrelated. Equa-
tions (4.36) and (4.37) give full information on the thermal excitations of the
modes of a ring resonator. The ring configuration was an artifice to relate the
thermal excitations on a transmission line or waveguide to the excitations of
a set of resonances. An open waveguide or transmission line also supports
thermal excitations. However, in order to describe these excitations it is con-
venient to refer them not to a structure of length L, but rather to excitation
amplitudes whose mean square expectation values are equal to the thermal
energy per unit length propagating in the two directions along the guide or
transmission line. We now proceed with the derivation of these mode am-
plitudes. This is done by noting that the energy of a mode of length L is
converted into the energy per unit length by dividing it by L:

<———A"LA"> = energy per unit length in one mode . (4.38)

An increment of the propagation constant AF corresponds to a set of modes
An, according to (4.35):

ABL =2xAn . (4.39)

The energy per unit length in the waveguide is given by the sum over all
modes, an expression that can also be written as a double sum, using condi-
tion (4.37):

) AXAp AXAm
energy per unit length = Z <—L_> = nzm < T > . (4.40)

n

The double sum can be converted into a double integral of a differently defined
mode amplitude. Note that the increment of integration A8 = 2x/L. The
energy per unit length can be written

Z<%ﬁm> =mzm%(A£rL)2(A;Am> = /dﬂ/dﬂ’(a*(ﬂ)a(ﬂ’»,

o (4.41)
with
a(B) = QA,, : (4.42)

2w

The correlation conditions (4.36) and (4.37) can be summarized in the
single equation

(@ (8)a(8) = 5-K05(6 ~ ), (443
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where §(8 — ') is a delta function of unity area and height 1/A8 = L/2x.
The power passing a filter of bandwidth A2 = (dw/dB)AB is

Z 3 x energy per unit length in bandwidth Af2
-5 [ 48 [ 4@ ®)aio)
(4.44)
1 dw / /
- ;Ew/dﬂ/dﬁé(ﬁ—ﬂ)
1 dw

Note that we have considered modes labeled by their characteristic frequency
w, which was taken as positive. Thus, the spectrum (4.44) is specified only for
positive frequencies. If both positive and negative frequencies are used, then
(4.44) has to be reduced by a factor of 1/2. The power within the frequency
interval A2 is

power in frequency interval A2 = %kﬂ AL . (4.45)

Equation (4.45) is the Nyquist formula [48] for the thermal power prop-
agating in each mode in either of two directions within a bandwidth B =
AQ2/2m. The spectral density of the thermal power is independent of fre-
quency and thus the thermal power is infinite if extended over all frequencies.
This is the ultraviolet catastrophe in a one-dimensional system. An analysis
of modes in three dimensions would have led to the Rayleigh—Jeans law, with
its even more pronounced ultraviolet catastrophe. In his effort to connect
the Rayleigh—Jeans law to the experimentally observed Wien’s law, Planck
introduced the quantization of energy. We shall derive this generalized form
of the Nyquist formula in Sect. 4.8 of this chapter.

It will be convenient to define mode amplitudes as a function of frequency
rather than of propagation constant. We shall denote these by a(w) and relate
them to a(f) by requiring that the statistical average of their square give the
power flow

a(w) = \/?-ga(ﬁ) . (4.46)

The power in a mode is given by the double integral over w of (a(w)a*(w')),
where

(a(w)a* (")) = %kea(w —u. (4.47)

The different normalizations of the mode amplitudes are summarized in Ap-
pendix A.5.
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4.4 The Noise of a Lossless Resonator

Thus far we have considered a uniform waveguide supporting a single mode
propagating in both directions along the guide. The spectral density of the
thermal noise power associated with the waves in both directions was white,
according to classical theory. Reflections along the waveguide alter the spec-
tral distribution. Reflectors placed at two cross sections of the waveguide form
a resonator, open if one or both reflectors are only partially reflecting. The
redistribution of the thermal noise spectrum in such a resonator is illustrated
by analyzing the system of Fig. 4.5, a Fabry-Pérot resonator supporting a
transverse mode and coupled to an incoming wave through a partially trans-
mitting mirror. There are forward and backward waves in the resonator. We
solve the problem in the limit of weak coupling to the waveguide, the case
where perturbation theory is valid. In this case, the description of the res-
onator is particularly simple (see Chap. 2, Sect. 2.12). We describe the mode
amplitude in the resonator by U(t). The amplitude is so normalized that
|U(t)|? represents the energy in the resonator. The natural time dependence
of the mode in the closed resonator is that for when the partially transmitting
mirror is made perfectly reflecting:

U(t) = U, exp(—iw,t) , (4.48)

where w, is the resonance frequency.

u(t) b

transmitting mirror

Fig. 4.5. A resonator with a single input port

An isolated resonance of a resonator is described by a second-order dif-
ferential equation in time. Such a differential equation leads to two poles in
the complex w plane. If the resonator is lossless and uncoupled to the out-
side, the poles lie on the real axis at +w,. A convenient equivalent circuit
for the resonance is a parallel L-C circuit with w, = 1/+/LC. Coupling to
the outside world moves the poles off the real axis, contributing imaginary
parts to the location of the poles, indicating decay; tw, = tw, — i/7e. If
the displacement is small, the @ of the resonance is high, and it is possi-
ble to ignore the coupling of positive frequencies associated with the pole
at +w, — ite to negative-frequency excitations associated with the pole at
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~wo — iTe. The equations of a resonator coupled to an input port reduce to
first-order differential equations. We denote the decay rate of the amplitude
due to the coupling of the resonator to the waveguide by 1/7,. The equation
for the mode amplitude U is the first order differential equation

d . 1 [2
-CEU = —lon — ;;U + ';;a y (449)

where a is the wave incident upon the resonator from the input port. The
incident and reflected waves in the port are related by

[2
b=—-a+ ;_—U . (4.50)

The steady state response of the resonator to an excitation at frequency w is

U(w) = V2/Tea(w)

= m . (4.51)
The energy in the resonator is then
/dw / dw' (U (w)U* ("))
[ [ (2/7e)(a(w)a"(@") (4.52)
[i(wo — w) + 1/7e][—i(wo — w!') + 1/7¢]

If we assume thermal equilibrium, then the incident wave must obey Nyquist’s
theorem. When one uses the expression for the cross-spectral density of the
wave in the waveguide (4.47), one finds

/ dw / dw' (U(w)U*(W')) = k6 . (4.53)

The energy storage integrated over all frequencies obeys the equipartition the-
orem. This is a generalization of the equipartition theorem which is, strictly,
a statement about the energy of a resonator mode not “connected to the
outside world.”

It is interesting to ask what is the energy possessed by the waves within
a resonator formed from a uniform waveguide with reflecting mirrors. In
the absence of the mirrors, the waves would have a power spectral density
(4.47) in both directions, independent of frequency. The energy spectrum in
the resonator, |U(w)|?, is made up of the energy spectra of the two waves
traveling in opposite directions. The power in each of the waves is ((4.52)
and (4.47))

(2/7e)(vg/2L)kOAW /2w

e eyl (4.54)
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where L is the length of the resonator. At the resonance frequency w = w,,
the power within the frequency increment Aw is

%}ik0Aw/27r , (4.55)

Now recall the meaning of 1/7.. It is the rate of decay of the amplitude
of the resonant mode due to coupling to the outside waveguide. If there were
no coupling mirror, there would be no resonant mode, and it is clear that a
forward and backward wave occupying the segment of waveguide of length
L would leave within a time 2L /v,. Hence, the multiplier in (4.55), Tevy/L,
is much greater than unity. Thus, reflecting mirrors can greatly enhance the
thermal power in the propagating waves in the forward and backward waves
in a Fabry—Pérot-type resonator. When integrated over the resonance, they
give an energy storage of kf as dictated by the equipartition principle.

The reader may have noticed that the analysis of a resonator as described
by (4.49) is not limited to an electromagnetic resonator. The same formalism
can be applied to an acoustic resonator. The enhancement of the thermal
radiation near the peak of the resonance is precisely the effect mentioned in
the Preface, namely the “hearing of the ocean” when a large, hollow shell is
held near one's ear.

We have found that the energy spectrum of the resonator excitation occu-
pies a narrow frequency band. The integral of the spectrum gives k6. It is of
interest to determine the spectrum of the wave reflected from the resonator.
We have

b= —a+,/T3U. (4.56)

Thus we find for the Fourier component

o) = —alw 2 a(w) _ [i(wo — w) + 1/7]a(w)
bw) = —a(w) + Te i(wo —w) + 1/7e i(wo —w)+1/7e , (457)
and the spectrum of b(w) is
(b* (W)b(w)) = (a*(w)a(w)) = %k%(w _ Y. (4.58)

The spectrum is the same as that of the incident wave. This is indeed
necessary, since the reflected wave travels along an open transmission line or
waveguide, or is a freely propagating beam. As such, it has to have the thermal
properties of a freely propagating wave. The thermal nature of the reflected
wave is maintained through two processes. (i) The resonator radiates power
within the frequency band of the resonance. This radiation is supplemented
by (ii) the reflected radiation. Outside the band of the resonance, the b wave
is solely due to reflection of the a wave.
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4.5 The Noise of a Lossy Resonator

The analysis in the preceding section dealt with a resonator coupled to a
connecting waveguide. The resonator itself was lossless. It is easy to include
loss in the analysis, using the more general equation

dU . 1 1 2 2
_d?__<wo+T—o+T—e)u+,/T—ono(t)+,/T—ea(t)- (4.59)

The new decay rate 1/7, calls for a noise source that compensates for the
decay of the thermal radiation. It is easy to determine the spectrum of the
source by analogy with the spectrum of the incident wave. Indeed, opening
the resonator to the outside world introduced a decay rate 1/7.. The thermal
excitation did not decay, since it was regenerated by the incident wave with
the spectrum

(o* (@)aw)) = El;keé(w oy (4.60)

Hence, by inspection, one sees that the noise source n, must have the spec-
trum

(n? (W)no(w')) = El;kea(w _Wy, (4.61)

so as to compensate for the new decay rate. The physical origin of the noise
source is self-evident. Loss is due to the coupling of the radiation to the
excitation of the charged particles in the lossy medium. These charged parti-
cles in turn are thermally excited. Their thermal excitation is represented by
the noise source. Note that the spectra (4.60) and (4.61) are delta-function-
correlated. This is the consequence of the stationary character of the thermal
noise. Indeed, if components of different frequencies were correlated, the ra-
diation would become time dependent, which is not permitted in a stationary
process.
The Fourier transform of (4.61) gives the correlation function

(nE(t)no(t))) = kOS(t —t') . (4.62)

The noise sources are delta-function-correlated in time as well, since the spec-
trum is frequency-independent (white).

It is of interest to derive the noise source correlation function directly
from the conservation of the thermal excitation in the resonator. For this
purpose one looks at the “stripped” model of the resonator, with no output,
1/7, — 0. The equation is then

au . 1 [2
Friaie (uuo + H) U+ T—ono(t) . (4.63)
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The fluctuations at time ¢ obey the differential equation

W —-(2)wv+ V2w netmi). (464)

To

The first term on the right hand side gives the decay of the thermal radiation
that must be compensated by the second term. One may suppose, at first
sight, that the noise source is uncorrelated with U, and hence the second
term should vanish. However, the delta function character of the correlation
function means that the noise source “kicks” are very large. Within At, the
excitation U acquires the average value (1/2)1/2/7,At n,. Thus, the term in
the brackets is

2 U, +n2U) = 2 (ntno) At . (4.65)

To To
This contribution must cancel the decay, and thus

%(n;nO)At - %ko . (4.66)
Identifying the inverse of the short time interval At as the magnitude of
the delta function divided by 27, we derive (4.62). This is an independent
derivation of the noise source in a way analogous to the approach used in the
next section, which determines the noise sources for a distributed attenuator.

The question may be raised as to the spectrum of the noise source if
the loss of the medium is itself frequency-dependent. This problem can be
approached by a set of thought experiments. One may consider a large res-
onator, with many resonance frequencies, filled with the lossy medium. The
decay rates will now be functions of frequency. For each of the resonator fre-
quencies the noise source can be determined. If 2/7, = 2/7,(w) is a (slow)
function of frequency, then the spectrum of the noise source /2/7,n, will
have the same frequency dependence. In the time domain, the correlation
function will cease to be a delta function. However, the analysis of the res-
onator as outlined above does not change, since the delta function concept
is a relative one. As long as the spectrum of the noise source can be consid-
ered white over the bandwidth of the resonator, the analysis can treat the
associated correlation function as a delta function.

4.6 Langevin Sources in a Waveguide with Loss

We have derived the thermal noise power traveling in either direction in
a uniform waveguide, i.e. the Nyquist formula (4.45). We are now ready
to treat single-mode waveguides with loss at thermal equilibrium. If a lossy
semi-infinite waveguide did not contain noise sources, then the thermal power
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incident upon it from one side would be attenuated as it propagated along
the waveguide, leading to smaller and smaller fluctuations further and further
away from the input. But at thermal equilibrium the fluctuations of the modes
in the waveguide must maintain their equilibrium value. This is accomplished
by introducing noise sources into the linear equation for the wave propagation.
The derivation of these sources, called Langevin sources after the scientist
who first introduced them, is as follows. In a lossless waveguide, the mode
amplitude a(3) obeys the differential equation

d .
d—a(ﬂ) = ifa(B) . (4.67)
z
If loss is present, the equation changes into
d .
= a(B) = iBa(B) - ca(B) +5(6,2) (4.68)
where —aa(83) represents the loss per unit length and s(z) is the source

required to maintain thermal equilibrium. Its expectation value follows from
the requirement that the noise spectrum be conserved at thermal equilibrium:

%[(a(ﬁ)a* (BN = —2a{a(B)a”(B)) + (s(B, 2)a* (B') + a(B)s* (8, 2))
=0.
(4.69)

The noise sources at different cross sections of the waveguide are un-
correlated, because each segment of the lossy guide is connected to its own
reservoir of charges. Now, one might think that the local noise source and
the mode amplitude traveling through it were uncorrelated as well, because
the noise is due to the reservoir responsible for the loss, and the amplitude
impinging upon it has come from statistically independent sources. However,
there is a contribution to a(3) from the noise source s(z) that grows from 0
to Az s(z) within the distance Az. The average value is half the end value.
Thus, we have from (4.69)

—2a(a(B)a”(B)) + %AZ(S(ﬂ, 2)s*(B',2) + s(B,2)s*(6',2)) = 0. (4.70)
Using (4.43), we conclude that the noise source term must be equal to

(s(8, 2)s* (', #)) = %2ak06(z _ S8~ B). (4.7)

The spatial delta function has amplitude 1/Az within the increment of

distance Az and is zero elsewhere. It expresses the fact that the noise sources
at two different points are uncorrelated. Because of the Gaussian character



146 4. Shot Noise and Thermal Noise

of the noise processes, full information on the probability distribution of the
noise source amplitude is contained in these equations.

If we replace the mode amplitude a{3) with the mode amplitude intro-
duced in (4.46), whose square is related to power flow, (4.68) remains un-
changed in form:

a(—i;a(w) =if(w)a(w) ~ aa{w) + s(w, 2) . (4.72)

The noise source correlation function becomes

(s(w, 2)s* (', 2')) = 51;2ak06(w —-wé(z - 2). (4.73)

4.7 Lossy Linear Multiports at Thermal Equilibrium

In the preceding sections, we have treated the thermal noise in a lossless
waveguide or transmission line, in a lossless resonator, in a resonator with
loss, and in a lossy waveguide. Loss calls for the introduction of noise sources
to maintain the thermal excitation. Such noise sources must be associated
with any circuit that possesses loss. The simplest such circuit is a resistor.
Figure 4.6 shows a resistor with an associated noise voltage generator Ej.
The spectrum of this generator can be evaluated by a thought experiment in
which the resistor R, terminates a lossless transmission line of characteristic
impedance Z, = R,. The power delivered by the resistor is given by

power delivered by resistor = R (4.74)

If the transmission line is to remain in thermal equilibrium, the power spec-
trum delivered by it to the resistor must be equal to the power spectrum
delivered by the resistor and its source. Equating this power to the power

absorbed by the material resistor from the wave impinging upon it (compare
(4.47)), we have

2
'E ' /dw/dw’ ¢ (W)a(w')) = —;gAw. (4.75)

+ Eg _

Z Rs

Fig. 4.6. Resistor terminating transmission line of characteristic impedance Z,
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If we use B = Aw/27 for the bandwidth instead of a radian frequency inter-
val, we have

(|E,|?) = 4R,k6B . (4.76)

This is an alternative form of the Nyquist formula. It is left as an exercise for
the reader to show that the noise source to be associated with a frequency-
dependent impedance Z,(w) is

(|Es|%) = 4 Re[Z,(w)]k6B . (4.77)

When the series connection of the resistor R, with its thermal noise source is
replaced by its Norton equivalent, a conductance G; = 1/R; in parallel with
a noise current generator I, = E;/R,, the mean square fluctuations of the
current noise source are

(|I;|?) = 4G;k6B . (4.76a)

An alternative derivation results if one defines the termination not as a
resistor but as a reflector terminating the transmission line. Then the de-
scription of the termination is in terms of the wave formalism:

b=Ta+s, (4.78)

where @ is the incident wave, b is the reflected wave, I" is the reflection
coefficient, and s is a noise wave source. A forward-wave noise source mounted
at a point 2’ on a transmission line produces a traveling wave in the +z
direction for all z > 2’ and no wave in the opposite direction, z < 2/. A
combination of a voltage source and a current source as shown in Fig. 4.7 can
accomplish this. In the absence of the noise source, i.e. s = 0, the termination
absorbs power within the bandwidth B = Aw/2m due to the incident waves
a(w) that propagate on the transmission line at thermal equilibrium. This
power is equal to

([ o [ aaia @) - s @)
=1 |TP) / dw / i’ (a(w)a* (@) : (4.79)

=(1-|I'»k6B.

If thermal equilibrium is to be maintained, the internal noise source of the
termination must reradiate the same power:

/dw/dw(s(w)s*(w’)) =(1-|I"*kéB . (4.80)

If the termination is matched to the line, I' = 0 and the power radiated is
k8B. If the source is reflecting, the reradiated power is less. Equation (4.80)
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Z, > %o
U / ! I,

Fig. 4.7. Wave noise source

is an alternative expression for the noise associated with a termination. Of
course, this expression must be consistent with (4.76). In Appendix A.6 we
show that this is indeed the case.

The double integrals become cumbersome after a while. For this reason
it is customary to subsume the delta function correlation of all frequency
components and use simpler symbols for the Fourier components of the ex-
citations. Henceforth we shall make the replacement (see Appendix A.5)

Aw/2 Aw/2
< / dw / dw’a(w)a*(w')> > (laf?), (4.81)

—-Aw/2 —Aw/2

and analogously for all other excitation amplitudes. Note the change of units
from a(w) to a. One may consider a to be the amplitude of the forward wave
within a narrow frequency band Aw = 27 B. Its mean square is equal to the
power within the frequency increment Aw.

The wave formalism is easy to generalize to a multiport (Fig. 4.8). The
multiport is characterized by its scattering matrix S, the column matrix of

the incident waves a, and the column matrix of reflected waves b. In analogy
with (4.78),

b=Sa+s, (4.82)

where s is the column matrix of wave noise-source amplitudes. The cor-
relation matrix (ss!), where the dagger superscript indicates a Hermitian
transpose, can be evaluated by requiring that the expectation values of the
products (b;b}) of the outgoing waves have the proper values corresponding
to thermal equilibrium. From (4.82) and the fact that the noise sources are
uncorrelated with the incident waves a;, we have

(bb') = S{aat)St + (sst) . (4.83)
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b

202

Z
/)]

Fig. 4.8. Schematic of multiport with noise sources

Now, the incident waves in the different input ports are uncorrelated:
(aa') = k6B1, (4.84)

where 1 is the identity matrix. The outgoing waves have the same correlation
matrix as the incoming waves. Using this fact, we obtain from (4.82)

(sst)y = (1 — SSHk6B . (4.85)

This is the generalization of the Nyquist theorem to a multiport. An
equivalent derivation was first given by Twiss [53]. Note that the noise source
correlation matrix on the left hand side is positive definite or semidefinite.
Hence the matrix (1 — SST) must also be positive definite or semidefinite.
This means that the network has to be dissipative, as shown in the next
chapter. Indeed, only for such passive networks can thermal equilibrium be
meaningfully defined. Active networks, by definition, cannot be at thermal
equilibrium.

A lossless multiport does not require the introduction of noise sources. To
prove this we check first the condition of losslessness. We must have

b'b=a'S'Sa =ala (4.86)
or
al(1-8'S)ya=0. (4.87)

Since the excitation amplitudes are arbitrary, we find that the scattering
matrix must be unitary:

St§=1 or St=8"1. (4.88)

A lossless network at thermal equilibrium does not contain internal noise
sources. Indeed, if we substitute (4.88) into (4.85) we find that the noise
correlation matrix vanishes.
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4.8 The Probability Distribution of Photons
at Thermal Equilibrium

Thus far we have studied thermal noise in lossy waveguides, resonators, trans-
mission lines, and circuits using the Nyquist formula, which is based on the
equipartition theorem. The noise spectral density in a single mode is then
white and the power in a bandwidth B is k6B. If this relation were valid
at all frequencies, the thermal power would be infinite. This leads to the so-
called ultraviolet catastrophe, which is unphysical. Quantum theory removes
the ultraviolet catastrophe by postulating that electromagnetic energy can
only occur in quanta of energy fiw, where 7i is Planck’s constant divided by 2.
At thermal equilibrium the photon distribution must be that of maximum
randomness, i.e. maximum entropy. It can be shown that the equilibrium
state of a system can depend only on the energies of the states [54]. The
entropy of the system is [54]

S=-k) pin(p;), (4.89)

where the p;s express the probabilities of the states with energy F;. Thermal
equilibrium is the state with maximum entropy. Denote the average energy
by (E). We find the equilibrium state by maximizing (4.89) under the two
constraints

Zpi =1 (4.90)

and

Z Eip; = (E) . (4.91)

The task is to find the dependence of the p;s on the energies E;. The maxi-
mization can be carried out with two Lagrange multipliers that take care of
the two constraints. We extremize the function

f(p:) = -k {Zpi In(p;) + A1 (Zpi - 1) + A2 <Z E;p; — (E)>

i

(4.92)

setting 0f /0p; = (8f /0 1) = (0f/8Az2) = 0. From 0f /0p; = 0 we obtain the
equation

14 ln(pi) + /\1 + /\in =0. (493)
We find for p;
pi = exp[— (A1 + 1)] exp[— A2 E;] . (4.94)
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We see that the Lagrange multiplier A; fixes the normalization of the prob-
ability and the multiplier A; gives the explicit dependence on energy. The
probability must depend exponentially on the energy.

Next, we consider a harmonic oscillator of frequency w,, representing a
mode in a resonator. We make Planck’s assumption that the accessible en-
ergies occur in multiples of fiw, where i = h/2x, and h is Planck’s constant.
This assumption was justified years later when the quantization of the har-
monic oscillator was carried out according to the rules established by quan-
tum mechanics. The quantization of the harmonic oscillator will be discussed
in Sect. 6.1. Here we accept this ground rule and proceed to evaluate the
probability distribution of the energy. We obtain from (4.94)

i = p(n) = exp —(A; + 1) exp —(Agenfw) , (4.95)

where n is the level of occupancy, or the photon number as used by Einstein
in 1905 in the analysis of the photoelectric effect. The multiplier is set so that
the probabilities add up to unity

exp[—(A\1 +1)] =

1
ST s L Oanhe)] L Pl (Gew)] - (4.96)

The average photon number is

=S no(n) = 2nnexp [-n(Ahw)] _ exp[-(lehw)]
"= Zn: P Yoaexp[-n(Ahw)] 1 —exp[—(Ahw)]

(4.97)

This equation defines A; in terms of the average photon number. We find for
the probability distribution

p(n) = 1—+1<—n> [L]n . (4.98)

1+ (n)
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Fig. 4.9. Bose-Einstein probability distribution for (n) = 40

Equation (4.98) is the so-called Bose-Einstein equilibrium distribution
(see Fig. 4.9). To give further physical meaning to the Lagrange multiplier,
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consider the average energy (n)hw in the classical limit as A — 0. In this

limit the energy of an oscillator with two degrees of freedom has to be equal
to k6. We find from (4.97)

lim (n)hw = thnp(n) = lim fu expl—(afw)] _ 1 =k6 . (4.99)

hw—0 n—0 1 — exp{—(\ofw)] A2

The Langrange multiplier is proportional to the inverse temperature. The
average photon number is thus in general

1

(n) = SRR (4.100)

The average energy is fiw(n). If we evaluate this average energy in the limit
of low frequencies, fiw <« k6, we find the value assigned by the equipartition
theorem:

h
lim hw(n) nd

= lim ————— =kf. 4.101
hw<kd nul,lglke exp(fuw/k8) — 1 ( )

Hence, all formulae involving the power at thermal equilibrium developed in
the classical limit can be generalized to arbitrarily high frequencies by replac-
ing k6 with Aw/{exp(hw/kf) — 1] (see Fig. 4.9). The Bose-Einstein distribu-
tion applies to situations more general than thermal equilibrium. Amplified
spontaneous emission is Bose-Einstein distributed, as we shall show in Chap.
9. Thus, the statistics at the output of an amplifier with no input mimic a
hot thermal source.

4.9 Gaussian Amplitude Distribution
of Thermal Excitations

We have mentioned earlier that the amplitude of a mode in a waveguide,
or in a resonator, has a Gaussian distribution since the thermal excitation
is due to coupling to a thermal reservoir with many degrees of freedom.
The central limit theorem then requires the amplitude to have a Gaussian
distribution. The Gaussian distribution can also be derived without appeal to
the central limit theorem, but rather as the distribution that maximizes the
entropy, a condition for thermal equilibrium. We may use the analysis in the
preceding section almost unchanged, if we discretize a continuous amplitude
distribution in such a way that the amplitude assumes only discrete values
A; with probabilities p;. The constraints are

Z pi=1 (4.102)

and
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Y Alp; = (E). (4.103)

The function that is to be maximized is

flpi) = —k[ZPi In(p:) + A (Zm - 1) +A2 Y Alp; - (E)>] .
i (4.104)

The probability distribution is found completely analogously to the solution
of (4.93):

pi = exp[—(A; + 1)] exp[~(A2A7)] . (4.105)

This is a Gaussian distribution. A transition to a continuous distribution A,
along with the normalization fj’:: dA p(A) = 1, gives

2
p(A) = \/%‘—2 exp ( - 2%) ; (4.106)

with 02 = (E). Thus, the Gaussian distribution maximizes the entropy under
the constraint that the average energy is fixed.

Consider some further properties of a Gaussian-distributed electric field.
It is clear that the description of a time-dependent Gaussian field calls for
two components, an in-phase component and a quadrature component; one
may also characterize them as a cosine component and a sine component.
The energy, or power, is proportional to the sum of the squares of these
amplitudes. We consider an electromagnetic wave with the cosine amplitude
equal to A., and the sine amplitude equal to A,. The square of the field is
normalized to the energy w in a chosen time interval, equal to the sum of A2
and A2 w = A2 + A2. The expectation value of the energy w is equal to the
sum of the mean square deviations o2 + 2. Let us determine the probability
distribution of w. The combined probability distribution of A, and A,, when
the two are statistically independent, is

1 A? 1 A?
1 exp(-ZeVdaA—1exp(-2L2)da,
V2no2 xp ( 202) V2ma? exp ( 203)

2 2
_ 1 exp (_M) dA.dA, ,

(4.107)

202

Where we have used the fact that the mean square deviations of the two fields
are equal: 02 = g2 = ¢2. This probability distribution can be written as a
Probability distribution for the energy w, if one integrates in the A.—A; plane
around a circle of constant w = A% + A%
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2r A2 A2
p(w)dw = VAZ + A2d¢ 1 exp (——°+—’> dy/ A2 + A2

o 2no? 202
1 A+ A2 2 2
= '2—0—2 exp (-—202—3‘> d (Ac + AS)

1

= e () 4
(4.108)

The probability distribution of the energy is an exponential with the average
value (w) = 202. The mean square fluctuations of the power are

[t du = @ = @? [ el @a( ) - ) = .

4.10 Summary

Shot noise is an important example of a random process that not only occurs
in current flow through diodes and p—n junctions, but also plays an important
role in optical detectors illuminated by a light source of constant intensity.
We shall have ample opportunity to use the expressions for the shot noise
spectrum and for the Poisson probability distribution. The power spectrum of
an electromagnetic wave on a transmission line or in a waveguide was derived
from the equipartition theorem. Note that we started with the modes in a ring
resonator of assumed length L. The final expression for the power spectrum
did not depend on the length, an important justification of the formalism,
since dependence of physical quantities on such an artificial parameter would
be unacceptable. Modes of resonators coupled to the outside world do not
have a power spectral density independent of frequency. The spectral density
of the mode energy peaks at the frequency of resonance. The integral over
the resonance band yields an energy k6.

We found that linear lossy circuits call for the introduction of Langevin
noise sources in order to maintain the thermal fluctuations against the power
loss of the circuit. We derived the spectra for the Langevin sources in a lossy
waveguide and in a multiport linear circuit at thermal equilibrium. Thermal
noise of passive structures at thermodynamic equilibrium is another example
of an important process which is in close analogy with the zero point fluctua-
tions of quantum mechanics discussed later on. We derived the Bose-Einstein
statistics of photon distributions at thermal equilibrium from the condition
of maximum entropy. Finally, we obtained the Gaussian probability distribu-
tion of the amplitude of a mode at thermal equilibrium from maximization
of entropy.
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Problems

4.1* The formula for the current flowing in a diode is i = I,[exp(qV/k8) —1].
At equilibrium, this current can be thought of as consisting of two current
flows in opposite directions of magnitude I,, each and canceling when V' = 0.

(a) What are the shot-noise current fluctuations at equilibrium?

(b) The conductance of the diode at equilibrium is di/dV. What are the
short-circuit current fluctuations, from the Nyquist formula? Compare
with (a).

4.2 A receiving microwave antenna has a bandwidth B = 100 MHz. If this
antenna receives the cosmic background radiation of 2.75 K, what is the net
power received?

4.3* In the text we evaluate the number of modes in a waveguide of length
L in the frequency interval Aw by setting L = 2wm (periodic boundary
conditions) and determining Am = (df/dw)L Aw/2n. Had we used standing-
wave boundary conditions we would have set 3L = wm and found Am =
(dB/dw)L Aw /7. This is twice the previous number. The two results are not
in conflict, because the result with periodic boundary conditions includes
only forward-traveling waves. Thus, the actual number of modes is the same
in both cases.

In this problem you are asked to derive the number of standing wave
modes in free space within a cubic box of side length L. Note that

ma\* | (na\* L (pr\P a2
L L L T T 2

w?L?

2n?

or

m? +n? 4 p? =

One may think of each mode as a point in a space of dimensions wL/cm.
Only positive mode numbers are to be included. The number of modes in
one-eighth of a sphere of radius wL/cr is equal to the volume (7/6)(wL/cm)3.
The number of modes in a shell of thickness AwL/cr is (7/2)(L/cm)3w? Aw.
Noting that each mode has two polarizations, determine the electromagnetic
energy per unit volume within the bandwidth Aw at thermal equilibrium at
temperature 8. You will have found the Rayleigh-Jeans law.

4.4 Sometimes one may prove relations derived from Maxwell’s equations by
referring to thermodynamic equilibrium considerations.

Consider an antenna with gain G. If it is thermally excited by a sin-
gle mode waveguide, the power radiated into a narrow solid angle Af2 in
the direction 6, ¢ is kG (6, ¢)(A2/4x). By requiring that the antenna re-
ceive as much power as it transmits when in thermal equilibrium with its
environment, prove that the receiving cross section A of the antenna is
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A(B,¢) = (A?/47)G(O, ¢). Note that, by the definition of receiving cross
section, an antenna receives the power P = A(6,¢)S if it is irradiated by
a Poynting flux S traveling in the direction ©,¢ as expressed in spherical
coordinates centered at the antenna.

4.5 Using the results of the previous problem, prove that the receiving cross
section of a short dipole is A = (3/2)(A?/4~).

4.6 In the preceding problem you have found that the receiving cross section
of a dipole is independent of the length of the dipole. This is a surprising
result until one realizes that the definition of receiving cross section assumes
that the antenna is matched to its termination. Determine the matching
impedance for a short dipole as a function of its length.

4.7* The Rayleigh-Jeans law exhibits the ultraviolet catastrophe. Planck’s
quantization removes the catastrophe. Derive Planck’s law for the energy
density per unit volume of electromagnetic radiation at thermal equilibrium
at temperature 6.

4.8 Compare the short-circuit current fluctuations of the thermal noise of a
50 12 resistor at room temperature with the shot noise of a current I, flowing
through the resistor. At what value of I, is the latter equal to the former?

Solutions

4.1

(a) If the current in each direction is I, then the shot noise due to the two
currents is (i%) = 4ql,B.
(b) The conductance at V = 0 is
_alo

di/dV = (alo/k8) exp(qV/k0) = T2 = G .

The Nyquist formula gives (i2) = 4GkOB = 4qI,B. The two results agree.

4.3 The electromagnetic energy is k6 per mode times the number of modes.
The energy per unit volume and per unit solid angle within the bandwidth
Aw =21 Av is

1 T w?Aw v Ay

—kOX2X ——F =2——kf.

4 2 (cm)3 c3
4.7 At high frequencies, when the Planck formula replaces the equipartition
theorem, the energy density per unit volume and unit solid angle becomes
(compare Prob. 4.3):

Energy density v Ay hv

unit volume X unit solid angle 2 2 explhv/kf) -1~

This law does not diverge as the frequency goes to infinity.
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Microwave and optical devices may all be described as multiports: signals are
propagated into the device through input waveguides and emerge in output
waveguides. If signal distortion is avoided, these devices are characterized as
linear multiports. Of course, even linear multiports may distort a broadband
signal by introducing frequency-dependent changes of the amplitudes and
phases of the Fourier components of the signal. A linear multiport with loss
does not only attenuate the signal, it also adds noise at thermal equilibrium.
Linear multiports with gain amplify the signal, but also add noise in the pro-
cess. In this chapter we study the basic noise properties of linear multiports.
Linear multiports are described by an appropriate response matrix, which is
a function of frequency, and a set of (Langevin) noise sources; there are N
such sources for a multiport with IV ports. Since the sources are generated by
noise processes with a large number of degrees of freedom, they are usually
Gaussian, according to the central limit theorem. Then, the correlation ma-
trix of the noise sources, which is a function of frequency, is sufficient for their
specification. In Sect. 4.7 we determined the noise sources for passive multi-
ports at thermal equilibrium. Active multiports, such as amplifiers, contain
noise sources that are determined by the physics of the amplifying process.

We shall start with the derivation of the characteristic noise matrix, which
determines the stationary values of the power that can be extracted from a
noisy multiport with variations in the loading of the network. We shall find
that the stationary values of the power are given by the eigenvalues of a
characteristic noise matrix. This thought experiment establishes a universal
measure of “noisiness” of a network, which also underlies the noise perfor-
mance of an active network used as an amplifier. Then we show how the
characteristic noise matrix transforms from one network description to an-
other network description. We show that its eigenvalues are invariant under
such transformations. Finally, we express the characteristic noise matrix in
the scattering-matrix notation, the notation most useful in optical systems
terminology. The characteristic noise matrices of different matrix formula-
tions relate to different thought experiments performed on the network. In
the transfer matrix formulation, the characteristic noise matrix results from
optimization of the noise performance of an amplifier.
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Active two-ports are amplifiers. The purpose of signal amplification is
to provide a signal level at the amplifier output so high that any further
operations on the signal do not cause a significant deterioration of the signal-
to-noise ratio. An amplifier raises the signal power level, at the expense of
a decrease in signal-to-noise ratio. Clearly, the objective of good amplifier
design is to achieve a minimum deterioration of the signal-to-noise ratio in
the amplifying process.

In order to characterize the noise performance of an amplifier, one needs
a measure of noise performance. The noise figure F, defined by Friis [55], is
one such measure. It is defined by

_ input signal-to-noise ratio

" output signal to noise ratio -

Since the signal-to-noise ratio deteriorates in passage through an amplifier,
the noise figure F is greater than unity. It is, further, customary to define the
noise at the input in terms of a thermal background at room temperature,
8, = 290 K. The signal level need not appear in the definition of noise figure,
since the ratio of the signal levels at output and input is simply the gain G.
One may write

noise at the output
k6,G ’

where G is the available power gain of the amplifier (to be defined more pre-
cisely below). We concentrate here on the so-called spot noise figure, defined
for bandwidths narrow enough that the amplifier characteristics do not vary
over the chosen bandwidth. The definitions of noise figure (a) in terms of the
input and output signal-to-noise ratios and (b) as applied to linear amplifiers
in terms of the amplifier output noise were adopted by the Standards Com-
mittee of the Institute of Radio Engineers in 1959 [17]. The successor Institute
of Electrical and Electronics Engineers adopted the same standard. Later, in
Chap. 9, we shall discuss the definition of noise figure for optical amplifiers
in current use and raise some important issues with regard to this usage. It
suffices to state at this point that the noise figure is an adequate measure of
amplifier noise performance only if the gain of the amplifier is large. Indeed, if
one shorted the leads of a two-port amplifier from input to output, the noise
figure of this modified arrangement would be unity, i.e. ideal. However, the
gain of this structure is unity, and hence the whole purpose of amplification
of a signal is vitiated. There must be a better way of measuring noise per-
formance, namely with a measure that also includes the gain of the amplifier
in such a way that an “amplifier” with unity gain does not appear to have
a good noise performance. Confronted with this dilemma, Prof. R. B. Adler
and the author constructed a measure of noise performance [56-61] which
remains meaningful if the amplifier gain is not large. This so-called “noise
measure” was defined by

F =
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F-1
1-1/G

It is clear that this definition will not register an improvement in the noise
performance when the two-port amplifier is shorted out. Indeed, when this
happens, the “excess noise figure” F' — 1 becomes zero, but so does the de-
nominator. The noise measure becomes indeterminate, zero over zero. It does
acquire a definite value if the limits are taken properly.

Further, the concept of available gain was generalized to allow for source
or amplifier output impedances with negative real parts. In this chapter we
shall address these issues in detail and arrive at unequivocal definitions of
noise performance of linear amplifiers.

M=

5.1 Available and Exchangeable Power from a Source

A source is a one-port, described by the voltage—current relation (see Fig.
5.1)

V=2I+E,, (5.1)

where V' is the voltage across the source, I is the current flowing into the
source, and E, is the open-circuit voltage across the source. The available
power of the source is defined as the maximum power transferable from the
source to a load, with adjustment of the load impedance. The power flowing
into the load is

(| Es|*)Re(Z1)

Py = — 1 5.2
L |Zs +ZL|2 ( )

Here we use the notation { ) for an ensemble average; if the noise is stationary,
the ensemble average is equal to the time average. In the case of noise, we shall
attach a very specific meaning to {|E,|?): it will stand for the mean square
voltage fluctuations in a bandwidth B. Thus, the open-circuit mean square
fluctuations (|E,|?) of a resistor at thermal equilibrium are (| E,|?) = 4R.k6B.

A% Zg

Fig. 5.1. The equivalent circuit of a source
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The power flowing into the load is maximized when Z; = Z}. With this
value of the load the maximum power is realized; P, of (5.2) becomes the
so-called “available power”

Pav _ (|E3|2>

AR (5.3)

This relation assumes that the source impedance has a positive real part.
This is not always the case. The impedance of a parametric amplifier (see
Chap. 11) may have a negative real part. If the parametric amplifier is used
as the first amplifier in a cascade of amplifiers, the combination of source
and parametric amplifier may appear to the remainder of the cascade as
a source with an internal impedance that has a negative real part. If the
source impedance Z, has a negative real part, a passive load Z; = —Z;
leads to a finite amount of power for £, = 0 and an infinite amount of
power if E; # 0. In such a case one needs a generalization of the concept
of available power, the exchangeable power. It is defined as the extremum of
the power exchanged between source and load. For a source with a positive
real part of its impedance the exchangeable power is the available power as
discussed above; when the source impedance has a negative real part, it is
the minimum (the extremum of the) power fed to the load. We shall use this
extended definition of power from a source henceforth, so as to allow for the
cascading of structures that may result in source impedances with negative
real part:

Pex _ (IE3|2>

AT OE (5.4)

Note that the exchangeable power is negative when the real part of the source
impedance is negative. Figure 5.2 shows the dependence of the power ex-
changed between source and load for the cases of a positive and a negative
source resistance. The extrema occur for positive and negative load resis-
tances, respectively.

5.2 The Stationary Values of the Power Delivered
by a Noisy Multiport and the Characteristic
Noise Matrix

In the preceding section we have studied the available power from a source of
impedance Z, and internal noise source E,. When the source impedance had
a negative real part, we generalized the concept of available power to that of
exchangeable power, the value of the power that is stationary with respect to
variation of the load impedance. In this section we generalize the concept of
exchangeable power to multiports. Since the network has many terminals, one
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Fig. 5.2. The power flowing into the source R, = Re(Z,) as a function of Ry,

must be specific as to which terminal is being explored. However, varying the
load on one terminal pair alone, leaving all other terminals open-circuited,
does not allow for sufficient adjustment. For this reason, we analyze the more
general case in which the network is embedded into an arbitrary lossless 2N-
port first, and then the load is varied on one of the terminals. This allows
for a sufficiently wide range of adjustment. We shall find that the stationary
values of the power are given by the eigenvalues of the “characteristic noise
matrix” of the network.

At any particular frequency w, a noisy multiport can be described by its
impedance matrix expressing the terminal voltages in terms of the terminal
currents (see Fig. 5.3):

V=ZI+E. (5.5)

For a multiport of Nth order, the impedance matrix Z is a square matrix
of Nth rank. The noise sources are arranged in a column vector E. They
are specified in terms of the correlation matrix (EE'), whose ij element is
(ElE;) As defined, the noise sources appear as voltage generators in series
at the terminals of the multiport as shown in Fig. 5.3. We may now ask
for the available or, more generally, the exchangeable power from one of the
terminals of the N-port. With all ports open-circuited except the ith, the
exchangeable power from the ith port is

o _1(BE) _1 ¢(BEN
et 2724+ Z - 2£T[Z + ZT]E ’

(5.6)

where the column matrix £ consists of all zeros except for the ith row, which
is a one (§; = 0,7 # i;& = 1). Equation (5.6) gives the stationary values of
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Fig. 5.3. Equivalent circuit of linear noisy N-port

the power with variation of the load on the ¢th terminal, but with no other
adjustment of the network. More general is the case when the network of in-
terest is embedded in a lossless, noise-free 2N-terminal-pair network resulting
in a new N-port, whose ith port is terminated in the complex conjugate of
the open-circuit impedance of this new port. We shall now turn to the theory
of embedding of an N-port in a lossless 2N-port.

The impedance matrix of the lossless 2N-port is subdivided into four
impedance matrices of Nth rank (see Fig. 5.4):

Zr= [Z‘m Zab] , (5.7)
with the voltage—current relations
Va, = Za,a,Ia, + ZabIb ’ (58)
Vo= 2Zpodlo+ ZppIy . (5.9)
Since the embedding network is lossless, we must have
IZr+ 2 =0, (5.10)
for an arbitrary current excitation I, and thus
Zoo+ 2L, Zoy + Z}
Zr+2ZL=0 or [ pa T “aa o ol =0. 5.11
T T Zba-l-Z};b be-l-ZEb ( )

The currents I of the original N-port are equal and opposite to the cur-
rents I, fed into the embedding network; the voltages V' are equal to the
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Fig. 5.4. A lossless 2N-port with an embedded N-port
voltages V', across the terminals of the embedding network. We obtain from
(5.5) and (5.8)

Io=—(Z+ 24) ' ZooIn+(Z + Zo0) 'E. (5.12)

Using (5.9), the new network with terminal voltages V', and terminal current
I, has the impedance matrix Z’ and Langevin sources E':

Vo=2Z'I,+E' (5.13)
with

Z' = -Zvo(Z+ Z42a)  Zop + Zip (5.14)
and

E' =Zy(Z + Zo) 'E . (5.15)

The exchangeable power contains the matrices (EE') and Z + Z1, in the
numerator and denominator. Hence it is of interest to determine the trans-
formation of these two matrices, using (5.14) and (5.15). Taking into account
the condition (5.11) for losslessness of the embedding network, we obtain

Z'+ 2" = —Zp0(Z + Zaa) ' Zav + Zov + 2},
-zl(2"+ 2L,)7' 2},

= Zba[(z + Zaa)-1 + (Z]L + Zla)—llzlta .



164 5. Linear Noisy Multiports

This expression can be transformed further:

Z' + 2" = Zpo(Z + Zaa) (21 + Z1,) +(Z + Z,4))

(2t + z1,) 'z}, (5.16)
=DWz+ z")D
with
D'=Zp(Z +Z,.)7 " (5.17)

The transformation of the matrix Z + Z! is a collinear transformation. The
transformation of the noise correlation matrix follows from (5.15):

(E'E""Yy = DY(EE"D . (5.18)

The same collinear transformation law is obeyed by both the correlation
matrix and the impedance matrix plus its Hermitian conjugate. Note that
both Z + Z! and (EE!) are Hermitian matrices and that (EE?) is positive
definite. It is possible to diagonalize both matrices with one and the same
collinear transformation. To show this, suppose first that the positive definite
Hermitian matrix EE' is diagonalized by the unitary matrix U, a well-
known operation. On the diagonal of the diagonalized matrix appear the
real eigenvalues of the matrix. Next, we normalize the resulting matrix by
a diagonal, real, normalizing matrix IV, obtaining an identity matrix as the
result:

N'UNEENHYUN =1.

Next, consider the matrix Z + Z'. We perform the same operations on this
matrix and obtain a new matrix N1U'(Z + Z1)UN, which, of course, is not
diagonal, in general, but is still Hermitian. Now we diagonalize the matrix
with the unitary matrix V, so that VINTUY(Z + ZH)UNYV is diagonal.
Since we are looking for simultaneous diagonalization of Z + Zt and (EE"),
we must pre- and post-multiply N'U'(EENYUN by V1 and V. But since
the matrix NTUT(EET)UN is the identity matrix, the operation leaves it
unchanged. This proves the theorem that two Hermitian matrices can be
diagonalized simultaneously with a collinear transformation if one of them is
positive definite.

We can now ask for the exchangeable power from the ith terminal pair of
the new network. It is

b1 ENEENE

< T3¢z 1 ZNE (5.19)

When we use the transformation laws (5.16) and (5.18) to express the primed
quantities in terms of the unprimed, original impedance and noise correlation
matrices, we find
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;1 e (EENx 5 20

et " 22tZ + Ztx’ (5.20)
with

o' = ¢'24,(Z + Zaa) ' =¢'D. (5.21)

Suppose next that we pick D so as to diagonalize simultaneously both
(EE') and 2(Z + Z1), with (EE") transformed into the identity matrix.
Denote the diagonal elements of the transformed matrix 2(Z’ + Z'T) by 1/\;.
We then obtain for (5.20)

PR (5.22)
&2/ )

It is obvious that A; is an extension of the concept of exchangeable power.
Further, ); is one of the eigenvalues of the matrix

S(Z+ 2" EEY,
which has undergone the similarity transformation
D™ (2 + 2" (EEND,

which rendered it diagonal. The same result can be obtained by an alternative
route. Returning to (5.20), we note that the exchangeable power is the ratio of
two scalars that are constructed from two Hermitian matrices A = %(EET)
and B = Z + Z' by projection via the column matrix 2. The extrema of
this expression can be found by determining the stationary values of =' Bz
under the constraint ' Az = constant. With the Lagrange multiplier X, and
the recognition that ! Bz and ! Az can be considered functions of either
the x; or the z3, we find

8 * 1 *
&—,F (.’Ei Bij.’tj — Xmi Aij.’tj> =0
i

or

Az — ABx =0. (5.23)
The values of A are determined from the determinantal equation

det(A — AB) =0 =det(B"!A - A1). (5.24)

The eigenvalues of X fix the extrema of the exchangeable power from terminal
1. They are the eigenvalues of the matrix

B-'A = %(z + 2" YEEY) . (5.25)
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This matrix, or rather its negative, has been dubbed the “characteristic noise
matrix”, IN z [61]. The choice of sign is motivated by the fact that the positive
eigenvalues of the characteristic noise matrix so defined determine amplifier
noise performance, as shown further on. This matrix is given by

Ny = _%(z +ZY)"YEE'). (5.26)

One feature of the characteristic noise matrix, when applied to a pas-
sive network at thermal equilibrium can be discerned right away. A passive
network has open-circuit impedances with positive real parts only. At ther-
mal equilibrium, the available power delivered to the matched load must be

kOB. Thus all eigenvalues of the characteristic noise matrix must be equal to
—k6B. We have

Nz=-3(Z+2') {EBy=—kB1, (5.27)

where 1 is the identity matrix.

A few words about the sign of the eigenvalues of (5.26). The correlation
matrix (EE?) is positive definite (or semidefinite in some limits). The matrix
(Z + Z*)~! is positive definite if the network is passive, negative definite if it
is totally active so that it cannot absorb power under any circumstances, or
indefinite if the network can both generate and absorb power. The definiteness
of a product of two matrices one of which is positive definite is that of the
other matrix. Hence, the eigenvalues of (5.26) are all negative if the network
is passive, all positive if the network is totally active, and both positive and
negative if the network can both generate and absorb power.

5.3 The Characteristic Noise Matrix
in the Admittance Representation
Applied to a Field Effect Transistor

An analogous derivation can be carried out in the admittance matrix repre-
sentation. The exchangeable power of a one-port is now

2
P o U5

=Y (5.28)

where Y; is the source admittance and J is the noise source. The gener-

alization to a multiport, with all terminals short-circuited except the ith,
is

p,, -1 _&INE

AT RE(Y FYNE (5.29)
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where the current—voltage relationship is
I=YV+J. (5.30)

The embedding proceeds completely analogously. We find that the extrema of
the exchangeable power are the eigenvalues of the characteristic noise matrix

Ny = ——%(Y+Y‘)‘1(JJ"). (5.31)

Intrinsic FET

v,
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. Cgl+ .
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Fig. 5.5. Small-signal equivalent circuit of junction field effect transitor (JFET)
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It is of interest to look at the simple example of a two-port amplifier.
Figure 5.5 shows the small-sighal equivalent circuit of a field effect transistor.
The linearized equivalent circuit consists of a gate conductance gy, a gate
capacitance ¢y, a drain conductance g4, and a voltage-dependent voltage
generator gm,eg. The noise is represented by the two noise generators i4 and iq4.
Because of the linearized form of the representation we use lower-case letters
for all symbols. The current—voltage relations for this equivalent circuit are

i1 = (gg — Iweg)vr +1g (5.32)

12 = gmVU1 + gqv2 + 1q . (5.33)

The matrix (Y + Y1) is

1 m/2
¥ +Y) = {919/299,1 ] ' (5.34)

This matrix is not positive definite. Indeed, the determinant is

2

1
det [E(Y + Y*)] = gg9a — g—;’—‘ . (5.35)

When g2, /4 > gyg4 the determinant is negative. This means that the network
is capable of delivering net power, acting as an amplifier.
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The inverse of the matrix 2(Y + YT) is
-1
S(Y+YN)| =—75 5.36
[2( * )J 9994 — 9% [ —9m/2  gq (5.36)

The noise current source correlation function is

(lig|?) (ig73)
(JJN = , (5.37)
(igia) (|ial®)

and the characteristic noise matrix becomes

L galigl?) = Somlizia)  0aiois) — Somlial?)
Y = S T 00 | _1, N Lo s :
™ 994 | —39m(ligl?) + 9g(i5ia) —39m (igi) + gg{lial?)
(5.38)
The eigenvalues of the characteristic noise matrix are
A= g | (0l + golial®) ~ gmRetizia)
_2g /4 ada 2gd g gg\lld 9m gld
[Z 94{ligl®) + g4(lial?) ~ gmRe(i}ia))? (5.39)

1/2
Hﬁm—%%mmﬂmmrﬁwmm] .

When the system has gain, the two eigenvalues are of opposite sign. With
proper passive loading, the two-port can be made to oscillate in the absence
of the internal sources and deliver an infinite amount of power in the presence
of the internal sources. From the preceding analysis we know that the eigen-
values determine the exchangeable power from the two-port. The one with
the negative sign gives the minimum power delivered by the network; the one
with the positive sign gives the minimum power delivered to the two-port
by active (negative-conductance) terminations. We shall later prove, in Sect.
5.7, that the positive eigenvalue determines the optimum noise measure of
the amplifier.

5.4 Transformations of the Characteristic Noise Matrix

In Sect. 5.2, we evaluated the exchangeable power obtainable from a noisy
N-port when the N-port is first embedded in a lossless network and then
the ith port of the resulting network is terminated in a load, while all other
ports are left open-circuited. This procedure provided a sufficient number
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of adjustable parameters for an arbitrary adjustment of the loading of the
N-port. We arrived at a characteristic noise matrix of the original N-port
in this manner. The same procedure can now be exploited to determine the
change of the characteristic noise matrix following a lossless embedding. The
original network has the following characteristic noise matrix (5.23):

Nz = —%(Z+Z*)*‘(EE*). (5.40)

A lossless embedding transforms (EE') and Z + Z' according to (5.16)
and (5.18). Accordingly, the transformation of the characteristic noise matrix
is

7 =D7!NzD. (5.41)

The transformation is a similarity transformation, which leaves the eigenval-
ues of the characteristic noise matrix invariant! This finding will be exploited
later to show that the optimum noise performance achievable with an ampli-
fier is invariant under a lossless embedding, feedback being one special case
of such an embedding.

Different forms of the characteristic noise matrix result from different ma-
trix descriptions of a multiport, the impedance matrix description and the
scattering-matrix description being two such examples. We shall show that
these different forms of the characteristic noise matrix are also related by
similarity transformations. Since the most important attribute of the char-
acteristic noise matrix is its eigenvalues, and eigenvalues are invariant under
similarity transformations, it is expedient to construct the characteristic noise
matrix within the formalism used.

Suppose that the impedance matrix description of the network

V=ZI+E (5.42)
is recast with new variables into a new formulation
v=Tu+4é, (5.43)

where the new variables are related to the voltage—current variables by the
transformation

«[:)-[1)

We shall now show that a characteristic noise matrix that is related to the
characteristic noise matrix (5.40) by a similarity transformation emerges nat-
urally in the new description of the network. To accomplish this most econom-
ically, we recast the terminal relations (5.42) and (5.43) into matrix format,
introducing the column matrices (5.44), which are of twice the rank of either
V or I. With these, we may rewrite the terminal relations (5.42) and (5.43)
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1 -2z [‘I’] -E, (5.45)

v
1 -T [u] =4. (5.46)
Now we introduce the transformation (5.44) into (5.45)

(
[1 - Z]RR! [V]=[1 —Z]R[v

I o1 (5.47)
=[R11 — ZRy Ri2 — ZRy)] [u =F.
Multiplication of (5.47) by the matrix
M = (Ry; — ZRy)™! (5.48)
puts (5.47) into the form of (5.46), where
1 -T]=M[1 -ZR, (5.49)
8= ME. (5.50)

This completes the transformation of the impedance matrix Z into the
response matrix T', and the source vector E into the source vector 4.

Next we consider the representation of the power P flowing into the net-
work in the absence of internal sources. Each matrix representation expresses
the power in terms of the excitation variables via a specific matrix Q. Thus,
consider the impedance representation, for which we write

p=%<vt1+ﬁv>=<[‘;]TQZ [‘Il]> , (5.51)

where Q7 is the matrix

Qz=%[(1)(1)] . (5.52)

Analogously, in the T representation, the power P is written

re ([ e [0) o5

Since the power must be equal in the two descriptions, for all possible exci-
tations, we must have
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P= <thT [3]> ) <[¥]th m> (5.54)
(g o)

This is the law of transformation for the power matrix Q7. Thus far, we
have determined the transformations between two different matrix represen-
tations of a network involving the network matrices, the internal sources,
and the transformation of the power flowing into the network in the absence
of internal sources. Next we reformulate the characteristic noise matrix in
the impedance formulation and determine its transformation into the T rep-
resentation. The characteristic noise matrix (5.26), recast in terms of the
reformulation (5.45), is seen to be

No={n -2163| 3] } (BE'). (5.56)

If we introduce the transformations (5.49) and (5.50) between the imped-
ance matrix formulation and the T matrix formulation into (5.56) we find

-1
Nz = {M“l[l -T|R'Q,'R!™! [_}ﬂ] MH}

x M~ o6 YMT? (5.57)

= Mt {[1 - 7)Q;! [1{1] }—1 (68T M1

We have derived a new characteristic noise matrix of the same generic form
as that of Nz in (5.56), namely

Ne={in -7ier [ ] L s, (5.59)

and this matrix is related to Nz by a similarity transformation.

We have studied the transformations among different matrix formulations
of the same network. We have found that a new definition of the characteristic
noise matrix emerges in every formulation. The different characteristic noise
matrices are related by similarity transformations and thus possess the same
eigenvalues. In each formulation, the eigenvalues of the characteristic noise
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matrix are equal to the stationary values of the power exchanged between the
network and its terminations in a thought experiment in which the terminal
conditions are varied. The stationary values of the exchangeable power in
a thought experiment in which all terminals but one are open-circuited are
given by the characteristic noise matrix in the impedance representation. A
thought experiment that determines the stationary values of the exchangeable
power when all but one terminal are short-circuited leads to the character-
istic noise matrix in the admittance formulation. Since the two matrices are
related by a similarity transformation, the stationary values in these two dif-
ferent thought experiments are, in fact, the same. In the next section we shall
show that the characteristic noise matrix in the scattering-matrix represen-
tation gives the stationary values of the exchangeable power when all but one
termination are matched.

5.5 Simplified Generic Forms
of the Characteristic Noise Matrix

The matrix algebra in the preceding section was quite general, but it had
to deal with manipulations of matrices of rank 2V, a rank twice that of the
network at hand. The expression for the characteristic noise matrix in any
formalism can be simplified in many important cases, as indeed it was in
the impedance matrix formulation, when we first encountered it by writing
it in terms of matrices of rank N. For this purpose, two cases have to be
distinguished.

(a) All ports of the network are equivalent. The response is in terms of input
excitation variables (e.g. currents), defined at all ports in the same form,
producing output excitation variables (e.g. voltages). Take, for example,
the impedance description. We then have for Q2

1101
Qz = 3 [1 0] . (5.59)
Another example is the admittance description. It has the same power
matrix,
1101
Qy = 3 [1 0] . (5.60)

If we use this definition and the fact that T' = Y for the admittance
description, where

I=YV+J, (5.61)

and J is a column matrix composed of noise current generators, we find
for the characteristic noise matrix in the admittance formulation
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1 -1/ 71
Ny=—-§(Y+Y YHJITTY . (5.62)

If we take the scattering matrix formulation as an example (compare
Appendix A.6),

b=Sa+s, (5.63)
then
-10
=33 (5.64)

and the characteristic noise matrix with T' = S becomes
Ng=(SSt-1)Ysst). (5.65)

The network has an even number of ports, half of which are designated
as input ports and half as output ports. The excitation variables at the
output ports are expressed in terms of the excitation variables at the
input ports. The two-port of Fig. 5.6 is an example. Port (2) is the “out-
put” port, port (1) is the “input” port. The matrix T is the “transfer”
or ABCD matrix

- 25101 2]

Note the direction of positive current as defined in Fig. 5.6. In this case,
the power matrix is of the form

_[(Pr O
Qr = [ 0 —PT] , (5.67)
with
1f01
Pr = 2 [1 0] , (5.68)
and the characteristic noise matrix assumes the form
Nrp = (P;! - TP;'T') 186, (5.69)
with
AB
r-[42].

If voltages and currents are not natural excitation variables, as is the
case in the analysis of optical amplifiers, wave amplitudes can be used
instead. If this is done for the transfer matrix formalism as represented
by (5.66) in terms of voltages and currents, we obtain
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T___{A B]V‘I—H+

C D
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Noise-free |
network T :

Noisy amplifier T, &

Fig. 5.6. The equivalent circuit of the two-port of (5.79)

a) Taa Tab az Ya
= . 5.70
[le [Tba Tbb] [bz]+[’7b] (5.70)
The power matrix is
_[Pr 0O
=12 (5.71)
with
(1 0
P [20].

In this formalism, the characteristic noise matrix is of the same form as in
(5.69), the only change being the new interpretations of Pr, the transfer
matrix, and the noise source column matrix.

The characteristic noise matrix arises naturally in the scattering-matrix
formulation when the question is asked about the stationary values of the
power delivered to a load connected to the ith port, with all other ports
matched, i.e. a; = 0 for j # i. We proceed to prove this assertion. With all
ports except the ith, matched, the equation of the ith port is

bi = S,-iai + ;. (572)

The available power or, more generally, the exchangeable power, is realized
when the termination impedance of the ith port is the complex conjugate
of the internal impedance presented by the N-port. This means that the
reflection coefficient of the termination is the complex conjugate of S;;:
reflection coefficient = % =55 . (6.73)
1

The power flowing into the load is

2
.
Paas = b7~ aif? = L2 (570
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This can also be written in matrix form, with the column vector £ such
that {; =0 for j #1i, and § = 1:

£'(ss")¢

fert = Er - Sshe

(5.75)

We can again consider a lossless embedding of the network that transforms
the source correlation matrix and the matrix in the denominator. Lossless
embeddings have been studied in the impedance formulation. We do not
need to rederive the transformations in the scattering-matrix formulation,
since we may transform both matrices into the impedance form. A lossless
embedding transforms the resulting matrices by a similarity transformation.
Transforming back into the scattering-matrix formulation, we obtain

zt(ssh)x

Peasi = zt(1 - SShHz

with = =M!"1DM'e. (5.76)

Now the column matrix x is arbitrarily adjustable and can be varied
for extremization. The eigenvalues of the characteristic noise matrix Ng =
(88t — 1)~1(ss') now yield the extrema of the exchangeable power at the
ith port, with all other ports matched.

The characteristic noise matrix in the transfer matrix formalism (5.66) is
the basis of a thought experiment in which the so-called “noise measure” is
extremized with adjustment of the source and load impedances, as we shall
show in the next section.

5.6 Noise Measure of an Amplifier

Within a narrow frequency band, a linear amplifier is described completely by
its scattering matrix and the correlation matrix of its noise sources. Ampli-
fiers are not always connected to transmission lines in which the definition of
incident and reflected waves is unequivocal. Hence, the scattering matrix for-
malism is not best suited for the study of amplifier noise performance at both
low frequencies and microwave frequencies. The voltage—current description
is more appropriate for this purpose. We shall start with this formalism and
express only the final results in the scattering matrix terminology, which is
natural for the description of optical amplifiers, for which the voltage—current
description lacks specificity (equivalent circuits for optical structures are not
unique).

5.6.1 Exchangeable Power

To facilitate the evaluation of the available gain, or the more general concept
of exchangeable gain, it is expedient to derive the available or exchangeable
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power by matrix manipulation. The equation for the source connected to the
amplifier (see Fig. 5.6) can be written

1 V
Tay — 1 = = 1
z'v=FE, with = [Z;J and v= [IlJ . (5.77)

The exchangeable power is

Pea: _ (IE3|2)

= —— 5.78
:zszgl:z: (5.78)

where
_ 1701
pTZE[m]

is the power matrix as defined earlier in (5.71).

5.6.2 Noise Figure

A matrix description best suited for the analysis of amplifiers in cascade is
the “transfer” or ABCD matrix expressing the input voltage and current in
terms of the output voltage and current (see Fig. 5.6):

[}/11] B [g g] [XQJ " [ﬂ (5.79)

or, in abbreviated matrix notation,

v=Tu+d (5.80)
with
_[w
v=[7].
_[Va
u=[7].
) (5.81)
E
s =15,
_[AB
r-[45].

Here E and J are the internal voltage and current noise sources at the
input of the amplifier as shown in Fig. 5.6. In this representation, the noise
figure is already completely determined by E and J; no details of the ABCD
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transfer matrix enter into its evaluation. Indeed, after incorporation of the
noise sources in front of the amplifier into the voltage generators of the signal
and the noise of the input source impedance, the signal-to-noise ratio does not
change when the signal and added noise pass through the noise-free remainder
of the equivalent circuit [62] (see Fig. 5.6). We compute the noise figure as
defined in the introduction to this chapter:

input signal-to-noise ratio
F = 2Pt SIERA OO TR0 | (5.82)
output signal-to-noise ratio

We may evaluate the noise figure as the ratio of the mean square noise voltage
at the primed terminal pair of Fig. 5.6, divided by the mean square noise
voltage in the absence of the amplifier noise sources; the input source is at
thermal equilibrium at temperature 6,:

(1Bs[) +(E+ Z,J1") _ L AEA ZsJ?)

F= AR = Re(Z)k6,B -

(5.83)

It is helpful to cast the noise figure expression into matrix notation. Using
the column vectors & and & as defined in (5.77) and (5.81), the excess noise
figure can be written in the form

zt(66%)x

=— 5.84
kH(,B.'z:"P;lx (5:84)

Note that the excess noise figure is equal to the exchangeable power at
the input of the amplifier with the noise sources of the amplifier assigned to
the source, divided by k8, B. If the source impedance has a positive real part,
as it always does at the input to the first amplifier in a cascade, then the
excess noise figure is equal to the available power of the noise sources of the
amplifier assigned to the source, divided by k6,B:

Pa'u,l

F—l:keoB.

(5.85)

5.6.3 Exchangeable Power Gain

Next we determine the exchangeable power gain, defined as the ratio of output
exchangeable power to input exchangeable power of an amplifier connected
to an input source impedance Z; and a signal voltage source F; with no
internal noise sources (see Fig. 5.7). The exchangeable power of the source is
given by (compare (5.78))

(1Es|?)

P =
ex1 xTP}lx

, (5.86)

where
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Zs Vi . J 65 = [5 Zs
—0 -0 0

Fig. 5.7. The equivalent input noise source

=[] (587)

It is instructive to note that the expression for the exchangeable power
(5.86) is constructed from the power matrix P and the components of the
voltage—current relation of the source

zlv=E,, (5.88)
an expression that, written out explicitly, reads
i+2Z,, =E;. (5.89)

The exchangeable power at the amplifier output can be constructed similarly,
if we note that (5.79), written in terms of the output voltage and current of
the amplifier, assumes the form

z'Tu = E, (5.90)
or, written out explicitly,
(A+Z,C)\V, +(B+ Z,D)I, = E, . (5.91)

We cast (5.91) into the form of (5.89) by multiplying it by a = 1/(4 + Z,C),
obtaining the expression

(B + Z,D) E,

o+ = .
T4y z,0)* T A+ z.C (5.92)
or, written more succinctly,
ox!Tu = oF, . (5.93)

The exchangeable power at the amplifier output is thus, comparing (5.89),
(5.92), and (5.93),

N {7 221 I 1 221
ox!TP;'Ttza*  ziTP;'Tix

(5.94)

ex,

The exchangeable power gain is thus
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P, ' Pl
G = er,2 - T . 5.95
Pez,l Il:fTPT_vlew ( o )

The reader will remember that the exchangeable gain reduces to the avail-
able power gain when the output impedance of the amplifier connected to the
source has a positive real part. This is the desirable situation, since ampli-
fiers with output impedances of negative real part are prone to oscillate. In
fact, whenever a case arises in which the output impedance has a negative
real part, the circuit is usually modified via a circulator, so that the system
looks matched as seen from the output port (see Fig. 5.8). In this case the
exchangeable gain reduces to the available gain.

circulator

Zg | ] Amplifier Z

M @

3)
match

Fig. 5.8. Use of circulator to eliminate effect of negative output resistance of
amplifier

5.6.4 The Noise Measure and Its Optimum Value

We are now ready to evaluate the noise measure

F-1

M=1—75G"

(5.96)

with the gain G interpreted as the exchangeable gain. Combining (5.84) and
(5.95) we find

F-1 _ zt (886

M= = .
1-1/G  k§,Bxt(P;' — TP ThHx

(5.97)

Note that the noise measure becomes equal to the excess noise figure F — 1
when the exchangeable gain is large. Further, note that the noise measure is
negative when the gain is less than unity. Hence, we are only interested in
positive values of an amplifier noise measure.

The noise measure is the ratio of two scalars that are constructed from
two Hermitian matrices A = (§8') and B = P;' — TPZ'T! by projection
via the column matrix x (see Sect. 5.2). The eigenvalues X fix the extrema of
the noise measure. They are the eigenvalues of the matrix
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Np=B'A=(P;' - TPr'T)7s6"), (5.98)

which is the characteristic noise matrix (5.69) in the transfer matrix notation.
We have arrived at a new and interesting insight. We have studied earlier
the transformation of the characteristic noise matrix as the consequence of
a change in the network description. The eigenvalues of the characteristic
noise matrix remained invariant under such a transformation. We showed
that every new form of the characteristic noise matrix is associated with a
thought experiment of exchangeable-power extremization via changes of the
network loading. In the impedance matrix description, this corresponded to
finding the extremum of the power delivered to a load on one terminal pair,
with all other terminals open-circuited, after embedding of the network in
a lossless network. In the scattering-matrix notation, it was the extremum
of the power into a conjugately matched load at one terminal pair, with all
other pairs terminated in matched transmission lines so that no waves were
reflected from them. In the case of the ABC D matrix of a two-port, we found
that the eigenvalues of the characteristic noise matrix give the extremum of
the noise measure of the two-port.

A characteristic noise matrix of second rank has two eigenvalues. These
can be positive as well as negative. As pointed out earlier, only positive
eigenvalues are of interest, since they are associated with gain. The smallest
positive eigenvalue determines the lowest achievable noise measure, or ex-
cess noise figure at large gain. We have shown that the characteristic noise
matrix of a passive network has only negative eigenvalues, a totally active
network has only positive eigenvalues, and one that can both absorb and gen-
erate power has both negative and positive eigenvalues. The most common
amplifiers are both active and passive for good reasons.

(a) Amplification is only possible if the network is capable of generating
power.

(b) To prevent undesirable feedback effects due to reflections of the load at
the output port of the amplifier it is desirable that the amplifier appear
matched at its output. This is only possible if there is absorption of a
wave incident upon the output port.

The range of values of the noise measure is illustrated in Fig. 5.9. The
eigenvalues determine the extrema; the noise measure ranges from the pos-
itive eigenvalue to plus infinity and up from minus infinity to the negative
eigenvalue, when the characteristic noise matrix is indefinite, and between
the two positive eigenvalues when the characteristic noise matrix is positive
definite (as mentioned earlier, the less common case).

Lossless embeddings leave the eigenvalues of the matrix (5.98) invariant
as well. A special case of a lossless embedding is feedback produced by con-
necting reactive impedances between the input and output of an amplifier
two-port. Thus the noise measure achievable with such feedback is subject to
the same limits.
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Fig. 5.9. Range of values of noise measure

5.7 The Noise Measure in Terms of Incident
and Reflected Waves

In Sect. 5.4 we studied the transformation of the characteristic noise ma-
trix from one formalism to another and showed that the characteristic noise
matrices that emerge in different formalisms are related by similarity trans-
formations. We also saw that each formalism is associated with a different
thought experiment of extremization. Thus, one may ask for the extrem-
ization of the noise measure with respect to the source reflection coefficient,
and write the resulting noise measure in terms of incident and reflected waves
rather than terminal voltages and currents. This kind of description is partic-
ularly appropriate in the discussion of the noise measure of optical amplifiers,
since their response is expressed naturally in terms of incident and reflected
waves. In this section, we shall study this transformation in detail. In the
next section we shall use it to simplify the algebra incurred when analyzing
the noise measure of a field effect transistor.

The description of a two-port in the transfer matrix formulation is given
by (5.80) and the noise measure was presented in (5.97), as repeated below:

_ (66N
" k8,Bxt(P7! — TP Tz’

(5.99)
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with the vector (column matrix) & given in terms of the source impedance
Zg:

1
T = [Z:] . (5100)
When the optimum noise measure is achieved, x is an eigenvector of the
eigenvalue equation ’

Nrz = Az, (5.101)

where ) is the least positive eigenvalue of the characteristic noise matrix Nr.
Now, suppose we use wave variables instead of voltage—current variables to
describe the excitation of the two-port. In the wave formalism, the source
generator and the two-port noise generators become wave generators. Indeed,
the equation of the source in the wave formalism is

at+Ib=s. (5.102)

The equivalent circuit with the wave generator is shown in Fig. 5.10a. The
reader will recall that a wave generator is a combination of a voltage generator
in series and a current generator in parallel. A signal wave passing through the
wave generator is unaffected. The transformation from the voltage—current
variables to the wave variables is based on the following two relations; the
transformation from V,I to a,b:

a= 2TV + VD, b=2(VTV - VZI). (5.103)
2 2

+

DI
-+— b

(@) Zo (b)

Fig. 5.10. Equivalent source circuits: (a) the wave representation; (b) the voltage—
current representation

The relation between the voltage source and wave source is

VYo Es

14 2,/7,

(5.104)

The relation between the reflection coefficient and impedance is
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_1-2,/2,

BT AL

(5.105)

Again, the description in the wave formalism can be written concisely:

zlv=5, where x= [Fl*] and v = [Z] . (5.106)

The equation for the noisy two-port has the standard form
ay| _ Too Tha az Ya
[h] - [Tab Tbb] [bz] + [’Yb] o

v=Tu+d with ’U:[Zl],u:[zz], and 6:[7‘1],
1 2 Vo

(5.107)

where 7, and ~y, are noise wave generators (see Fig. 5.10b).

5.7.1 The Exchangeable Power Gain

The exchangeable power of the source can be evaluated directly from (5.78)
by substituting (5.104) and (5.105):

P (o I

= = . 5.108
YTICLE T 2P ( )
This expression looks very much like (5.78), with
10
Pr= [0 _1] . (5.109)

The exchangeable output power in the general matrix notation is of the same
form as in (5.94):

{Is1)
_ . 5.110
ea2 a:TTP,;lTTa: ( )
Finally, we obtain for the exchangeable power gain G
et Prle
_ . 5.111
a:TTP,}lTTa: ( )

This expression is identical in form to (5.95), except for the fact that the
matrices have all been redefined.
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5.7.2 Excess Noise Figure

The reader will have sensed the drift of the derivation. If one asks for the
excess noise figure, one again finds complete parallelism with the derivation in
Sect. 5.6. The noise is now described by two wave generators as shown in Fig.
5.11. The evaluation of the noise figure can ignore the presence of the noise-
free structure following the wave generators. We note that the equivalent
noise source at port (1) due to the internal noise of the amplifer is

Yo+ Tevs = '8 (5.112)

The exchangeable power of this source is

N e
r, a; —» , —»a,
by - - b,

—

Fig. 5.11. The noisy two-port in the wave representation

zi (66N
Pex,noise = m y (5113)
and the noise measure is
F-1 (a6t
= 2 {60}z (5.114)

1-1/G  kb,Bzt(P;' — TP 'THz

The noise measure has the same appearance as in the voltage—current formu-
lation. The optimum noise measure is given by the lowest positive eigenvalue
of the characteristic noise matrix

Nr = (P7! —TPRTH) " 1(861) . (5.115)

The fact that we obtained the same formal expressions for the noise measure
using the wave formalism as with the voltage-current formalism may ap-
pear surprising. Have we not noted that every new formulation of the matrix
equations for the linear multiport corresponds to the extremization of a dif-
ferent thought experiment? In the current-voltage formalism the termination
of one of the ports is varied while all the other ports remain open-circuited.
In the wave formalism, as one of the terminations is varied, all other ports
are matched. The reason why the two formalisms do not differ in the case of
the noise measure rests on the fact that the noise measure is independent of
the termination of the output port.
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One issue we have not addressed thus far is the question of the optimum
source impedance for minimization of the noise measure. In the wave for-
malism one asks for the optimum reflection coefficient of the source. This is
obtained as follows. The optimization is achieved when the following equation
holds:

No1z1 + Nagzo = Az2, (5.116)

where we have dropped the subscript T on the characteristic noise matrix N.
The eigenvector & involves the reflection coefficient of the source for optimum
noise performance (compare (5.106)). From (5.106) and (5.116) we find

T2 Noy

A L L 5.117

I 8 A - N22 ( )
The positive eigenvalue is given by

Ny + N Ny~ Ny ?

A= 2 ; 2 4 \/<————11 5 22) + N12Nay (5.118)

and thus
: Va1 (5.119)

o= (N11 = N22)/2 + /[(N11 = N22) /22 + N12Nay

This termination is physically realizable if one finds that |I'y} < 1. If this
condition is not met, then the optimization cannot be achieved with a passive
source. In this case, in order to achieve optimization a lossless embedding of
the two-port may be required.

5.8 Realization of Optimum Noise Performance

A simple example should serve to illustrate the general theory presented
thus far. In particular, it will be shown how the optimum noise performance
is achieved in one particular case. We shall look at the optimum noise per-
formance of a junction field effect transistor (JFET) operating at microwave
frequencies, with the equivalent circuit shown in Fig. 5.5 [63]. We ask the
question as to how the optimum noise performance is realized: can it be
achieved simply by choice of a proper source impedance or does the opti-
mization entail a lossless embedding?

The answer to this question is best obtained if the network of Fig. 5.5
is properly normalized. We first connect an inductive admittance in parallel
to make the input admittance purely real. This additional admittance may
be thought to be associated with the source admittance. Next we connect
transformers to the input and output to transform the admittances Y1, and
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Fig. 5.12. The equivalent circuit of the JFET with transformers and transmission
lines

Y52, which are now real, to be equal to the characteristic admittances of two
transmission lines connected to the input and output (see Fig. 5.12). This
is done in preparation for a wave-excitation formulation of the problem, a
formulation that simplifies the ensuing algebra. The equations of the network
become

Y.
i = You1 + 4/ —ig , (5.120)
9g

./ Im ’ ’ Y, .
1o = Yov, + You, + 4/ —14 . 5.121
2T Vgm0 g (5.121)

Next we write the equations in the transfer matrix form in which port
(1) is the output port and port (2) is the input port in accordance with the
ABC D matrix representation of (5.79):

8

1 z, |Y.
v = —=[vh + Zo(—ih)] — 224 [ =2iq, 5.122
1 u[ 2 ( 2) U gd ( )
Y, 1 /Y, Y,
i} = = =2[vy + Zo(=i5)] = =4 [ =2 + 4 [ 2ig, 5.123
1 m [v2 (—i2)] i\ e % (5.123)
with
p= Im (5.124)

999d '

7

Finally, we introduce wave amplitudes as in Sect. 5.7. The equations as-
sume a particularly simple form:

2
a; = —-ﬁaz + Y s (5.125)
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Fig. 5.13. The wave generator equivalent circuit of an FET

b=, (5.126)
with
1 1
= - iq + ——1 5.127
Ya IJ\/g_d 2\/% 9 ( )
1
T = — 7 (5.128)

2./7s

Figure 5.13 shows the equivalent circuit of the FET in the normalized
wave representation. We have omitted the transformers. One must remember
that the gate resistance and drain resistance are greatly different, the former
being much larger than the latter. Hence, the characteristic impedance of the
transmission lines at the input and output in Fig. 5.13 are very different. The
representation has been expressed in terms of the wave formalism of Sect. 5.7.
The T matrix is of the simple form (compare (5.107))

T = ['%/“ g] , (5.129)

and leads to a simple expression for the characteristic noise matrix (5.115).
The characteristic noise matrix is now

1 |7a|2 7a7g ]
Np=——"— . . 5.130
T 14/ [—(1 - 4/u) iy —(1 — 4/p?) || (5.130)

The positive eigenvalue of the characteristic noise matrix is

A = 1|5 |l = (0 - )

+\/ e+ (1= &)+ (1 &) amre)

?

(5.131)
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and is, of course, equal to the positive eigenvalue of (5.39), but now looks
much simpler. The eigenvector x for the optimum noise performance is given

by (5.116), so that

= (1= )z { el + (1= 55 ) ol
+\/ Hoarr+ (1= )]+ (1= 5z}

When the noise wave generators at the input and output are uncorrelated,
the optimum source impedance is a matching resistance. Then the noise of
the wave generator at the input escapes into the source, and the noise at the
output is determined solely by the drain noise wave generator. When the two
noise sources are correlated, then there is an advantage in mismatching the
source impedance to partially cancel the effect of the drain wave generator.
Figure 5.14 shows the magnitude of the reflection coefficient for different
correlation coefficients. The phase of the reflection coefficient is equal to the
phase of (v47;). Figure 5.15 shows the normalized optimum noise figure. The
correlation can be used to improve the noise figure by proper choice of the
source reflection coefficient. But even for a correlation coefficient as high as
0.8, the improvement is small. It is worth noting that the optimum noise
measure goes to zero when (|y,|?) goes to zero. This is self-evident from Fig.
5.15. With no source at the output port (2) and a match at the input port
(1), no noise is fed to the output.

|FSI:

T2
z

(5.132)
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Fig. 5.14. The source reflection coefficient for optimum noise performance
as a function of (Iv21}/{(172]) for varying correlation coefficient ¢ =

[(Ya YN/ v/ (DD =10
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Fig. 5.15. The normalized optimum noise measure k8, M/{|7Z|) as a function of
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5.9 Cascading of Amplifiers

When the gain of an amplifier is not large, the noise measure is larger than
the excess noise figure, an indication of the inadequacy of the gain. In order
to appreciate the role of gain, it is useful to consider amplifiers in cascade as
shown in Fig. 5.16. Indeed, if the first amplifier does not raise the signal level
sufficiently, then it is necessary to follow it with another one, whose noise
performance cannot be ignored.

Fig. 5.16. Cascade of two noisy two-ports

The noise figure, as originally defined, is the ratio of the signal-to-noise
ratio at the input of an amplifier to the signal to-noise ratio at the output.
The noise at the input is the available power at a standard temperature 6,.
Since the ratio of the signal powers at the input and output involves only
the available gain, the signal powers can be eliminated and the noise figure
becomes the ratio of the available noise power at the output of the amplifier
to the power that would be available at the output if the amplifier were
noise-free. In our treatment we found it necessary to generalize the concept
of available power to exchangeable power. With this generalization we have
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k0,BG + P, P,,
F"_keo_BZ'—*1+EB_C3’ (5.133)
where P, is the exchangeable noise power at the output due to the internal
noise sources of the amplifier, and G is the exchangeable gain.

The definition (5.133) is the starting point for the evaluation of the noise
figure of a cascade of amplifiers [55]. Note that the exchangeable gain of two
amplifiers in cascade is the product of the exchangeable gains of the individ-
ual amplifiers. Attaching subscripts 1 and 2 to the quantities pertaining to
amplifiers (1) and (2), we have for the excess noise figure F'—1 of the cascade

Foq1- GoPeg + P2 _ _FPeep + Py o
k6,BG G2 k0,BG, k6,BG,G,
(5.134)
-1
=FN-1+ B .

1

The exchangeable power at the output of the second amplifier can be nega-
tive, if the output impedance of the first amplifier has a negative real part.
However, then G; is also negative and F — 1 of (5.134) is a sum of positive
noise contributions, as one would expect from a proper definition of noise
performance. Equation (5.134), in conjunction with the definition of noise
measure, gives the cascading formula for the noise measure:

_ F-1 FR-1+(F-1/G) _ Gy —1
M_l—l/G_ 1-1/G,Gs =M+ (M - M) T
(5.135)

If the two amplifiers have the same noise measure, the noise measure of the
cascade is the same as that of the individual amplifiers. This is one of the
invariance properties of the noise measure. This equation also shows that the
amplifier with the lowest noise measure should be placed first in the cascade.

5.10 Summary

This chapter studied linear noisy multiports as basic components of any mi-
crowave or optical system. Optics has not been emphasized at this point,
because in order to understand the noise at optical frequencies, it will be
necessary to quantize the electromagnetic field. Yet all of the observations
made about the general properties of microwave systems will be applicable
in the domain of optics. We established general properties of linear noisy mul-
tiports as determined in a narrow frequency band B. If the performance of
such networks over a broad bandwidth is of interest, the characteristic noise
matrix must be treated as a function of frequency. We started this chap-
ter with the study of the available power or, more generally, exchangeable
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power, obtainable from a linear noisy N-port, within a narrow bandwidth
centered at one frequency. We embedded the N-port in a lossless, noise-free
2N-port and then evaluated the stationary values of the power flowing out
of the jth port, with all other ports open-circuited. The stationary values
were found to be the eigenvalues of the characteristic noise matrix. The anal-
ysis was carried out in the impedance formulation of the network. We then
showed that a transformation into the scattering-matrix formulation defined
a new characteristic noise matrix in terms of the new network parameters.
The new characteristic noise matrix was related to the original one by a sim-
ilarity transformation, and, thus, possessed the same eigenvalues. We also
found that a lossless embedding of the network resulted in a similarity trans-
formation of the characteristic noise matrix. Further, we showed that the
characteristic noise matrix in the scattering-matrix formulation related to a
thought experiment involving the extremization of power flow that differed
from the one in the impedance formulation.

Then we studied the noise performance of linear two-ports used as ampli-
fiers. The noise figure of an amplifier measures the deterioration of the signal-
to-noise ratio caused by the amplifying process. However, the noise figure by
itself is not sufficient to characterize the noise performance since it does not
discriminate against low gain of the amplifier. The noise measure is a better
measure of noise performance. In particular, the optimum achievable noise
measure is the lowest positive eigenvalue of the characteristic noise matrix.
This property of the noise measure endows it with fundamental significance.

We studied one equivalent circuit of a junction field effect transistor and
determined its optimum noise performance. We showed that the optimum
value of the noise measure could be realized simply by adjustment of the
source impedance, i.e. with an appropriate impedance transformer between
source and amplifier.

The optimum noise measure of a two-port amplifier is a measure of the
quality of the amplifier. When a particular gain and noise figure are realized
with the amplifier, the noise measure achieved can be compared with the
optimum value in order to decide whether further changes in the design of
the system are worthwhile, or whether the noise measure achieved is close
enough to the ultimate limit. In order to determine the ultimate limit it is, of
course, necessary to determine it from measurements on the two-port. There
is standard equipment to measure the scattering matrix of a two-port. With
the two-port matched on both sides, the measurement of the noise power
escaping from the two-port in a bandwidth B determines {|s?|) and (|s3|).
With one side of the two-port shorted out, the cross correlation (s;s3) can
be determined from a measurement of the output noise power at the other
port and the knowledge of the scattering matrix.

The work described in this chapter was carried out by the author and his
colleague Richard B. Adler in the 1950s. Only the example of the junction
field transistor is of later vintage. The noise measure was proposed as the
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appropriate measure of noise performance of an amplifier. This proposal did
not catch on, mainly because commercial amplifiers at RF and microwave
frequencies tended to have large gains, and thus the difference between the
excess noise figure and the noise measure was not significant. Today, when
optical doped-fiber amplifiers are used, often with gains less than 10 dB, it
may be appropriate to reconsider the use of the noise measure instead of the
noise figure.

The work in the 1950s on microwave amplifiers led the author to the
conclusion that there was no fundamental classical limit on the noise measure
of an amplifier, in particular if cooling of the device to low temperatures
was an option. For a parametric amplifier, well known in those days, and
discussed in detail in Chap. 11, classical theory predicted an arbitrarily low
noise measure if the amplifier was cooled to absolute zero temperature. With
the advent of the laser in the early 1960s amplifiers became available whose
noise measure could not be made arbitrarily low, since quantum effects could
not be ignored. This led the author into the study of noise in lasers and to
many issues described further on in the text.

Problems

5.1*% In the text, we found the extremum of an expression of the form
z' Az — \z'Bx

by differentiating the expression with respect to x!, treating x as a constant.
A and B are Hermitian matrices. In fact, the extremization is with respect
to the amplitudes |z;| and phases ¢;, which are contained in both = and z'.
It is the purpose of this problem to show that differentiation with respect to
the amplitudes |z;| and phases ¢; as independent variables is equivalent to
differentiation with respect to ! keeping z fixed.

(a) Express £ Az and ' Bz in terms of |z;| and exp(ig;).

(b) Differentiate with respect to |z;].

(c) Differentiate with respect to ¢;.

(d) Combine the two sets of equations in such a way as to arrive at

Ax - \Bx =0.

5.2 An amplifier can be constructed from a negative conductance gY, (g < 0)
connected to port (2) of a circulator (Fig. 5.8). The negative conductance has
an associated noise source.

(a) Derive the scattering matrix for the two-port between reference ports (1)
and (3).

(b) Determine the characteristic noise matrix and its eigenvalues.

(c) By direct evaluation determine the noise measure of the amplifier.

(d) How is the optimum noise measure achieved?
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5.3* Consider the nonreciprocal circuit of Fig. 5.5. Under what conditions
could this circuit represent a network at thermal equilibrium?

5.4* Determine the noise figure and noise measure of the circuit of Fig. 5.5
by direct evaluation.

5.5 The scattering matrix of a two-port can be measured with standard
equipment. Show how the noise correlation matrix could be obtained exper-
imentally by placing appropriate shorts into the input and output.

5.6 A reactive feedback admittance Y is connected between the gate and
the drain of the FET of Fig. 5.5. Show that the characteristic noise matrix
remains unchanged.

5.7 Assume that the two noise sources in the equivalent circuit of Fig. 5.12
are uncorrelated. How does the noise figure vary as a function of the turns
ratio of the transformer at the input of the amplifier?

5.8 The cascading formula is valid even if there is mismatch from stage to
stage, because the definition of the noise figure takes this mismatch properly
into account.

Determine the noise figure of a cascade of two FETs using the results of
Prob. 5.7. The noise sources within each amplifier are assumed uncorrelated.

5.9 Assume that the two amplifiers in the preceding problem are identical
and that transformers are placed between the source and the first amplifier
and between the two amplifiers, of turns ratios n;, and ng, respectively. Derive
the noise figure as a function of the transformer turns ratio.

5.10* It is well known that a Hermitian matrix has real eigenvalues. The
characteristic noise matrix is not Hermitian but is composed of the product
of two Hermitian matrices, one of which is positive definite. Prove that such
matrices have real eigenvalues. Hint: use the fact that the factor matrices can
be diagonalized by the same similarity transformation.

Solutions

5.1
(a) The products, written out in terms of magnitudes and phases, are

x' Az = Aylzi||z;| exp [i(¢; — ¢4)] ,

«' Bz = Byj|zi||z;| expli(p; — 6:)] -
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d .
mAiHIiHIH eXP[1(¢j - ¢i)]

= Ayjlz;l expli(¢; — ¢r)] + Aiklzi| exp[i(dr — ¢1)]
= Ayjlzj|expli(¢; — ¢r)] + Ak;lzi| exp[-i(¢: ~ or)]

= 2Re[e "%+ Agx] ,
since A is a Hermitian matrix.

(b)

0 ) ] _ .
agr Ailoillas| expli(®; - #:)] = ilzkle 953" Ajlz;| exp(ic;)
3

—ilak|e?* Y Ajilzi| exp(—ig;) = 2|zk| Im(e ™ Az) .

{c) We obtain
2 Rele™**(Az — ABz)] =0,

2|zx| Im[e™ % (Axz — ABz)] = 0.
It is clear that these two sets of equations imply
Az —ABzx =0.
5.8 The equations of the system are

i1 = (gg — lweg)vy + g ,

12 = gmV1 + gqv2 + iq -
From the admittance matrix

. 99 39m

(Y +Yh =1, )

§gm gd

we may judge whether the network is passive or active. If all determinants
and subdeterminants are positive definite, the network is passive. The deter-

minant is

1 1
deti(Y + Yt) = gg9d — ngn .

The network is passive if g2, < 4g494. Then this network can be at thermal
equilibrium. Such a network has a characteristic noise matrix that is propor-
tional to the identity matrix. From this fact we may derive the noise current

correlation matrix
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(1551 (iqi%) 9s 10m
= 4k6B
(igia) (153]) 39m 94
5.4 In order to compute the available gain, we must compute the available
input power from the source P;,, and the available output power Pout ay-

Suppose that the admittance of the source is G, and the source current
generator is I,.

Ps,av = |is|2/4Gs; Pout,av = lgmeg|2/4gd y
where

eg =1s/(Gs +9gq) -
The available gain G is

2 G
G = |eygm|?Cs/lis|2ga) = —Im s
|gg | S/l |gd) (Gs+gg)2 9a

The available output noise power is

(lgmeg + ’dlz)/‘lgd = {|gm G, igg + 1d|2)/49d

(3D  2Re((igia)om
494 494(Gs + 94)

92 2
= M (|32]) +
4gd(Gs +gg)2(| gl)

The noise measure is
1 {[92./494(Gs + g)*|{lé3 ) + (1i3]) /494
k8B ([92,/(Gs + 94)%(Gs/ga) — 1)

2 Re((igi;))gm/‘lgd(cs + gd)}
([92./(Gs + 94)*(Gs/ga) = 1)

5.10 The eigenvalue problem of a Hermitian matrix H is

Hx=)\x.

M=

The eigenvalues are all real. The eigenvalue equation to be considered is
Ax = Blx;
the A matrix is Hermitian and the B matrix is positive definite and Hermi-

tian. It is possible to diagonalize and reduce to the identity the matrix B
with premultiplication by D and postmultiplication Df. We obtain

DAD'D'" 'z =AD"z .

The matrix DAD? is Hermitian. Thus, we have reduced the problem to a
Hermitian eigenvalue problem.






6. Quantum Theory of Waveguides
and Resonators

Thus far we have studied shot noise and thermal noise. In the case of thermal
noise we extended the analysis by including Planck’s quantum postulate of
energy occurring in quanta. This led to the Bose-Einstein distribution of
photons, a distribution of thermal equilibrium. Then we studied the noise of
classical linear systems, and determined the optimum noise performance of
a linear two-port amplifier with specified internal noise. In this chapter, we
begin the study of quantum noise as governed by the quantized equations of
motion.

The Schrodinger equation for the wave function of a quantum system
is a linear equation of motion. On the other hand, the world around us is
“nonlinear”, yet the nonlinear behavior of a system is not easily perceived
from the Schrodinger representation. It is also well known that it requires a
certain effort to derive from the Schrédinger formalism the correspondence
principle, which shows the connection with classical equations of motion.
The Heisenberg equations of motion of operators, on the other hand, con-
tain the correspondence principle in their very appearance. The observables,
representable by ¢ numbers classically, are replaced by operators that obey
the classical equations of motion, provided, of course, that these observables
have classical interpretations. (The spin operators are examples of operators
that do not have a classical counterpart.) If the classical equations of motion
are nonlinear, this nonlinearity carries over into the Heisenberg equations of
motion. It is for this reason that we use the Heisenberg formalism for the
representation of mode propagation in optical waveguides or optical fibers.
The operator formalism ensures that quantum fluctuations (such as amplified
spontaneous emission) are properly treated.

Quantization of the electromagnetic field is accomplished by treating the
eigenmodes of the electromagnetic-field system as harmonic oscillators. The
harmonic oscillators are quantized in the standard way. Section 6.1 reviews
this quantization procedure. Section 6.2 looks in greater detail at creation and
annihilation operators, and Sect. 6.3 studies the eigenstates of the annihila-
tion operator, so-called coherent states. Section 6.4 describes the close con-
nection between the uncertainty principle and noise. With this background,
we can address the problem of noise in a laser below threshold. We show
the need for the introduction of Langevin sources and determine their com-
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mutators from the requirement that commutators must be preserved in the
evolution of a resonator mode. Then we investigate the case of waveguides
with loss and gain. We determine the amplified spontaneous emission gener-
ated by an amplifier as required by the conservation of commutator brackets.
We describe an experiment that determines the amplified spontaneous emis-
sion and thus the noise figure or noise measure of an optical amplifier. Finally,
we study the quantum noise in a laser resonator below threshold.

6.1 Quantum Theory of the Harmonic Oscillator

The simplest approach to the quantization of electromagnetic fields takes
advantage of the fact that waveguide modes and resonator modes obey the
equations of harmonic oscillators. Quantization of the modes is in one-to-one
correspondence with the quantization of the harmonic oscillator. Interactions
between modes are taken into account by coupling Hamiltonians added to the
Hamiltonian of the oscillators. Hence, an understanding of the quantum the-
ory of the harmonic oscillator is basic to the understanding of the quantization
of electromagnetic fields.

A classical harmonic oscillator of mass m and spring constant &k obeys the
equation of motion

?ilt) = —kq, (6.1)
where p is the momentum and ¢ is the displacement. The momentum is
related to the displacement by

dq

m =p. (6.2)

Elimination of p leads to the following second-order differential equation for
q:
d? 2 kK

2 _ -
a?‘I‘*‘qu =0, where w;= o (6.3)

These equations of motion can be obtained more formally from the Hamil-
tonian, which is the sum of the kinetic and potential energies:

1 (p? 2
==-{= . 6.
H 5 <m + kq ) (6.4)
Equations (6.1) and (6.3) follow from the use of Poisson brackets on the
Hamiltonian. The Poisson bracket is defined by a difference of derivative
pairs:

Judv Oviu

{'U,,’U}q,p = B_q('_?; - '55'5; . (65)
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The time derivative of g is equal to the Poisson bracket in which v is identified
with ¢ and v is identified with the Hamiltonian H:

9¢0H 08Hdg OH p 66)

dq B
iUl }‘”"aq O0p O0q08p Op m

dt

The time derivative of p is equal to the Poisson bracket in which u is identified
with p and v is identified with the Hamiltonian H:

OpOH O0Hdp  OH

dp _OpoH _0H
I {p, H}Q:P - aq Bp aq Bp - aq

= = —kq. 6.7
7 q (6.7)
These are indeed the correct equations of motion.

The harmonic oscillator is quantized by representing the observables p
and ¢ by operators p and ¢ and by replacement of the Poisson brackets with
the commutator brackets divided by ih. The Hamiltonian becomes

R 1 [/p?
=-{Z +k§%) . .
H 2(m+ q) (6.8)

Note that in the classical regime, the Poisson bracket of the position and
momentum is

_0q0p 0Opdq _
{q,p}q,p = dq Op dq Op =4 (6'9)

If the commutator bracket divided by ik is to yield unity, then the momentum
operator in the q representation must be identified with

p=—ih= . (6.10)

[4:9] = gp — pG = —ih («i— - %«i) =1ih. (6.11)

Several considerations enter into the operations carried out in the above
expression. First of all, the products §p and p§ are operators intended to
operate on a function of §. Secondly, derivatives with respect to § of powers
of § in, say, a Taylor expansion of a function of § behave like derivatives with
respect to a classical (¢ number) variable, since every operator commutes
with itself.

Application of the same rules gives for the equations of motion

di i

pri —g[é,ff] =—p (6.12)

1
m

and
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B L) = ki (6.13)

These are the Heisenberg equations of motion. They are in one-to-one cor-
respondence with their classical counterparts. This is one form of the corre-
spondence principle, which requires that the quantum mechanical description
of physical processes merge with the classical description in the limit when
the energy of excitation of the oscillator is large compared with Aw,.

It proves convenient to introduce normalized variables

0

Q= q and P = —1% (6.14)
The commutator of Q and P is
@ P] = [Q -iﬁ—} =i (6.15)
? ) 6Q" . .
In terms of these variables the Hamiltonian simplifies to
N hwo o agy  hwe Ay D2
H= (Q +P ) = > (Q 207 ) - (6.16)
The Heisenberg equations of motion for the operators give
dp_ i[ﬁlf.r]——wQ (6.17)
-~ RV '
o= 1108 =wP (6.18)
= R ‘

Elimination of one of the two observables from (6.17) and (6.18) leads to
a second order differential equation. Instead, one may introduce “canonical”
variables that lead to two uncoupled first-order differential equations. These
canonical variables are denoted by A and Al

o 1 . N o 1 . .
A= -=(Q+iP) and A'=——(Q-iP). 6.19
5@ ) 7@ ) (6.19)
The Heisenberg equations of motion of these two operators are obtained by
addition and subtraction of (6.17) and (6.18), appropriately multiplied by i:

%‘; = —iw,A , (6.20)
it )
aal _ iw, AT . (6.21)
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The operators A and At obey the commutation relation
(A, AT =1. (6.22)
The Hamiltonian, written in terms of the operators A and A', has the form
. ar a1
H = hw, (ATA + 5) : (6.23)

The energy eigenstates of the harmonic oscillator are obtained from the
Schrédinger equation for quantum states

L d 5
1hEZ1/) =Hy. (6.24)
The state of constant energy E obeys the equation
d .
iha—td) =Hy=Evy. (6.25)
In the Q representation, this equation leads to the differential equation

~ 2 ~ ~
e (02 55 ) @) - @), (6.26)

Since this equation involves only the operator Q, the operator can be treated
as a ¢ number. The solutions of this equation are Hermite Gaussians

"/’n(Q) = Hn(Q) exp(—QZ/z) ) (6-27)
with the eigenvalues
E, = fw,(n+1/2). (6.28)

Figure A2.1 of Appendix A.2 shows some of the lowest-order Hermite Gaus-
sians. Further details are given in Appendix A.2. Any general state ©(Q) can
be represented as a superposition of energy eigenstates:

0(Q) = cathn(Q) - (6.29)
n=0

Next we show that the operation of A = (1/v/2)(Q +iP) on an eigenfunc-
tion 1, (Q) produces the eigenfunction 9, _1(Q), i.e. the operation annihilates
a quantum of energy Aw,. This is why the operator A is called the annihilation
operator. For the proof, we note that

» 02 ] Kl
@~ 5= (- 5g) (@ 35) +1

o B)o-d)

(6.30)



202 6. Quantum Theory of Waveguides
We obtain from (6.26) and (6.30)

32
_TQQ

( )«pn(Q)
) 75(9 5g) +1] @ (¢:3D

= P (Q+ Yn(Q) -

9
~ hwe V2 0Q

This leads to the result

(¢ -53)75 (0 5)| @

= (i -1) 5@+ ag Jm@-

Hence we have proven that (1/v/2)(Q +8/0Q)¥n(Q) = Ay, (Q) is an energy
eigenstate with an energy lowered by Aiw, from the energy of ¥,(Q). The
multiplier produced by the operation is gleaned from the matrix element

(Y| At Altpn) = (Pu|n|tpn) = n. We find

(6.32)

Apn(Q) = Vi ¥n-1(Q) (6.33)
within a phase factor that can be set to unity. Similarly, we find
Ay (Q) = VR 1 ¥n11(Q) - (6.34)

Operation on the eigenfunction 1, by At produces the eigenfunction of a
higher-lying state on the next rung on the ladder of energy states. It is for
this reason that A! is called the creation operator, because it creates one
energy quantum.

The next issue to be taken up is the relation of the quantized harmonic
oscillator to the quantization of electromagnetic fields. Equations (2.154) and
(2.155) of Chap. 2 for the source-free cavity are

dv,
G—d? = pqu (635)
and
dl,
MW - _puVu . (636)

These equations establish the analogy between the displacement g of the
harmonic oscillator and the amplitude V,, of the electric field of the vth
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resonator mode, and between the momentum p of a harmonic oscillator and
the amplitude I, of the magnetic field. If the field patterns are normalized
as in (2.145) and (2.148) of Chap. 2, the Hamiltonian is

_Yivea
H= 2V(eV,, +ull) . (6.37)

The field is quantized by replacing 1/¢/VV, with the operator v/%w,Q,, and
v/ 1/ VI, with the operator \/hw,,f’,,, a pair of operators for every mode. From
here on, the analysis follows the harmonic oscillator analysis. Each operator
has a set of energy eigenstates |1/(Q,)). Each mode has assigned to it creation
and annihilation operators /if, and A, .

6.2 Annihilation and Creation Operators

The quantization of electromagnetic waves proceeds by representing them as
modes of a system with periodic boundary conditions, such as the modes of
an optical fiber ring. This step relates the waves directly to the modes of a
harmonic oscillator. Consider a mode on a fiber ring of length L. The choice
of the length L depends on the physical situation under consideration, and in
particular on the choice of the measurement apparatus. As another example
one may consider a free-space Hermite Gaussian mode, repeatedly refocused
by a periodic sequence of lenses.

The complex amplitude of the mode is expressed classically by Apm(t),
and this amplitude obeys the differential equation:

dA,,
dt

with the solution

= —iwmAm (6.38)

Am(t) = A exp(—iwmt) - (6.39)

The mode, of frequency w,,, has a propagation constant 3,,. The mode obeys
the boundary condition 3,, = (2m/L)m, with m an integer. The amplitude
can be normalized so that the energy w in the mode is given by

w=|Anl?. (6.40)

The energy w is interpreted as the total energy of the mode, composed of
the energy in the electromagnetic field as well as that in the medium. If
the medium is dispersive, the expressions developed in Chap. 2 apply. The
presence of a dispersive medium affects the dispersion of the waveguide, the
dependence on the propagation constant of the frequency w, i.e. w = w(g).
The amplitude A,,(t) is a complex function of time, whereas the electric field
is a real function of time. The electric field amplitude is proportional to
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B(t) o 1 Am(t) + Ap (0] = AV (@), (6.41)

where we shall call A% (t) the “in-phase component” of the electric field. One
may construct a component in quadrature to the electric field as

—[A )] = AP (6.42)

which is also a real function of time.

Quantization is accomplished when the modes of the electromagnetic field
are identified with the modes of harmonic oscillators, one oscillator per mode.
Comparison of (6.38) and (6.20) shows that the operator representing the
complex field amplitude A, (t) is an annihilation operator A, (t). The energy
of the mth harmonic oscillator in the state 1y, is, according to (6.28),

w = fwp, <nm + %) . (6.43)

It is convenient to introduce the Dirac ket and bra notation for the energy
eigenstates of the harmonic oscillator and their Hermitian adjoints: ¥, of the
mth harmonic oscillator is written |n,,). Thus, (6.33) and (6.34), rewritten
in this notation for the mth harmonic oscillator, assume the form

Aplnm) = VAminm — 1) (6.44)
and
Al Inm) = Vam + Lnm + 1) . (6.45)

The operators of different harmonic oscillators commute, so that (6.22) can
be generalized to

[Am,fim = dmn - (646)
The operator fllnlem is the photon number operator of the mth mode. Indeed,

combining (6.44) and (6.45), we see that operation of this operator on a
number state gives

Al Apinm) = nmlnm) - (6.47)

The Hamiltonian includes the energy of all harmonic oscillators:
N PO 1
= T = . .
H Em Rwm (AmAm + 2) (6.48)

The Heisenberg equation for the evolution of the operator Ap,
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d ; i
L4, = —%[Am,H] , (6.49)

and the commutation relation (6.46) lead to

%Am = —iwmAm - (6.50)
This is the same equation of motion as for the classical complex field ampli-
tude. Note that the addend 1/2 to the energy due to the zero-point fluctu-
ations does not contribute to the equation of motion, since it is a ¢ number
and commutes with the operator A,,. Further details on wave functions and
operators are presented in Appendix A.7.

The annihilation and creation operators are not Hermitian. This means
they do not represent observables, since observables must be represented by
Hermitian operators. On the other hand, the operators representing the in-
phase and quadrature components of the electric field as defined classically
in (6.41) and (6.42) are Hermitian:

AQ = %(Am +Af), (6.51)
A® - %(Am _At)y. (6.52)

The expectation value of an operator is evaluated by “projection” with the
state of the system. In Dirac notation, the expectation value of the photon
number operator Af A,, when the system is in a number state |n.,) is

(| Al Amnm) = T - (6.53)

This result follows from (6.44) and (6.45) and the normalization of the eigen-
states

(nm|np) = émp - (6.54)
The higher order moments of the number operator are
(il (Af, A) N 1) = nl, . (6.55)

This shows that the photon number of a number state has the definite value
Ny, as expected.

6.3 Coherent States of the Electric Field

Quantum states of the electromagnetic field may exhibit nonclassical behav-
ior. Some examples of such behavior will be discussed later on in this chapter
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and in Chap. 7. The quantum states that are closest in behavior to classical
fields are the so-called “coherent states” [64-66]. The coherent state of the
mth mode is represented by the ket |a,). In order to simplify the notation
we shall drop the subscript m on the mode when a single mode is considered.
‘Whenever a superposition of modes is treated, we shall restore the subscripts.
The coherent state ) can be written in terms of the energy eigenstates, the
so-called photon number states [66, 67]

la) = e~ lef? ”Z———In (6.56)

where « is a complex number. One may confirm easily that the coherent state
is an eigenstate of the annihilation operator, using (6.44):

Ala) = afa) (6.57)
Similarly, the Hermitian conjugate operation leads to

(a| At = a*(al . (6.58)

The coherent state has Poissonian photon statistics. Let us evaluate the Mth
moment of the photon number in a coherent state |a):

My _ it AVM () — o—laf? M
nM) = (a(Al a)=¢e {(m|n™|n
(1) = (@lA14)¥la) = 7o S5 i
(6.59)
2n
e~ lal? Z |a|
The expectation value of n™ is the probability-weighted sum:
= Zp(n)nM . (6.60)
n
Comparing (6.59) and (6.60), we find that the probability distribution is
2n
_ a2 o
p(n) =e™'¢ oy (6.61)

The average photon number (n) is

Sptm = S el o4~ o St N ()

Thus, we may write the probability (6.61) in terms of the average photon
number (n) = |a|%:
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—my ()"

p(n) = e~ )—TT , (6.63)
which is the Poisson distribution. The expectation value of the photon num-
ber operator, {|A'A|), gives the photon number in the mode in a ring of
length L. Appendix A.7 discusses further properties of wave functions in the
photon number state representation.

The expectation values of the in-phase and quadrature fields for a coherent
state are

(] AD|a) = %(a|(fi + ANYa) = %(a +a) (6.64)
and
(@lA®]a) = 2-(al(A ~ ANla) = z(a - o). (6.65)

We find that the complex parameter a represents the expectation value of
the electric field in the complex phasor plane.

The commutator is closely related to the mean square “vacuum” fluctua-
tions of the field. We start by asking for the number of photons in a waveguide
mode in the ground state, the state |0). It is clear that

(0]ATAl0) = 0. (6.66)
On the other hand, using the commutation relation, one finds that
(0]AAT)0) =1. (6.67)

The expectation value of the field in the ground state is zero:
A010) = (011 (At + Aoy =
(0]A'V]0) = (0|§(A + A)j0)=0. (6.68)

The mean square fluctuations of the field are

- Al 4 a4 Ay s o s 1
(0](AM)2|0) = (O&(ATA + AA + ATAt + AAY)o) = 1 (6.69)

The mean square field fluctuations are due to the operator AAT, which
is in reverse order to the photon number operator. Thus, even in the ground
state, there is a contribution to the mean square field. These are the so-called
zero-point fluctuations or vacuum fluctuations of the field. Similarly,

(01(A@)?|0) = ‘11 . (6.70)
The fluctuations of the in-phase and quadrature components contribute to

the Hamiltonian of (6.48) the term 1/2. The mean square fluctuations of a
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coherent state are the same as those of the vacuum state. They are evaluated
from the following expression

(] AAM? oy = i<a|AA + AtAT + AAT + AtAla)
(6.71)
1 - SH A2
—Z(a[A + Ala)® .

Expressions such as (6.71) are easily evaluated if one notes that, for any
coherent state |a), the following theorem holds:

(o (AN A™ o) = a*™a™ = (o At|a)™(a|Ala)™ . (6.72)

In words: the expectation value of the product of the creation operator At
to the mth power and the annihilation operator A to the nth power is equal
to the product of the mth power of the expectation value of the operator At
and the nth power of the expectation value of the operator A. This statement
is true when the product of the operators is written in normal order; the
creation operators precede the annihilation operators.

The theorem is useful in the evaluation of expressions like (6.71). If one
casts the sum of operators in the first expression into normal order, then all
terms of second order in the operators cancel against the square of the expec-
tation value. Left over is a term due to the commutator, which is introduced
in reversing the order of the term not in normal order. In this way one finds
simply

(| AAD |a) = ~(a|AA + ATAT + 2414 + 1))
(6.73)

L, aitiaz L
4(oz|AA |a)* = 1
The rearrangement into normal order saves a great deal of algebra when
evaluating mean square fluctuations of coherent states. Equation (6.73) shows
that the in-phase component of a coherent state has the same mean square
fluctuations as the vacuum state. Figure 6.1a displays the electric field of
a coherent state in the complex plane. The complex parameter a gives the
phasor in phase and amplitude. The endpoint of the phasor lies at the center
of a circle that shows the half-locus of the probability distribution (the locus
outside of which the probability of finding a member of the ensemble is less
than exp(—1/2)). We shall prove in Sect. 7.6 that the distribution of endpoints
is Gaussian. The ground state, or state of the vacuum at absolute zero, is
illustrated in Fig. 6.1b. The distribution of the field amplitude is symmetric
around the origin.
One may ask the question as to the physical meaning of graphs like the
ones shown in Fig. 6.1a,b. They were obtained by asking for the expectation
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phasor plane area= 2
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A

Fig. 6.1. (a) Representation of coherent state in complex phasor plane; (b) repre-
sentation of vacuum state in complex phasor plane

value of the complex field and for its mean square fluctuations. Quantum
theory describes the world probabilistically. Quantum theory does not give
information about one physical system, but only about an ensemble of iden-
tically prepared systems. If ideal measurements that do not perturb the value
of the observable are performed on such an ensemble of systems (we shall have
the opportunity of studying some of such measurements), then quantum the-
ory predicts the probability distribution of the outcomes of measurements on
such an ensemble. In the practical world, in the absence of the availability
of an ensemble of systems, one may proceed with an ensemble of measure-
ments on the same system, making sure that the system starts in each case
from the same initial state. The rule is that the expectation value (or aver-
age) of an observable, represented by a Hermitian operator, is obtained by
the projection of the operator via the bra and ket of the state, in the case
of a coherent state (a] and |a), respectively. Squares of observables are, of
course, also observables. Using this rule for evaluating expectation values,
one may determine all the moments as well as the mean square deviations of
observables.

6.4 Commutator Brackets,
Heisenberg’s Uncertainty Principle and Noise

Quantum theory treats as harmonic oscillators the “unbounded” modes on
an open waveguide or transmission line, free-space Hermite Gaussian modes,
and the modes on a fiber. The excitation of a harmonic oscillator of frequency
w is described by its position and momentum ¢ and p, respectively, or the
annihilation and creation operators Aand A, respectively. In the description
of the electromagnetic field, A is analogous to the classical complex field
amplitude. The position and momentum operators ¢ and p play the role of
in-phase and quadrature components of the electric field as referred to a
phase reference of, say, a classical oscillator of fixed phase and frequency w.
If written as in-phase and quadrature components, their dimensions become
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identical. Whereas there is no particular significance attached to the elliptic
phase diagram of the motion of § and p of a harmonic oscillator, the phase
diagram of the motion of the in-phase and quadrature components must be
a circle. We shall come back to the deep significance of the phase diagrams
of the in-phase and quadrature components.

The creation and annihilation operators of the modes m and n obey the
commutator relation (6.46)

[Am, AL] = 6mn . (6.74)

The commutators are an inalienable property of unbounded modes. They are
also intimately related to their fluctuations and thus to fundamental quantum
noise. Indeed, Heisenberg’s uncertainty principle states that the root mean
square deviations of the expectation values of two Hermitian operators F' and
G are proportional to their commutator C, if the commutator is a ¢ number,
as it is in the harmonic-oscillator cases of interest. Consider two operators E
and G with the commutator

[F,G] =iC. (6.75)

Then one may show through the use of Schwarz’s inequality (see Appendix
A .8) that the product of their mean square deviations obeys the inequality

(E%) ~ (B))(G?) — (G 2 307 (6.76)

But, mean square deviations are noise. Thus, the commutators determine the
noise of electromagnetic modes. At the very least they establish a lower limit
on the noise.

In (6.76) we looked at two general Hermitian operators. The in-phase
and quadrature components of the electromagnetic field of a mode, A =
(1/2)(A + At) and A® = (1/2i)(A — A1), are Hermitian operators and obey
the commutator relation, a consequence of (6.74),

[AD, A@) = % . (6.77)

Thus, the product of their mean square fluctuations must be greater than or
equal to 1/16.

Here we should remind ourselves that the in-phase and quadrature com-
ponents referred to a time dependence cos(wt) are sines and cosines. If the
noise is stationary, then the sine and cosine components must be uncorrelated
and equal in the mean-square sense. Hence, one may conclude immediately
that for a stationary process

(AP — (A0)? > 7 and (AOP) - (AP)? > (678)

Fp-

This establishes the minimum amount of quantum noise associated with the
in-phase and quadrature components.
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6.5 Quantum Theory of an Open Resonator

In Sect. 6.2 we discussed the quantization of modes in ring resonators. In this
section, we shall study the equations of motion of the closed and the open
resonator in greater detail. The present approach should be compared with
the analysis in Sect. 2.12. We shall concentrate on a single resonance and
drop the subscript m on the mode. We denote the creation and annihilation
operators of the complex amplitude of the resonator mode by Ut and U. The
Hamiltonian of the closed resonator is

H = hw, (l“ﬂf] + %) : (6.79)

The commutation relation

0,01 =1, (6.80)

employed in the Heisenberg equation of motion, leads to the differential equa-
tion

aw .-

i —iwoU . (6.81)

This is the description of the closed resonator. The equations for the open
resonator are more subtle. In Sect. 6.4, we discussed the classical description
of a resonator coupled to a waveguide. The coupling introduced a decay of
the mode due to leakage into the coupled waveguide. A decay has no simple
quantum description, since it “smacks” of irreversibility, and the equations
of quantum mechanics are reversible. Now, it is well known that decay can
be simulated in a quantum system by coupling it to an infinite set of modes.
This is a very fundamental concept, and hence it is of interest to arrive at the
quantum formulation of the classical equation (4.49) using this approach.

short

/ cavity
waveguide “resonator” l

v
T

symmetry
+ plane

|
|
[
| .
-—— | ————

reference
plane

Fig. 6.2. Resonator coupled to long waveguide (L — o)
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Consider a resonator with one single resonant mode of interest, of fre-
quency w,, coupled to a very long waveguide, which in turn may be modeled
as a resonator with infinitesimally closely spaced resonance frequencies (see
Fig. 6.2). The Hamiltonian of the total system, in terms of the creation and
annihilation operators of the two subsystems, is

H= hwo<U"U+ ) +Zhw (VTV + )
(6.82)
a3 (ijvj ¥ K;V;U) ,
J

where the w; are the frequencies of the waveguide modes, w, is the frequency
of the resonator mode, and the K are the coupling coefficients of the waveg-
uide modes to the resonator modes and vice versa. The Heisenberg equations
of motion are

dU
= —iw,U — 12 K;V;, (6.83)
%‘gj— = —iw;V; — 1K*U (6.84)

Note that the coefficient of couphng of V to U is the complex conjugate of

the coeflicient of coupling of U to V This is the consequence of the fact that
the equations are derived from a Hamlltoman and thus conserve energy.

At this point, it is of interest to ask about the nature of the modes associ-
ated with the operators V; in the long waveguide “resonator” attached to the
resonator under study, called simply the “cavity”. The classical picture of a
resonator mode radiating into an output waveguide can be used as a guide.
If an initial excitation in the cavity starts to radiate into the external guide
at t = 0, the electromagnetic field may be constructed from a sequence of
impulses traveling into the guide in Fig. 6.2 from right to left. How is this phe-
nomenon represented by a superposition of modes in the shorted waveguide
“resonator” of length L7

The shorted-waveguide “resonator” has standing-wave solutions that are
symmetric and antisymmetric with respect to the central symmetry plane be-
tween the two end shorting planes. These modes by themselves cannot couple
directly through the shorting plane into the resonator. Coupling is achieved
by placing surface currents at the reference plane, surface currents that rep-
resent the cavity field at the reference plane, as discussed in Chap. 2. Here we
do not need to be concerned with the details of the current distribution, since
the coupling is represented by the coefficients K; in the Hamiltonian (6.82).
Traveling waves may be constructed from a superposition of the standing
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waves. When the cavity is excited at t = 0, such traveling waves emerge from
the cavity traveling to the left. The fact that the waveguide resonator is ter-
minated in an electric short at the far left end does not affect the solution
until the wave hits this termination. With L — oo this does not happen
within a finite time.

The operator amplitudes VJ of the waveguide modes obey the commuta-
tion relations

Vi, Vil = dix . (6.85)

These commutators are inherent attributes of the modes. The coupling of
the resonator to the waveguide alters the modes in that the V; acquire a
contribution from the resonator mode leaking into the waveguide. This con-
tribution is from the coupling of U in (6.84) and consists of waves traveling
away from the resonator. With an assumed time dependence of U of the form
exp(—iwt), we find for the part of V; affected by U

. K:U
vJﬁU) =—J (6.86)
W —Wwj
When this expression is substituted back into (6.83), we find the determinan-
tal equation for w:

W= w, = z HLE |2 (6.87)

The summation over the closely spaced resonances can be replaced by an
integration. Assuming that the coupling coefficients do not vary with fre-
quency over the frequency interval of interest, setting |K?| = x*AB; =
kY AB/Aw) Aw; = (K2 /vg)Awj, and using the fact that the integral passes
around the pole in a semicircle, we obtain 3, |K;|*/(w — w;) = —(k*/vg)7i.
The determinantal equation (6.87) becomes

Ciw—wy) = — k= - (6.88)

° v Te '

We have found a decay rate 1/7, due to the coupling to the waveguide.
Equation (6.83) has acquired a decay and is modified to read

a . i\ -
i —1(wo - —)U . (6.89)

e

However, this is only half of the story. The decay of U was found by first
evaluating the excitation of the V; by the resonator mode, using (6.84) and
then reintroducing these excitations into (6.83). An equation has been ob-
tained that leads to the erroneous conclusion that the commutator of U and
Ut decays at the rate 2/7.. Indeed, we find from (6.89)
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d dU dU 2 .
t = t === f.
5 U,0h [d U] [U d] —[0, 0]

What has happened is that we have ignored the excitation of U by the VJ as
evidenced by (6.83). Hence, we write instead of (6.89)

%:_(wo__) —IZKV (6.90)

Here the V] are sources driving U. The contribution is of waves traveling in
the direction of the resonator and hence unaffected by U. The situation has
become analogous to the one encountered in a cavity at thermal-equilibrium.
There, a decay of the mode called for the introduction of a Langevin source so
as to maintain the energy in the resonator at the thermal-equilibrium value.
On the other hand, the appearance of the sources in (6.90) is the natural
consequence of the Hamiltonian description of the resonator modes and the
modes in the output waveguide. In order to show that the sources are precisely
the ones necessary to maintain the commutator time-independent, we solve
for U, noting that the modes V; drive U at their respective frequencies wj:

. -y KV
L\ (691)
i(wo —wj) +1/7e

The commutator of U is given by

t — AR7Al !
0,01 = JXJ;K KV Ve G T s — e 7 1]
K2 (K*fvg)dw; K
_Z o — Wj) ‘|"1/Tez_)/(wo_wj)gz"'i/‘rez-ﬂ‘re;g—wl‘
(6.92)

The commutator is unity. The sources due to the coupling to the waveguide
compensate for the decay of the commutator.

The preceding analysis demonstrates a very general principle. The com-
mutator of an observable is a physical attribute of the observable. This at-
tribute must be conserved, the commutator must not change with time. Loss
causes decay of an excitation. In quantum theory, such a decay is modeled
by coupling of the system to a reservoir with a very large number of modes.
This coupling does not only cause the decay, it also introduces sources that
keep the commutator of the system invariant with time. These sources are
the quantum counterpart to the Langevin sources required to maintain the
thermal fluctuations in a lossy system at thermal equilibrium.
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6.6 Quantization of Excitations
on a Single-Mode Waveguide

The operators in Sect. 6.2 can be renormalized in a way analogous to the
renormalization of the mode amplitudes in Chap. 4 when dealing with ther-
mal noise. There are subtle differences in the renormalization, however, which
arise from the nature of the quantum description of physical processes. Clas-
sically, one analyzes steady-state excitations in waveguides and transmission
lines as evolutions in space. The classical approach ends up naturally with
a Fourier decomposition in the frequency domain, namely spectra of signals
and noise.

The concept of a steady state evolving in space at a set of frequencies
is foreign to quantum theory, since it describes the evolution of operators in
time, in terms of the Heisenberg equation of motion. This fact manifests itself
in the effort one must expend to arrive at quantum descriptions of processes
that would have been denoted as a steady state in the classical domain. A
good example is the propagation of waves along a single mode waveguide.
One selects a forward-wave “packet” occupying a length L, and one follows
its propagation in time. This wave travels forward at the group velocity and
occupies different spatial regions as it proceeds. If the wave packet hits an
obstacle, it is partially reflected and partially transmitted. Eventually, a wave
propagating in the reverse direction appears on one side of the obstacle, and
a transmitted wave appears on the other side. The Heisenberg equation of
motion describes this evolution of the wavepacket in terms of a scattering
event. A steady state analogous to the classical steady state is established
when many wavepackets follow each other and their statistics are stationary
in time.

Because quantum theory describes evolution in time, a Fourier decom-
position in the frequency of the excitation is not natural. It is more natural
to look at modes of a given propagation constant and study their evolution
in time. The operator A,, represents a mode excitation on a waveguide of
length L. It is so normalized that (|A! A,,|) is equal to the photon number.

The modes obey periodic boundary conditions:

Bm = zl?:m . (693)
We now introduce a new normalization of the creation and annihilation oper-
ators, which then permits us to treat the excitation of modes as a continuum
in the sense of a Fourier integral rather than a Fourier series in the limit
L — oco. Compare Appendix A.5 and (4.42). This normalization is

a(B) = (VL/2m)A,, . (6.94)

In the limit L — oo, renormalization changes the commutation relations
(6.46) into
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(8(8), &1 (8")] = 5-6(6 - 5. (6.95)

Operation of the creation operator on a photon number state of a mode of
propagation constant 3 gives

&' (6)In) ~£vn+ ln +1), (6.96)

with an analogous relation for the annihilation operator

a(B)ln) = gmn -1). (6.97)

The Hamiltonian of the mode becomes
— onh / dBw(B)a (B)a(B) . (6.98)

In the Hamiltonian we have omitted the contribution of the zero-point fluc-
tuations. If the mode spectrum extends to infinity, this contribution becomes
infinite as well. It does not contribute to the Heisenberg equations of motion,
and thus is conveniently suppressed. The integral over propagation constants
in (6.98) has to be interpreted carefully. A dispersion-free waveguide, such as
a structure supporting a TEM mode, propagates both forward and backward
waves. The forward waves have positive propagation constants 3, and the
backward waves have negative propagation constants. A forward-propagating
pulse is composed only of waves with positive propagation constants. Hence
the integral in the Hamiltonian (6.98) describing a pulse involves only positive
propagation constants, clustered around a “carrier” propagation constant 3,.

The operation of the annihilation operator on a coherent state |a(8))
gives

a(B)|a(B)) = ga(ﬂ)la(ﬂ)) : (6.99)

The Heisenberg equation of motion for the new operators follows via the
use of the commutation relation (6.95) with the Hamiltonian (6.98):

2 a(8) = ~w()a(p) . (6.100)
Note that the frequency of the mode is now treated as a function of the
propagation constant. The mode may be dispersive if the frequency is not
a linear function of f, as given by the dispersion relation of the waveguide.
Since, quantum mechanically, i3 is the momentum of the mode, the disper-
sion relation is now the relation between the energy hw and momentum 7.
Note that the simple formalism presented here addresses waveguides with
relatively small dispersion so that the criterion for the propagation direction
of a wave is simple.
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In a way analogous to the definitions of the Hermitian in-phase and
quadrature operators, one may define renormalized versions of these two op-
erators:

a™M(B) = 5[a(B) +a"(B)) (6.101)

and

A (5) = a(8) - &' ()] (6.102)

6.7 Quantum Theory of Waveguides with Loss

In this section, we consider the quantum description of a waveguide with loss.
We focus on the evolution of the operator @(3) of propagation constant 3.
If we remove the natural time dependence exp(—iwt) by replacing 4(3) by
a(B) exp(—iwt), we obtain from (6.100), in the case of zero loss, the equation
of motion

(—(iizd(ﬂ) =0. (6.103)

When the waveguide is lossy, the operator a(8) decays as it propagates. In
order to preserve commutator brackets, we need to introduce operator noise
sources [16]. Denote the decay rate by o(3). We obtain the equation of motion

94(6) = ~o(B)a(6) + 5(6) , (6.104)

where §(3) represents operator sources due to the coupling to loss reservoirs.
The loss reservoirs can be represented by distributions of resonators coupled
to the waveguide at every cross section. This is analogous to the representa-
tion of decay and commutator conservation in the case of the open resonator
in Sect. 6.5, which introduced sources into the resonator equation represent-
ing the mode excitations of the output waveguide. A similar model could be
used for the determination of the loss and the noise sources for the modes of a
waveguide. The mode of the waveguide of propagation constant 3,, could be
coupled to a continuum of modes. The coupling leads to temporal decay and
the appearance of noise sources. The sources maintain the commutator of the
mode annihilation and creation operators, integrated over the bandwidth of
the resonance. The modes with propagation constants B, -1 and By,41 decay
in the same way and possess analogous noise sources. Here we need not go
through a detailed model of such couplings. Instead, we can derive the prop-
erties of the noise operators simply from the requirement of conservation of

commutator brackets. The rate of change of the commutator follows from
(6.104):
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(8] = —[o(8) + o(8")][a(8), a' (8]

+[5(8),a'(8")] + [a(8), 51 (8)] (6.105)
=0.

The decay rate must be equal to zero since the commutator is an intrinsic
property of the operator. One would expect that the noise source opera-
tors and the mode amplitude operators would commute. However, in the
short time interval At, the mode amplitude acquires a contribution from the
source, just as discussed in Chap. 4 in connection with the evaluation of the
thermal noise source. Thus [§(8),a!(8)] = (1/2)[5(8), §'(8")]At and, since
[a(8),a' ()] = (1/2m)é(B — B’) according to (6.95), we find

[3(8),8'(8")] = %20(ﬂ)5(ﬂ - B)et-t). (6.106)

We see that the commutator behaves in a way similar to the correlation
spectrum of the thermal noise sources. The commutator referring to different
times and different propagation constants is zero. The operators §(8) and
§'(8) have the characteristics of annihilation and creation operators, respec-
tively, since ¢(8) > 0. They create or destroy photons of the optical mode
through interaction with the loss reservoirs.

Some remarks are in order with regard to the integration of a linear dif-
ferential equation involving operators of the form of (6.104). Because the
equation is linear in the operators, integration of the equation never encoun-
ters products of the operators and hence never need consider commutation
relations. For this reason, the integration proceeds in the same way as if the
operators were ¢ numbers. The operator a(3,T) at the time T is found from
the initial conditions by integration of (6.104):

T
a(8,T) = exp(—oT)a(s,0) + exp(-aT)/0 dt exp(ot)3(9) . (6.107)

Equation (6.107), and the equation for the creation operator, the Hermitian
conjugate of (6.107), can be used to evaluate expectation values of the op-
erators and their moments when the input excitation is specified. We shall
concentrate here on coherent-state excitations of the waveguide input and
ground state excitations of the noise reservoir. The system is in a product
state |a(0))|0). This product state is a generalized coherent state of the sys-
tem as seen when it is operated upon by the annihilation operator a(3,T).
We find

a(8, T)|a(B)|0) = g exp(—oT)a(B)|a(6))/0) - (6.108)
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The state is an eigenstate of the annihilation operator. Using (6.108), we find
for the expectation value of the photon number

(n) = 2m(0l{a(B)| [ dB T (8, T)a(B, T)|a(6))10)

= exp(~20T)](B)]? -

The photon number has been reduced by an attenuation factor of the ampli-
tude squared. For the expectation value of the operators in antinormal order,
using the commutator (6.95), we find

(0l{a(B)|a(B8, T)al (8, T)|a(B))|0)

(6.109)

= (Ol((B)]a! (8, T)a(5', T)a(B))[0) + 5-5(5 — 8) (6.110)

= Ty XP(-20T)a(B) + 368~ 6)

One may evaluate the mean square fluctuations of the in-phase and quadra-
ture operators in the same way. The algebra is rather cumbersome if done
routinely. Instead, it is better to take advantage of the fact that a coherent
state is an eigenstate of the annihilation operator. As shown in Sect. 6.2,
one may write aV(8)a)(8) = 1[a(B) + a'(B)](a(8") + a'(8")] in normal
order. When (a(V)(8))(a(V)(8")) is subtracted from (a(V)(8)a(})(3')), only the
contribution of the commutator remains, so that

Ol{a(B)|a™M (8, T)a (8, T)|a(B))|0)

—(0l(a(8)IaV (8, T) () |0} (0K (B)Ia'™ (8, T)|x(6))10) (6.111)

= 3506 8).

In the same way we find

(0l(a(8)a®(8,T)a® (8, T)|a(8B))|0)

—(0l{(8)1a® (8, T)|(8))10) (0{x( )& (B, T) | x(8))[0) (6.112)
11 ,
= 157;5(5 -8).

The spectrum of the fluctuations expressed as a function of propagation con-
stant is O-independent, analogously to the frequency spectrum of thermal
noise, which is w-independent.

The quantum theory of a waveguide with loss bears a close analogy to the
classical analysis of the same waveguide at thermal equilibrium. The thermal
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fluctuations of the electromagnetic field would decay in the waveguide, were it
not for the Langevin noise sources that reexcite the modes and maintain the
thermal fluctuations. In the quantum-theoretical treatment Langevin opera-
tor sources are required to maintain the commutator relations. Maintenance
of the commutator relations then ensures maintenance of the mean square
field fluctuations of the waveguide field in its ground state. The zero-point
fluctuations bear a close resemblance to thermal fluctuations.

We have computed the fluctuations produced by the noise sources under
the assumption that they are in the ground state. The question may be
asked whether this is a severely restricting assumption. Generally, the loss
reservoirs would be thermally excited. If the temperature of the reservoir is of
the order of room temperature 8, = 290 K, the contribution of its excitation
is negligible compared with the contribution of the zero-point fluctuations,
since kf, < hw for an optical frequency w. The ratio hw/k8, is typically of
the order of 40.

The introduction of the noise source for conservation of the commutator
bracket may seem ad hoc. In the next chapter, we shall show models of loss
that are based on a Hamiltonian description of the system. The loss will be
due to output ports that are not explicitly included in the description of the
output, and the noise sources will be shown to arise from ports of the network
not accessed by the signal.

6.8 The Quantum Noise of an Amplifier
with a Perfectly Inverted Medium

Quantum theory permits a generalization to active devices not possible in the
classical physics of thermal equilibrium, which is only applicable to passive
systems. Indeed, if the system has gain, then ¢(8) < 0, and the right-hand
side of (6.106) becomes negative. The solution for the output operator a(3, T')
is of the same form as (6.107),

T
4(8,T) = exp(|o|T)a(8,0) + exp(|o|T) / dt exp(~|olt)3(8) . (6.113)

—00

The product state |a(8))|0) is not any more an eigenstate of the operator
a(g8,T) which, in turn, ceases to act as an annihilation operator. In the anal-
ysis it is necessary to treat the two operators on the right hand side of (6.113)
separately, the first one as an annihilation operator, the second one as a cre-
ation operator. The consequence of this reversal is that photons appear at
the output of the amplifier even if no photons are fed into its input. Consider
the product state |c(3)}|0), i.e. the situation when a coherent state is fed
into the amplifier and the reservoirs of the noise sources are in the ground
state. This is the case when the population of a laser medium is in the upper
level and is equilibrated at the temperature of the host medium. Since this
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temperature is of the order of magnitude of room temperature 8, = 290 K,
and hw(B) > k6,, one may approximate the equilibration temperature as
equal to zero, with the states of the upper level in the ground state. We have
for the photon number at the output of an amplifier of length ¢, traversed
within the time T = £/vy,

(n) = 2m(0/{a(B)| [ dBaY(B, T)a(B, T)|e(8))|0)

~ 2mexp(2lolT)(a(P)] [ 483 (6,0)3(6,0)a(6)
(6.114)
+27 exp(2|0|T) 0|/dﬂ/ dt/ dt' 51(8,t)3(6,t')

x exp(—|o|(t +1)]0) .

The first term is the amplified input signal and gives the contribution
(n)signat = Gla(B)|?, where G = exp(2|0|T). The second term follows from
the commutator (6.106). This commutator is negative, indicating that 5(3,t)
is a creation operator, and its Hermitian conjugate an annihilation operator.
The expectation value of the operator product 3'(83,t)5(8,t') is

(0131 (5,1)5(68',)10) = 5-2Ao (B5(8 - B)3(t ~ ¢) (6.115)

The double integral over time gives

T T
/ dt / dt' exp[~[o|(t + £)}(0[5 (8, £)3(8', )[0)
0o 0 (6.116)

= o[l — exp(-2o[T)5(0 - )

The height of the delta function is L/2r, and it vanishes outside the inter-
val of propagation constant AB = 2w L. This interval is set by the bandwidth
of the amplifier system. Thus consider a coherent signal state that extends
over a length L, covering the time L/vy. A time-varying signal of bandwidth
B = vy /L is represented by a succession of coherent states, each occupying a
time interval L/vg. If the amplifier is followed by a filter of bandwidth equal
to the signal bandwidth, the noise passed by the filter occupies the same
bandwidth. Using this result, we find for the second term in (6.114), the
term caused by the noise source, the amplified spontaneous emission (ASE),

(n)ASE =G-1. (6.117)

Amplification of signal photons by the factor G entails the addition of G — 1
noise photons to the signal, provided the signal bandwidth and noise band-
width are the same. Each increment A carries G — 1 ASE photons. This
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is the well-known amplified-spontaneous-emission term of an ideal amplifier
with perfect inversion. If the inversion is not perfect, if the lower laser level is
occupied, some of the generated photons are reabsorbed by excitation of the
lower level into the upper level. This requires the inclusion of an absorption
term into the evolution equation (6.114), as treated in the next section.

Each increment A4 corresponds to a frequency bandwidth Aw = v AB.
If an optical filter of bandwidth Af2 = NAw is inserted at the amplifier
output, the rate of ASE photons passing through the filter is

(n)ase G -1
rate of ASE photons = Nvg—L— = Nvgf_?
(6.118)
AN
=(@E-1)5-=(G-1B,

where B is the filter bandwidth in Hz.

Next, we compute the fluctuations of the in-phase and quadrature compo-
nents when a coherent state |a(8))|0) is specified as the initial condition. In
computing the expectation value of the fluctuations of (8, T)a" (8, T),
we write

a0 (B, T)aM(, T) = $[a(8, T) + 41 (8, DI[a(8, T) +a!(8', T)],
(6.119)

and we cast the annihilation operators and the creation operators into normal
order. This must be done separately for the waveguide mode operator a(3, T')
and the noise source operator a(3). When this is done, we find for the in-phase
fluctuations

in-phase fluctuations = (0|(a(8)[aV (8, T)a ™V (8, T)|a(8"))|0)

~[(0/{a(8)1a™ (8, T)|(B))[0)] (6.120)
- [36-1+| got6-2).

The same result is found for the quadrature fluctuations:

quadrature fluctuations = (0)(a(8)|a‘? (8, T)a®@ (8', T)|a(8'))|0)

—[(0l{a(B)|aP (B, T)|(B))|0)]?

- [y6-1+] i6-.
(6.121)

When the gain is large, the fluctuations are twice as large as the input fluc-
tuations amplified by G. This finding has a deep significance in the context
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of quantum measurements of two noncommuting observables, as we shall see
in Chap. 7.

6.9 The Quantum Noise
of an Imperfectly Inverted Amplifier Medium

An imperfectly inverted medium has a nonzero population in the lower energy
level. This population acts as an absorber. One may analyze the amplifier
as an active waveguide of gain coefficient o, due to the population in the
upper laser level, interspersed with a passive one of loss coefficient o4, with
o¢ < 0y, due to the population in the lower laser level. The equation for the
mode propagation is

L4(6) = (o — 003(0) + 5u(0) + 52(6) (6122)

where §, and $; are the associated noise sources, with the commutation
spectral densities

[6u(8), 5L(8)] = ~20u5-6(5 — 9)6(t ~ 1), (6.123)

[e(8), 81(8")] = 20e2—17;5(ﬂ - B8t -t). (6.124)
The integral of (6.122) is
a(B8,T) = exp|(ow — 0¢)T1a(8,0) + exp|(ow — 0¢)T]

(6.125)
X

T
/0 dt exp[— (0w — o) T)[5u(8) + 8e(B)] -

The output operator a(8,7) consists of the amplified input operator,
VGa(B,0), with v/G = exp(oy — 0¢)T, and two noise sources

T
Ay (8) = expl(oy — ae)T]/O dtexp|—(ow — 00)t]5,(8,1) (6.126a)

and

T
fie(B) = expl(ou — ag)T]/O dt exp[~—(ou — 00)t}5e(B8, 1) . (6.126b)

The commutators of these noise sources are
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[ (8), 2L, (8")] = exp[2(ou — 0¢)T]

T T
v /0 dt /0 dt' expl—(ou - oe)(t + 5u(B:1), 8408 0)  (6.127a)

Oy

= o6~ 3 =2 (1)

and
[fie(B), A} (B")] = exp(2(cw — 0¢)T]

Oy — 0y

T T
X/o dt/o dt’ exp[— (0w — ae)(t + t)][5e(8, 1), 35(8', 1)) (6.127h)

O¢

= 06— ) =2 (G -1).

Oy — 0y

According to the sign of the commutator, #,(#) can be identified as a
creation operator and A,(3) as an annihilation operator. The first one is
contributed by the upper level of the gain medium, the second by the lower
level. The analysis can be simplified if we assume the presence of filters that
accommodate a signal occupying a spatial slot of length L, corresponding
to a bandwidth B = vg/L. We may then revert to the original operators
A introduced in Sects. 6.1 and 6.2 and related to a(5) by (6.94). Denoting
the output and input by (2x/vI)a(8,T) = B and (2r/vL)a(8,T) = A,
respectively, we have from (6.125)

B=VGA+N,+N,. (6.128)

The creation operator N, is responsible for the ASE and has the commutator

[N, Nj] = x(1-G), (6.129)
where
x=—2 (6.130)
Oy — O¢

The parameter x is the so-called inversion parameter. It is equal to unity
when the medium is perfectly inverted, and becomes greater than unity for
a partially inverted gain medium.

The annihilation operator N, represents the noise introduced by the lower
level and has the commutator

[Ne, Nj] = (x - 1)(G - 1) .. (6.131)

This is a compact form of the amplifier description which will be of use in
the evaluation of the probability distribution of the field in the next chapter.
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The simple expression (6.128), along with (6.129) and (6.131), can be
used to answer the question as to when optical amplifiers behave like classi-
cal amplifiers with additive noise. Thus, we may compute the mean square
fluctuations of B and B® for a coherent input state |ce). The noise sources
are in the ground state, indicated by a single factor |0) for simplicity

(0l (al(ABM)? + (AB®)?|a)|0)
(6.132)
= (0[{a|(BD)? + (B®)?|a)|0) — (0|(a| B + BP|a)|0)?

When the in-phase and quadrature operators are expressed in terms of cre-
ation and annihilation operators and are put into normal order, only the
contributions of the commutators remain. We find

(Ol{al(ABD)? + (AB@)?|a)|0)

1
36 +3 L (OINE N, + NeNJ|0)? (6.133)

=1G+ SCx -G -1).

The first term comes from the amplified zero-point fluctuations of the signal,
and the second term comes from the noise contributions of the upper and
lower level. In order to cast this expression in terms of signal power and
additive noise power, we transform the above into a flow in units of power by
converting the net mean square fluctuations to unit distance through division
by L and through multiplication by the group velocity v, and the photon
energy fuw:

—humy (0l(al(ABD)? + (AB®)?|a) o)
. (6.134)
= 2w, [% +x(G - 1)] .

Now, 27/ L is the mode separation AS, corresponding to a bandwidth Aw =
(dw/dB)AB = vy AB = 2 B. Thus

%hwvg(0|(a|(AB(l))2 + (AB®)?|a)[0) = hwB [% +x(G - 1)]
(6.135)

On the other hand, the power flow of the amplified spontaneous emission is

ASE power — %nwugwu\‘/;mm) — hwBx(G - 1) . (6.136)
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If we reasoned classically, we would assign half of the power flow to the mean
square fluctuations of the in-phase and quadrature components in power flow
units. Comparison with (6.146) shows that this gives the right answer in the
limit of large gain G.

The expression for the amplified spontaneous emission was known in the
years of the invention of the laser [68]. In the early days of the laser it was
not easy to separate out the fundamental Gaussian mode from a pumped
crystal emitting into a large solid angle. With the advent of optical waveguides
and single-mode fibers, this presents no problem, and it is easy to verify
(6.136) experimentally. Figure 6.3 shows the experimental arrangement. An
erbium-doped fiber laser is pumped by a laser diode operating at 980 nm
wavelength and emits at 1.54 pm wavelength. No signal is applied to the
amplifier. An optical filter of bandwidth Af2 = 27 B, much less than the
amplifier bandwidth, is put in front of the power detector. The detector can
be a bolometer, measuring power by a temperature rise, or a photodiode
calibrated in power units.

pump radiation at 980 nm

AR coating

N | : power
~ 6’ | detector

Fig. 6.3. Experimental arrangement for measurement of amplified spontaneous
emission

6.10 Noise in a Fiber with Loss Compensated by Gain

We have emphasized several times that the quantum noise of optical com-
ponents used in communications can be thought of as additive, in the same
sense as thermal noise can be viewed as additive to a classical signal. The
mean square fluctuations of the signal amplitude after passage through the
component can be evaluated from the sum of the signal fluctuations and the
fluctuations of the added noise. In this section, we develop this semiclas-
sical picture of quantum noise in the case of an optical waveguide (fiber)
whose loss is compensated by distributed gain. This is the simplest model for
long-distance fiber communications in which distributed amplification com-
pensates the fiber loss. We shall use the results in Chap. 10 in the derivation
of the timing jitter of soliton propagation.

We consider one segment of length Az of the waveguide composed of a
loss section of loss £(< 1) followed by a gain section with gain G. The gain
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section is described by (6.126b), where A is the input operator and B is the
output operator

B=VGA+N,+N,. (6.137)
The commutators of the noise sources are

[Ny, Ni] = x(1 - G) (6.138)
and

[Ne, Nj] = (x = 1)(G - 1). (6.139)

The loss section by itself obeys the relation

B=VLA+N., (6.140)
where the noise source has the commutator

[Ne, Nil=1-C. (6.141)

We shall assume that the loss and gain are very small, ie. 1 — £ «
1, G — 1 « 1. Further, we assume that the loss and gain balance, so that
LG = 1. Under these conditions, the cascade of the two segments, with the
output of the loss section being the input of the gain section, has the overall
response

B=vVGWLA+N)+ N, + Ny~ A+ N+ Ny + N, . (6.142)

The signal remains unchanged and quantum noise sources have been added
to it. We find for the expectation value of the in-phase component of the
signal

(BMY = (AW, (6.143)
The mean square fluctuations are evaluated as usual:
((ABW)?) = (BM)?) — (BM)?. (6.144)

If the signal is in a coherent state, the operator products can be put into
normal order and the mean square fluctuations result solely from the com-
mutators. The term G — 1 can be expressed in terms of the gain per unit
length. From the gain within a time interval T,

G = exp[2(oy — o)1), (6.145)
we may construct G —1 when G -1« 1

G-1=20y~0)T =2aAz, (6.146)
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where Az is the distance traveled by the signal within the time T, and « is
the gain per unit length. Since the loss is equal to the gain, we also have

L-1=20Az. (6.147)

The mean square fluctuations of the excitation after passage through one
segment of length Az are

(ABDP) = 26+ 7601~ L)+ xG(1 - I) + 3 (x - 1)G . (6148)
The first term is the zero-point fluctuation of the signal at the input that has
passed through the gain and loss; the second term is the contribution of the
noise source associated with the loss; the third term is the contribution of
the upper level of the gain medium; and the last term is the contribution of
the lower level of the gain medium. When account is taken of the fact that
G differs little from unity and that G = 1+ 2a Az and £ =1 - 2o Az, the
above expression becomes

(ABM)2y = %[1 + x(20 A7) . (6.149)

The first term is the zero-point fluctuation accompanying the signal; the sec-
ond term is the added noise due to gain and loss. The quadrature component
has the same fluctuations. In the semiclassical picture, the fluctuations are
additive to a noise-free signal. To bring this picture into correspondence with
the picture of signal and additive thermal noise, we transform the above into
a flow in units of power by converting the net mean square fluctuations to
the value for unit distance through division by L and by multiplication by
the group velocity and Aw:

I} - [} 1

vag((AB(l))z + (AB@)?) = T‘“vg (5 + x(2ax Az)) : (6.150)
Now, 27r/L is the mode separation AS corresponding to a bandwidth Aw =
(dw/dB)AB = vy AB = 27 B. Thus

hf‘“vg«AB“))Z + (AB®)?) = hwB (% + x(2a Az)) . (6.151)

This formula shows that the mean square fluctuations are proportional to the
bandwidth and grow linearly with distance along a fiber whose gain is bal-
anced by the loss. Note that the added mean square fluctuations correspond
to the added ASE power. Indeed, this power is

A(ASE power) = wBx(2a Az) . (6.152)

The process can be described by propagation of a classical amplitude a(w)
in the presence of a noise source
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%a(w) = s(w,2), (6.153)
with
(s(w, 2)s™ (W, 2)) = %;x?aé(w — W5z = 7). (6.154)

We shall use this semiclassical formula in Chap. 10 for the evaluation of the
noise accompanying soliton propagation. It should be emphasized that the
results are correct quantum mechanically if applied to a signal in a coherent
state. The noise is additive. Further, one may note that the noise is composed
of a contribution from the gain and one from the loss.

6.11 The Lossy Resonator
and the Laser Below Threshold

In Sect. 6.5 we derived the commutator conservation of an open resonator
from a Hamiltonian description. The decay of the commutator of the res-
onator mode due to radiation into the connecting waveguide was compensated
by the coupling to the commutators of the waveguide acting as a reservoir. In
the subsequent sections we treated the waveguide modes from several points
of view. Using the formalism developed thus far, we may treat the open res-
onator problem in a different way, starting from the classical equations of the
open-resonator and quantizing them by replacing the complex amplitudes
with operators. We have from (2.221)

dU .2
= (i 1 U —a. 6.1
I (iwo + 1/7)U + Tea (6.155)

In the transition to the quantum description attention has to be paid to the
meaning of the amplitudes. In the classical formalism, |U |2 represents the
energy in the resonator. This suggests that U {7 should be interpreted as the
photon number operator, as has already been done in Sect. 6.5. In the classical
description, |a(t)|? is the power flow of the mode incident upon the resonator.
Therefore, in the quantum formulation, the operator a'(¢t)a(t) must give the
photon flow rate in the time domain. In the propagation constant description,
2m [ dBat(B)a(B) is the photon number operator 7 assigned to a wavepacket
of length L. The photon flow rate is vgfi/L = (dw/dB)7 /L. Hence the photon
flow operator is given by

photon flow operator = ELZE /do.)&T Bw)ja[B(w)] . (6.156)

If the photon flow rate is finite, the integral must go to infinity as L
goes to infinity. Division by L gives a finite result. Further, if the process is
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stationary, operators with different frequencies must be uncorrelated. Hence

it makes sense to write the photon flow operator of a stationary process as a

double integral (note 2n/L = AB = (df/dw)Aw):

photon flow operator = /dw/dw'g—géf[ﬂ(w)]&[ﬂ'(w')]

(6.157)
= /dw/dw’ af(w)a(w') .
The new operator d(w) obeys the commutation relation
d '
la(), ()] = 21a(8),a' ()]

(6.158)

ag 1

- Gz )= g8

This operator is related to the Fourier transform of @(t), which gives the
photon flow rate in the time domain as &' (t)a(t). The Fourier transform pair
is

at) = /dwa(w exp(—iwt); a(w) = /dta(t ) exp(iwt) . (6.159)

We have for the operator & (t)a(t)
at(t)a(t) = /dw/dw' af (w)a(w) expli(w’ — w)t] - (6.160)

We see from (6.160) that the expectation value of a'(t)a(t) is given by the
expectation value of the photon flow operator (6.156) when the operators at
different frequencies are uncorrelated.

A few remarks as to the meaning of the Fourier transform pair are ap-
propriate. The operator d(w) has the time dependence exp(—iwt), where the
frequency w is positive. The Hermitian conjugate creation operator has the
time dependence exp(iwt). Fourier transforms are normally defined as rela-
tions between functions of time and functions of frequency which extend over
the entire frequency range from minus infinity to plus infinity. The quantum
operator d(w) is defined only for positive frequencies. As long as the spectrum
of w, is clustered around a carrier frequency w,, the analysis is self-consistent.
We shall discuss this issue in more detail in Chap. 12.

The equation for the excitation of the reflected wave is

b —a+ /20 (6.161)

Te

Appendix A.9 connects the reservoir analysis of Sect. 6.5 with (6.155) and
(6.161).
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Equation (6.155) is a linear operator equation. In solving a linear differ-
ential equation no commutators of the operators appear. For this reason the
solution of a linear operator equation is indistinguishable from the solution of
its classical, c-number counterpart. We solve (6.155) in the Fourier transform
domain by assuming a time dependence of the form exp(—iwt):

ﬁ(w) _ V2/Tea(w)

o (6.162)
The commutator of the resonator excitation is
o, B (] = (2/7)aw), it ()
[Uw), U ()] = [y — @) + 1/me)[=i(wo —w) + 1/74]
(6.163)

_ 2/7e 1 w—u
T [(wo — w)? +1/72) 27r6( )

where we have used the commutator relation (6.158). The resonator com-
mutator has become a function of frequency. This is a consequence of the
boundary conditions imposed on the resonator mode. Commutators of exci-
tations within enclosures do not have unchanging universal properties. Thus,
for example, if one introduced partially transmitting irises into a uniform
waveguide to form a transmission resonator, the commutator spectrum of
the excitations internal to the resonator would change. This is analogous to
the change of the thermal excitations in equilibrium when partially transmit-
ting irises are introduced into a uniform waveguide. The thermal excitations
peak around the resonance frequencies, and are much smaller in the frequency
regimes between the resonances.

The double integral over frequency of the resonator mode commutator
gives unity:

/w/wWwﬁwm

Since the reflected wave is generated by the incident wave via interaction
with the resonator, it is not obvious that the commutator of the reflected wave
has remained unchanged. On the other hand, we have emphasized that the
commutator of an excitation amplitude of a wave in an open waveguide is a
property of the wave and should not change under any circumstances. Hence,
conservation of this commutator serves as a check on the self-consistency of
the theory. Let us check the value of this commutator. We find for b(w), using
(6.161),

b(w) =

(6.164)

i(w—we)+1/7e .
oW T 1/Tea(w) . (6.165)
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It thus follows that

(b, B ()] = [a(w), )] = 50w — ). (6.166)
Thus, the commutator of the reflected wave has indeed retained its proper
value.

We can now show how the introduction of loss can be handled smoothly
with the present formalism. If loss is introduced, the equation of motion
(6.155) has to be modified in two ways: (a) a decay rate 1/7, has to be
introduced; (b) in order to conserve commutators, a noise source must appear.
Thus (6.155) changes into

dUu ) N 2 2,
= = ~(wo + 1/7e +1/7,)U + \/;;no + \/Za : (6.167)

In the present perturbational approach one may turn on one perturbation at
a time and check for self-consistency. Thus we may ignore the coupling to the
outside waveguide and look at the truncated equation

dU . ~ o [2
—dT = —(lw,, + l/TD)U + ;;’I'LD . (6168)

The noise source must maintain the commutator of the resonator excita-
tion, which in the absence of the noise source would decay at the rate 2/7,.
From (6.167) we find

o au - . dUt
1 2= 7t hahi
0 [dt,U}+[U, dt]

<
|

(6.169)

~T3[0,0f1 + \/Tz{[mﬁ*] +[U,af]} .

Since the loss is frequency independent, the noise source has to be delta-
function-correlated in time. Whereas one might expect that the resonator
excitation and the noise source commute, since they are independent, this fact
does not reduce the second term in (6.169) to zero. Indeed, within the time in-
terval At, the resonator amplitude acquires the contribution (1/2)1/2/7,At#
from the noise source, so that the right hand side of (6.169) becomes

20,01 + \/Tz{[ﬁo,(f‘] + 0,7}

= 2w, 0M+ 2 At Al -
Te To

o

(6.170)

Thus, conservation of commutator brackets is ensured for a noise source with
the commutator
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[fo(t), Bo(t))] = 6(t — ). (6.171)

In the Fourier transform domain, the commutator is

[fio(w), fio(w')] = -21;6(@! - . (6.172)

The approach taken here has some resemblance to the introduction of
noise sources in the classical analysis of linear systems at thermal equilibrium.
Note that we could have started with (6.155), treating & as an undetermined
noise source required to maintain commutator conservation in the presence
of the decay rate 1/7.. An analysis identical to the determination of the
commutator of 7, would have led us to find (6.158) for the commutator
[@(w), &' (w")]. Thus, the conservation-of-commutator principle can replace a
detailed analysis of loss induced by coupling to a reservoir.

The next step we undertake is to introduce gain into (6.155). The fact
that one may make statements about the nature of the noise source in this
nonequilibrium case has no classical thermodynamic analog. Again, we look
at the truncated equation for the resonator with nothing but gain, represented
by the growth rate 1/7,:

J - 2
%[ti = (i = 1/7g)0 + [ g (6.173)
g

The analysis is completely analogous that carried through in the case with
loss, with the result that the commutator of the noise source is now

[fg(8), 2} ()] = —6(t —t') (6.174)

or, Fourier transformed,

1
[fig(w), Al (w')] = —-2;6(w -y (6.175)

Note the appearance of the minus sign. This means that the roles of the
creation and annihilation operators have been reversed. We should note fur-
ther that (6.174) and (6.175) do not require that 74(t) be a pure creation
operator; it could be composed of a sum of a creation operator and an annihi-
lation operator that commute with each other. The only requirement is that
the commutation relation of the sum operator and its Hermitian conjugate
obeys (6.174) or (6.175). The physical meaning is that the gain mechanism
consists of two opposing processes, one with gain, the other with loss. Gain
is provided by a two-level system with inversion, in which the occupation of
the upper level is higher than that of the lower level. The upper level expe-
riences induced emission, in which a photon causes a transition to the lower
level; it also experiences spontaneous emission, in which a laser particle spon-
taneously decays to the lower level, emitting a photon that is uncorrelated
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with the induced photons. The lower level can absorb photons as particles
in the lower level make transitions to the upper level. In this case the gain
mechanism must be represented by a sum of a creation operator fi,, rep-
resenting the excitation of the upper level, and an annihilation operator fig,
representing the excitation of the lower level. The upper level causes a growth
rate 1/7,, the lower level a decay rate 1/7,. The net growth rate is

1 1 1
—_—=— - —, (6.176)
Tq Ty T¢
and the commutators of the two noise sources are
[ (), 2L ()] = —=6(t —t') and [ﬁg(t),ﬁe(t')] =8t -t). (6.177)

This description of an incompletely inverted medium is indistinguishable from
the case of a perfectly inverted medium in a resonator with a loss rate 1/7, =
l/Te.

We may now assemble all three physical mechanisms studied thus far in
one single equation for the resonator mode:

du _ . [7, 2 [2 .
E—-—(lwg+1/Ta—1/Tg+1/T3)U+ ;;na-i- ;_;—ng-i- 7—_5—a.

(6.178)

The equation for the excitation of the reflected wave remains unchanged.
It is easily checked that the commutator of the reflected wave, (6.161), is
preserved, as it should be, in the presence of all three noise sources, which
are all mutually uncorrelated and commute.

Equation (6.178) can be used to evaluate the photon number inside the
resonator. These photons represent amplified spontaneous emission if no sig-
nal is fed into the resonator. At this point we must decide on the states of
the different noise sources, or rather the reservoirs they represent. If there
were thermal excitation, it would be near room temperature 6,. The en-
ergy levels under consideration are optical levels, with energies of the or-
der of 40 times the value of kf,. Thus, one may assume that the noise
sources are all unexcited; they are in the ground state. This means that
(at(w)a(w")) = (Al(w)Ae(w')) = 0. On the other hand, we have identified
the operator ny as a creation operator and its Hermitian conjugate as an
annihilation operator. Since

(17g (), Y] = (g @)Y = (R (W)ig () = — 58w = o),
we must conclude that
(7} (w)itg () = —=b(w = ')

PEie
‘We have
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(U (w)U (")) Aw A’

(2/79) (R} W)y (")) Aw A’

[— o= W) +1/70 ~1/7g + 1/7e][i(wo — ') + 1/7, — 1 /74 + 1/7¢]
_ _1~ 2/1q
T o [—i(wo ~w) +1/75 = 1/7g + 1/7e)[i(wo ~ ') + 1/7 — 1 /74 + 1 /7]

X Aw Aw' §(w — w') .
(6.179)

Since the photon flow rate is expressed as a double integral over frequency,
the photon number in the resonator is also obtained from a double integral:

[ o [ a0t @)

= 1 2/74

= /dw27r (Wo — W)Z + (1/70 — 1/74 + 1/7)] (6.180)
1/7g

11, =11y +1/7e

Next, we consider the photon flow (bt (w)b(w')) Aw Aw’ from the resonator
with gain. We limit ourselves to a perfectly inverted medium. We find

(b (w)b(w")) Aw Aw’

_2 (2/79) (A} (w) g (w")) Aw A’
Te [=iwo —w) + 1/7 = 1/7g + 1/re]li(wo ~ w') +1/75 — 1/7 + 1/7.]

4/7’8 ’Tg Aw

- (Wo —w)2 + (/70 — 1/7y + 1/7.)? gé(w ~u).
(6.181)
The net photon flow is
[ o [ @it
. 1 4/Tety
= /dw om (Wo —w)2+ (1/76 — 1/74 + 1/7.)? (6.182)
2/(TeTy)

= T —1)m, 4 1me
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This is the photon flow of the amplified spontaneous emission for a fully
inverted medium in the presence of resonator loss. The flow of photons goes
to infinity as the threshold is reached, as 1/7, = 1/7, + 1/7.. It is clear that
this trend cannot persist when the threshold is passed. In Chap. 11 we look
at the “lasing” operation of the resonator, the operation above threshold.

2n{0fw)uw)) 22

o L
photon
10 flow rate

-4 -2 2 4

(0 —Wo)Tg —w

Fig. 6.4. The spectrum 27 (|0 (w)U (w)|) Aw/7e for 7e/7, = 0.2,0.4 and 0.6

Figure 6.4 shows the spectrum of the photon flow for three different values
of 7¢ /74, with no loss in the resonator, i.e. 1/7, = 0. Next we study the in-
phase and quadrature components of the wave emitted by the resonator. The
in-phase and quadrature components are Hermitian operators that have to
be constructed from the sum and difference of b and b'. We have

B = 5 _ [\/5/—6\/2/%% + V21 (W) + V2 Telw)

(w—wo)+1/70 = 1/7g +1/7,

a0 (L_LJ;)

\f ﬁ/‘r: () + v/3/7y78" (@) + /2] 7ea M (w)

(w— o.)a)2 + (1)1 = 1/7g +1/7)2

(w-w \f ﬁFan?) 277" (@) + /270 w)
o) w wa) (l/Ta - l/Tg + l/Te)2 ,
(6.183)

where “H.c.” stands for “Hermitian conjugate”. It is of interest to note that
the quadrature component couples to the in-phase component off resonance.
This phase-to-amplitude coupling is, in fact, characterisic of all resonant
structures excited off their resonance frequency. FM detectors are constructed
on this principle.

”
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From (6.183) and the mean square fluctuations of the noise sources, one
may construct the mean square fluctuations of the wave emitted from the
resonator:

(61%)

L e

1 1, 1\’2 2/70 +2/74
* ( * ) Te [(w - wo)2 + (1/To - 1/Tg + 1/T€)2]2

2 msymeyn V1,
+ (W — w,) Te [(w — wo)? + (1/7, — 17, + 1/Te)2]2 }2%5((‘) W)
_1 8/(TeT,) 1 ,
= Z [1+ (w_w°)2+(1/70jl/Tg+1/Te)2:| Q_ﬂ'é(w_w)'
(6.184)

The same result is obtained for (|l;(2)|2). The physical significance of the
result is plainly evident. If there is no gain in the resonator, the exterior
fluctuations are zero-point fluctuations. If there is gain, the fluctuations at
and near the resonance frequency are enhanced. Away from resonance, they
revert to simple zero-point fluctuations.

6.12 Summary

We started with a review of the classical Hamiltonian mechanics of the har-
monic oscillator and reviewed its quantization. The quantization of electro-
magnetic fields uses the fact that electromagnetic modes obey harmonic-
oscillator equations. It was Planck who arrived at this quantization procedure
with great ingenuity, long before the quantum formalism was developed. The
excitation of the waveguide is described by creation and annihilation oper-
ators that are in one-to-one correspondence with the classical complex am-
plitudes of the electric field of the mode. These operators obey commutation
relations that are intrinsic to their nature.

We developed the quantum formalism for a cavity coupled to an external
waveguide. The decay of the cavity mode was derived from the coupling of
the cavity mode to an infinite number of modes in the coupling waveguide,
assumed to be so long that the period of the beats, associated with the
coupling of two lossless modes was extended to infinity and the effect of the
coupling appeared as a simple decay of the resonator mode. The analysis
introduced automatically an operator source that ensured conservation of
the commutator brackets of the resonator mode operators.



238 6. Quantum Theory of Waveguides

Next we addressed loss in a waveguide. Having learned that coupling to
a reservoir of modes that introduces decay calls for an operator noise source
in order to ensure commutator conservation, we introduced such a source
and determined its commutator. It was then possible to evaluate the mean
square fluctuations of the mode field under the assumption that the reservoir
modes were in their ground (vacuum) state. The analysis was carried through
analogously for a waveguide with gain. Here, it was possible to show that an
amplifier must emit photons even in the absence of an input signal, namely
the photons of amplified spontaneous emission.

Finally, we quantized the classical equations of a resonator with loss and
gain coupled to an external waveguide. This description was in full agreement
with the Hamiltonian description of a resonator coupled to a reservoir of the
modes of a long waveguide developed in Sect. 6.5. The simplicity of the
formalism permitted us to obtain answers to a number of questions as to the
photon flow emitted by such a structure and the mean square fluctuations of
the in-phase and quadrature components of the emitted field.

Problems

6.1 Show that the states of the harmonic oscillator are orthogonal.
6.2 Show that different Hermite Gaussians are orthogonal.

6.3

(a) Determine the enhancement of the ASE associated with incomplete in-
version as described in Sect. 6.6, by taking advantage of the equations
with perfect inversion, but with an additional loss rate. This additional
loss rate may be identified as being due to occupation of the lower lasing
level.

(b) Derive the photon flow for a resonator of zero resonator loss containing
an incompletely inverted medium.

6.4* Derive the mean square quantum fluctuations of a coherent-state wave
transmitted through a transmission resonator with coupling rates 1/7.; and
1/7e2 and an internal loss rate 1/7,.

6.5* A wave incident from port (1) onto a beam splitter with the scattering
matrix

5=l

exits partly in port (3) and partly in port (4). As viewed from ports (1) and
(3), the system appears as a lossy system. Conservation of the commutator
brackets requires the addition of noise. Show that the amplitude operator
entering through port (2), with part of it emerging in port (3), fully accounts
for a “source” that preserves commutators.
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6.6 Show that the formalism of Sect. 6.5 that arrives at the equations of an
open resonator and the associated noise sources by coupling to the modes
of an external waveguide can be used to derive the equations for a classical
resonator at thermal equilibrium. Compare Appendix A.9.

6.7 Show that the transmission of power through a transmission resonator
for a coherent state |a) of frequency w incident from port (1) is in one-to-one
correspondence with the transmission of power through a classical resonator.

6.8* Show that for any pair of operators A and B the following relationship
holds:

Aexp(B)A™! = exp(ABA™Y) .

Solutions

6.4 This solution uses a generalization to the two-port resonator of Prob.
2.8. Otherwise it follows closely the derivation of Sect. 6.11. The equation of
the resonator mode is

dU 1
rr 1wo+—+———+ U+ —a1+ —a2+ no.

With an assumed time dependence exp(—iwt), we find

0(0}) _ \/2/Teld1 + \/2/7'52&2 + \/2/Toflo
T i(wo —w) +1/Ter + 1/Tea + 1)1

)
The excitation of port (2) is

~ 2 R
by = —ag +4/—U 3)
Te2
and therefore
b € : 2 € d 2 vo
ba(w) = —aa(w) + /Ti V2/Te181(w) + /2/Te2da(w) + /2/Toft0(w) ‘

(wo —w) + 1/Te1 + 1/Tea + 1/7,
4)

The mean square output for the two phases is
GP (@) (W), where i=1,2. (5)

Since the input is in a coherent state, all operator products should be put
into normal order. Then, only the contribution of the commutator remains:
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(B9 (W) (")) = (08 (w))?

11 2 2/ 2 2/

=—Slw-) |1 - = -
427 (w=w') Te2 (W—wo)?2+1/72 7o (w—wo)2+1/72}
11 ,

=120 )

where
1 1 1 1
o= — =

T Tel Te2 To

We get standard zero-point fluctuations. This is as expected, since in the
absence of laser action, a wave in an open waveguide must exhibit standard
fluctuations.

6.5 The equation for the output in terms of the input is

Bg = ’l"fil +iv1 - Tzfiz . (1)
The commutator of the output wave is

[Bs, BY] = r*[Ay, Al] + (1 - )[4z, A} = 1. 2)
Thus, (1) written as

Bs=rA +N ®3)
has acquired a noise source with the proper commutator:

[]\A/',]\A/'T]zl—rz. 4)
6.8 The identity is proven by expanding the exponential into a power series

A APy A-1 A Br i1

Aexp(B)A™' =AY AT
Consider one term in the expansion. We have

AB"A™' = ABA™' . ABA™'- ABA™'... ntimes.

By introducing this identity into the series, we prove the assertion.



7. Classical and Quantum Analysis
of Phase-Insensitive Systems

In Chap. 6 we investigated the quantization of open resonators and of waves
on transmission lines. We treated one example of a simple linear system,
namely a resonator coupled to a waveguide. Practical electromagnetic sys-
tems consist of RLC circuits, resonators, waveguide junctions, fibers, beam
splitters, and, of course, amplifiers, to name only a few. Such systems, if lin-
ear, are described classically by impedance matrices or scattering matrices
(Chap. 2) that are functions of frequency. This formalism is well developed
in the classical domain. In this chapter, we review the classical formalism
and its generalization to quantum theory. We define Hamiltonians which, via
the Heisenberg equations of motion, lead to equations that are in direct cor-
respondence with the classical circuit equations. If the multiports are lossy
or exhibit gain, they must contain noise sources in order to conserve com-
mutator brackets from input to output. The commutator brackets determine
the minimum amount of noise added to the signal as it passes through the
network. Hence one may determine the optimum noise measure achievable in
a quantum circuit directly from these relations.

Amplifiers with high gain provide a signal level at their output that is
“classical”, which, for example, can be viewed on a scope without any am-
bivalence as to what is being observed. T'wo observables whose operators do
not commute cannot be measured simultaneously. Yet, in a classical display
one may view observables whose operators do not commute, such as the in-
phase and quadrature components of the field amplitude. We shall show that
these can be observed simultaneously, but that the simultaneous measure-
ment of both observables is accompanied by a penalty of additional noise.

The Heisenberg equations of motion of the field operators have a close
correspondence with the classical equations of motion of the complex field
amplitudes. This is the correspondence principle that requires the emergence
of classical equations of motion for observables when quantum effects can
be neglected. The Schrodinger formalism, which expresses the time evolution
of the states rather than of the operators, does not display the correspon-
dence principle directly, since quantum states have no classical counterpart.
Conversely it is also true that the Heisenberg equations of motion do not
directly display quantum behavior, such as that contained in so-called entan-
gled states. Entangled states are a wellspring of paradoxes associated with
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quantum measurements. In preparation for their discussion in Chap. 14, we
study the peculiar properties of entangled states, using the Schrédinger for-
malism.

7.1 Renormalization of the Creation
and Annihilation Operators

In the analysis of waveguides, we found it convenient to use the operators
a(B) and a'(B) for the mode amplitudes, essentially a spectral representation
in B space. In this chapter, we analyze multiports excited by several wave-
guides that may have different dispersions: modes of the same frequency have
different B values in the different waveguides. In linear multiports, modes
of the same frequency in different input waveguides couple to each other,
and modes of different frequencies do not. Hence, the modes entering from
the different waveguides must be identified by frequency, not propagation
constant. There is a further problem. The quantization in a waveguide was
done for modes occupying a length L. In the excitation of a multiport from
different waveguides within a narrow band of wavelengths and/or frequencies,
the excitations from the different waveguides enter the multiport, interact,
and leave. They do so moving at their own group velocities. The lengths L in
the different waveguides must be in the inverse ratio of their group velocities
to be properly synchronized. For this reason it is appropriate to use operators
that do not depend on these length assignments. The operators are redefined
as follows. Remember that the photon number within the length L was given
by

~ ~

Al Ao, (7.1)
with the commutation relation
[Am’fi;] = 0nm - (7.2)

The photon number can be converted into a photon number flow by division
by L and multiplication by the group velocity
Aw,

Vi a1 At A = At A
photon flow = LAmAm 27rUgAﬂAmAm Al A, 5

(7.3)

where Aw,; = v4ApB is the interval of quantization. We introduce the new

notation
Amy/ Awg (7.4)
2w

These new operators, assigned to a frequency w and the frequency interval
Auwg, obey the commutation relation

a
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Aw
5ot q
[a,a"] - (7.5a)
when & and a! have the same frequency, and
[a,a']=0 (7.5b)

for a’s of different frequencies.
Operation on a coherent state by @, still an eigenstate of @, gives the result

ala) =4/ ——ala), (7.6)

so that the expectation value {aa'a|a) is

. v
(afalala) = “2al?, (77)

i.e. the photon flow of the coherent state. Strictly, a coherent state has a
bandwidth. The state is defined over a length L, and hence a time interval
T = L/vg. Outside this time interval another coherent state is defined, and
hence the duration of the coherent state is T' = 2m/Aw,. If communication
is performed with a sequence of coherent states, and the noise accompanying
the signal is to be properly filtered, a filter bandwidth Aw must be chosen.
In the subsequent analysis it will be assumed that the signal bandwidth and
noise bandwidth are made equal, and we shall drop the subscript “¢” on Aw.

7.2 Linear Lossless Multiports
in the Classical and Quantum Domains

Consider the excitation of a linear multiport from N waveguides as shown in
Fig. 7.1. The excitations of the waveguides at one frequency may be written
in terms of the N incident waves a; and the N reflected waves b;. Because the
circuit is linear, the b; are related linearly to the a; and no other frequency
components are generated by the excitation of the circuit. We form column
matrices of the excitation amplitudes a; and b;. The multiport is described
by the N x N scattering matrix S and the following relation holds:

b=Sa+s, (7.8)

where s contains the noise sources. A passive multiport at thermal equilib-
rium requires such noise sources in order to conserve the thermal radiation
from input to output. The spectra of these noise sources were evaluated in
Chap. 4.

In this section, we look first at some lossless multiports. Lossless multi-

ports have no internal noise sources and the scattering equation simplifies
to
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Fig. 7.1. A linear multiport excited by incident waves a;

b= Sa, (7.9)

where S is a unitary matrix. One of the simplest two-ports is a lossless,
partially transmitting, mirror with amplitude reflection r (see Fig. 7.2). Its
scattering matrix must be unitary, as proven in Chap. 2. Such a mirror must
also be reciprocal since it is described by the reciprocal Maxwell’s equations.
The reciprocity condition implies symmetry of the scattering matrix (Chap.
2). The unitarity condition for a complex matrix of second rank leads to two
real equations and one complex equation, four real equations in toto. Thus,
the eight real parameters of a complex matrix of second rank are reduced to
six by symmetry of the matrix, and further reduced to three free parameters
by the unitarity condition. Returning to the lossless mirror, we find that
we may choose arbitrarily the reference planes for the incident and reflected
waves, which disposes of two free parameters. Thus, a lossless two-port has
only one real free parameter. In the present case, it is the reflectivity r of the
mirror. Thus, the scattering matrix of a mirror is

B T —iv1 —1r2
s=| = ) . (7.10)

How does one describe a mirror quantum mechanically? The wave am-
plitude operators in the incoming and outgoing ports are the quantities @ of
the preceding section. The operator is assigned to one mode. Reflection from
the mirror constitutes a scattering event. Incident waves are transformed
into reflected waves. The transformation is described by an integral of the
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by by

Fig. 7.2. A partially transmitting mirror

Heisenberg equation of motion:

d i

Since the interaction is linear, the Hamiltonian must be a quadratic ex-
pression in the d;. (Remember the commutator removes one operator factor;
therefore the commutator of an operator with a quadratic Hamiltonian is lin-
ear in the operator(s).) If we suppress the natural time dependence exp(—iwt)
of the operators, we may assume a Hamiltonian of the form

H = h(Myyélag + Mynala,) , (7.12)

where My, = M3, because the Hamiltonian is Hermitian and thus M, =

Me'® My = Me™® with M real. In (7.12) we have omitted the contribution

of zero-point fluctuations, since it does not affect the equations of motion.
The equations of motion are

d . -

aal = —1M12a2 y (713)
4 ia = —iMpyd (7.14)
aaz = 2101 - .

The solutions of these equations are the functions exp(—iMT'). The meaning
of this exponential with a matrix as its argument is extracted from the Taylor
expansion. Its first-order term is

[0 Mol _ [0 €
—1[M21 0 ]T— 1[6_-[90 MT .

Its second-order term is

110 M 0 M| po_ 1| MaMy 0 T2
2 [Ma O My 0 2
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It easy to see that the Taylor series gives the solutions

co-imm) = [ D), i r19
and thus
a(T)| _ cos(MT)  —ie'?sin(MT) 1(0)
[dg(T)} - [—ie‘ie sin(MT)  cos(MT) } [ag(O)J ‘ (7.16)

The excitations after evolution over the time 7" must be interpreted as
the outgoing waves b; and bs. Thus we find correspondence with the classical
scattering matrix of the mirror, with 7 = cos(MT) and 8 = 0. The quantum
analysis implies losslessness, but not necessarily reciprocity, and thus it ends
up with an arbitrary phase angle, which can be removed from the classical
scattering matrix on the basis of reciprocity.

After this simple example of a two-port we may turn to the analysis of a
general lossless multiport of N ports by considering the Hamiltonian

H=ra'Ma, (7.17)

where M is an N x N matrix. Here we have arranged the operator excita-
tions into column matrices. The dagger indicates the Hermitian conjugate of
the operator as well as the transpose of the column matrix. The Heisenberg
equation of motion becomes

di =—iMa . (7.18)

Integration of the equation over a time T gives the scattered waves b in terms
of the incident waves,

b=Sa, (7.19)
with the scattering matrix
S = exp(—iMT) . (7.20)

It should be noted that the input and output excitations in the quantum
case refer to photon packets, whereas classically the excitations are travel-
ing waves. If the group velocities in the different waveguides are different,
the packets occupy different lengths, the lengths being in the ratio of the
respective group velocities.

Let us look at an important example of a lossless four-port, a beam splitter
(see Fig. 7.3). This schematic shows which excitation from each port makes
it to some other port. An input excitation in port (1) exits from ports (2)
and (3), an excitation in port (2) exits from ports (1) and (4), etc. Only two
numbers, the reflection » and a phase 8, describe the whole operation, because
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Fig. 7.3. Lossless beam splitter

the four-port has to obey the conditions of reciprocity (i.e. have a symmetric
scattering matrix) and power conservation (it must be unitary). If arbitrary
phases are removed by proper choice of the positions of the reference planes,
then the beam splitter is described by the following scattering relation with
a symmetric unitary matrix of fourth rank:

by
by
b3
b
0 T —iy/1—r2e7¥ 0 a,
. r 0 0 —ivV1-7129 | | a,
T -Vl —r2e 0 0 T as |’
0 —iV1 = r2el? r 0 N
(7.21)

both classically and quantum mechanically. In the latter case, the amplitudes
become annihilation operators. The scattering matrix of the beam splitter
(7.21) applies equally well to a waveguide coupler propagating forward and
backward waves, as shown in Fig. 7.4. The waveguide coupler is a lossless
four-port. A forward wave couples gradually to a copropagating wave in the
adjacent waveguide without coupling to the backward-propagating waves.
Backward-propagating waves couple in a similar manner to each other. Using
the fact that forward- and backward-propagating waves do not couple to each
other, and the constraints imposed by losslessness and reciprocity, we arrive
at the scattering matrix of (7.21).

The appearance of the operator evolution (7.19), in which an operator is
premultiplied by a unitary matrix, is a bit surprising to those of us who know
that, in the Heisenberg representation, the time evolution of an operator is
described by pre- and post-multiplication of the operator by a unitary matrix.
In the next section, we show that the two approaches are consistent when
applied to linear lossless multiports.
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Fig. 7.4. Lossless waveguide coupler

7.3 Comparison of the Schrodinger and Heisenberg
Formulations of Lossless Linear Multiports

Thus far we have quantized guided waves and resonant modes using the
Heisenberg representation. The Heisenberg representation is in strong corre-
spondence with classical field theory. If the system is linear, the mode an-
nihilation operators evolve in time in the same way as the classical complex
field amplitudes. Wave functions describing the state of the system are used
only when expectation values of the operators are evaluated. Further, the
wave functions used to find the expectation values are those of the initial
states of the operators. The time evolution of the system is contained fully in
the time evolution of the operators. This description has the advantage that
the correspondence principle is rendered self-evident. It has the disadvantage
that it does not display explicitly effects that are inherently quantum me-
chanical, such as the strange behavior of entangled states. Of course, such
quantum effects are still contained in the theory and can be extracted from
the expectation values of the field operators. When these peculiar quantum
effects are present, then the expectation values of the moments of the field
operators cannot be predicted from classical probability considerations.

In the Schrodinger representation, the operators are time-independent;
the wave functions evolve in time. The correspondence principle is not self-
evident, since wave functions have no place in classical physical theory. On the
other hand, entangled states, which are a wellspring of paradoxes associated
with quantum mechanics, emerge clearly in this representation. In fact, we
present the Schrédinger formalism with the intent to use it in Chap. 14 to
elucidate the behavior of entangled states and to present a resolution of the
Schrédinger cat paradox.

The evolution of the wave function in the Schrédinger representation is
given by

[ (t)) = U(6)[(0)) (7.22)

where U is a unitary operator related to the Hamiltonian by



7.3 The Schrédinger and Heisenberg Formulations 249
N 1
U(t) = exp (- ﬁHt> . (7.23)

The transition between the Schrédinger and Heisenberg representations fol-
lows from the expression for the expectation value of an operator. Taking the
annihilation operator A(t) as an example, we evaluate its expectation value
from the wave function |1(0)) in the Heisenberg representation:

(WBO)A®) () = BT ) AT ()Ip(0)) = (¥(t)|A(0) (1)) 720
7.24

This equation shows that either one may use the Schrédinger evolution of
the wave function as in (7.22), keeping the operator of the observable 4 at
its initial value A(0), or one may vary the operator according to the law

A@) = UT)A©O)T (@) . (7.25)

This approach can be extended to column matrices of observables. To indicate
the transition to column matrices we write the operators in bold type:

—A. (7.26)

The unitary operator U involves the Hamiltonian of the entire system:
H=h Z ( JkA Ak+ > (7.27)
3,k=1

The unitary evolution matrix has the form of (7.23) and remains a scalar,
rather than becoming a column matrix. The input state |¢) is now a product
state:

$(0)) = 41(0)) @ [$2(0)) ® ... ® [ (0)) = fI 165(0)) (7.28)

In the Schrédinger formalism, the state evolves according to the law
() = U@)I(0)) - (7.29)

In the Heisenberg formalism, the column matrix operator A evolves according
to the law

A@t) =UT@)A)T (@) . (7.30)

If the time evolution extends over a time interval T', the operator A(T) is
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A(T) = expliA (0)M A(0)T) A(0) exp[-iA' (0)M A0)T) . (7.31)

From now on we denote by the operator & its value at ¢ = 0. In the notation of
(7.19), A(T) = B, and hence the pre- and post-multiplication by the unitary
operator ought to be equivalent to premultiplication by the scattering matrix.
This equivalence is not obvious at first glance, but we now proceed to prove
it. For this we need an operator identity.

_ Consider the following function of the c number £ containing the operators
Q and R:

F(€) = exp(ER)Q exp(—€R) . (7.32)

We may expand this function of £ into a Taylor series in &. For this
purpose, evaluate df/d¢:

% = Rexp(ER)Q exp(—€R) — exp(€R)Q exp(~ER)R = [R, F(¢)] .

(7.33)
Repetition of this procedure gives the Taylor expansion
i 3 £df e df
56 = F(0)+ 11 de + 2 de? +...
(7.34)

o+ Sma+ SR BoN+... .
1ne- oo inm

Note that the right hand side of (7.31) is of the form of f(¢), with R =

ATMA, Q = A, and ¢ = iT. Thus, using the result just obtained and
noting that

PN ~t A A - A P A ap s
(R, Q] = [A' MA, A] = [AIMy;A;, A = My;(AYA; Ay — AL ATLA))
= —M;0uA; = —My;4;
(7.35)

we find that the commutator is equal to —M A. Repeating the same algebra,
we find

[IA%’ [ﬁt’ Q“ = M2‘21 ’ [IA%’ [IA%’ [F}’ Q]“ = _MBA 3 (736)
and so forth. Hence
A(T) = A— (i/1)MTA — (1/2))(MT)2A + (i/3)(MT)3A + ...

= exp(—iMT)A .
(7.37)
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Thus, we have recovered (7.19). The present exercise confirms the legitimacy
of multiplying an excitation operator from one side with a unitary operator to
describe its time evolution in a linear system, whereas when the Heisenberg
formulation is first encountered, the time evolution of an operator is described
by pre- and post-multiplication of the operator by a unitary matrix and its
Hermitian conjugate, respectively.

7.4 The Schrodinger Formulation and Entangled States

Thus far, we have used the Heisenberg representation to describe the effects
of optical elements on the annihilation operators, stand-ins for the classi-
cal complex field amplitudes. The Heisenberg representation of optical phe-
nomena takes the form of classical equations of evolution of the observables
represented by the operators. In the Schrédinger representation, the wave
functions change, and not the operators. It is of interest to compare the two
approaches. We may follow the change of the wave function through a phase
shifter or beam splitter, just as we have followed the change of the annihila-
tion operator through a phase shifter or a beam splitter.

Let us consider first the action of a phase shifter. Since we shall analyze
operations on number states, it is convenient to revert to the annihilation
and creation operators A and A, which have the simple properties of (6.44)
and (6.45) when operating on a number state. We shall omit the subscript m.
In the Heisenberg representation, an excitation described by the annihilation
operator A, when passed through a phase shifter producing a phase shift 6,
is described by multiplying A by exp(if). We have seen that this operation is
equivalent to a pre- and post-multiplication of the operator by exp(—iBATA)
and exp(iBATA), respectively. This means that, in the Schrédinger represen-
tation, the wave function is multiplied by exp(iBATA). Consider first the case
of a coherent state |c). Detailed evaluation gives

— e=ilal?/2 N ey (ign) e
e ngo p(ifn) =ln) (7.38)

. g )n .
= g ilel*/2 (Gl n) = |ea) .
S A = %)

Thus, the passage of a coherent state through the phase shifter transforms
the state |a) into the state |eia). The result is simplicity itself. Indeed, the
complex parameter a of the coherent state describes the endpoint of the
phasor in the complex plane, in one-to-one correspondence with the complex
amplitude of the electric field. This amplitude behaves classically.
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Next, consider the transformation of a photon state |1) or |0) by a phase
shifter. We have

exp(i9ATA)[1) = exp(if)[1) . (7.39)

Even though the photon state [1) does not have a well-defined phase, pas-
sage of the photon state through a phase shifter does impart a phase shift.
Interference of the photon state with its phase shifted version can lead to
interference fringes. In a similar way we have

exp(i0AT A)|0) = |0) . (7.40)

The ground state remains unchanged. This shows that the ground state is
unaffected by a phase shift, because it cannot lead to interference with itself.

Next, we take up the operation of a beam splitter. A beam splitter is
described by the Hamiltonian

H=nMA'B+ M*Bt4) . (7.41)

Integration of the Schrédinger equation of motion

dy) _ i,
o = RHIY) (7.42)
gives
i
9(r) = exp (=3 BT j(0)) (7.43)

For convenience we choose M real and positive. In order to simplify the
notation, we write

T r=o(A'B+BA), (7.44)

where ¢ = MT. Let us start with a single photon in port (1) and vacuum
fed into port (2). Then, the input state is

% (0)) = 1) ®0) . (7.45)

The output is obtained by expanding the exponential into a Taylor series

W)= Y m( - 3AT) el
(7.46)
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Now consider the effect of the operation (A"l% + l%"fi) on the product
state |1) ®|0), where the operators A and At operate on |1) and the operators
B and B! are applied to |0). We have

(A'B+ B'A)1)®10) = |0) ® 1) . (7.47)
In a similar way we find
(AtB+ BtA 1) @(0)=|1)®|0). (7.48)

In this way we find

1) ®0) + "0y e 1)

n=even n=o

"— (—i¢ ) i‘” i¢ (7.49)

= cos P|1) ® |0) — isin|0) ®|1) .

The output wave function is a coherent superposition of two states, a
simple example of an entangled state. Entangled states have no classical
analog. Let us look at this state in greater detail. Although photon states are
not classical in their nature either, classical language can be applied to many
processes that transform photons. The input is in a product state |1) ® |0).
The density matrix p (Appendix A.10) at the input is the product of two
diagonal density matrices:

p(0) = 1) ® |0)(0[ @ (1] = [1){1] @ [0){0] - (7.50)

The probability of finding one photon in the input port (1) is the value of the
diagonal element |1)(1|, which is unity. Similarly, the probability of finding
zero photons in the input port (2) is the value of the diagonal element |0){0],
also equal to unity. At the output of the beam splitter, the density matrix is

cos? ¢|1)(1]| ® |0) (0] + isin ¢ cos $[1)(0] ® |0)(1|
o(T) = . (7.51)
—isin¢ cos |0) (1] ® |1)(0] + sin® ¢|0) (0] ® (1|(1]

The density matrix is not diagonal, it is made up of a sum that contains
off-diagonal elements |1)(0| ® |0)(1| and |0)(1] ® |1)(0|. This is the density
matrix of a so-called “entangled state”. Measurements on the system can
vield outcomes with no classical interpretation, because the off-diagonal ele-
ments of the density matrix may contribute terms to the expectation values
that “interfere”, thus preventing a classical interpretation in terms of the
probabilities of photons exiting in ports (3) and (4). Appendix A.11 looks at
some further operations of the beam splitter.
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The case of coherent inputs into ports (1) and (2) described by
[¥(0)) = la) ®18), (7.52)

could be analyzed in the same way. However, since the states |&) and |3) are
not eigenstates of the creation operators 4! and i)T, the analysis gets quickly
out of hand. There is a better way to approach the problem, as is done in the
next section. Suffice it to state here that the operation of the beam splitter
leads to the output wave function

|(T)) = | cospa —isin@B) ® | — isinpa + cos pf8) . (7.53)

The state remains a product state; the complex amplitudes of the coherent
states add like classical complex field amplitudes. No entanglement occurs.

7.5 Transformation of Coherent States

The Heisenberg representation of linear systems transforms incident-wave
operators into outgoing wave operators in a way described by a simple scat-
tering process and bears a close analogy to the classical description. This is
one of the advantages of the Heisenberg representation, since it is one of the
manifestations of the correspondence principle: when the observables are ex-
pressed in terms of operators, the equations of the operators assume the form
of classical equations of motion. The correspondence principle is not obtained
as easily in the Schrédinger representation. Yet, it is of interest to derive it
in this representation as well, since then we can show what input states bear
the closest analogy with classical physics. In his seminal paper, Glauber [66]
introduced expansions in terms of coherent states with the intention to clar-
ify the correspondence between classical optics and its quantum description.
“Such expansions have the property that whenever the field possesses a clas-
sical limit, they render that limit evident while at the same time preserving
an intrinsically quantum-mechanical description of the field.” [66]

Consider a linear network represented by the following Hamiltonian in
normal order:

H = M AL A, (7.54)

where M is a Hermitian matrix, and we use the Einstein summation conven-
tion. Suppose that the input state |¢) is a product state of coherent states

) =[] les) - (7.55)
J
Schrédinger’s equation of evolution leads to the differential equation

0 inx
=) = —=HlY) . (7.56)
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The following manipulations are greatly simplified if we introduce the
renormalized states of Glauber [66]

llag) = /2 |a) = > \/_]rﬁ'"") . (7.57)
!

These functions have the remarkable property that operation by the creation
operator is equivalent to taking a derivative with respect to a [66]:

i) = 2 |l

Ajllag) = aaj”aj) ) (7.58)
as can be easily confirmed using the properties of the creation operator op-
erating on a photon state. We now assume that a coherent product state
maintains its product character as it evolves according to (7.56). We shall
then show that this assumption is correct and leads to a simple solution of
the Schrédinger equation. The state |0) of (7.55) can be written

9) = e Zilt 2 [ flow) . (7.59)
Z

Still following the assumption that the solution can be represented as a prod-
uct state of coherent states, we take into account that energy conservation
ensures time independence of the sum over the squares of the |a;|. The time
derivative of (7.59) is thus

0 2 0 0
— om X lasl?/2 . H ) )
ath//) € (ataj> an ; ||a£> (7 60)

Next, consider what form the same equation takes when operation by the
Hamiltonian operator is carried out according to the Schrédinger equation
(7.56). When the ansatz (7.58) is introduced into (7.56) we obtain

0 . ts S 1al?
EWJ) = —lekA;Ake 2z lesl /2H||ae)
¢
(7.61)
— e Silear2pg o O
= —ie Mg 3a; 1;[ ||cxe) -
We find that (7.60) and (7.61) are consistent when
0 .
aaj = —iMjray . (7.62)

We have found that the complex amplitudes of the coherent states of the
different modes obey linear equations of the same form as the annihilation
operators of the modes. These are the classical equations of motion of the
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mode amplitudes. Our analysis has accomplished several objectives. First of
all, we have found classical equations of motion for the amplitudes of the
coherent states. In this way we have established a correspondence principle
in the Schrédinger picture. Secondly, we have proven that a state constructed
as a product of coherent states remains such a product state as it evolves in
a linear system. Thirdly, since coherent states have Poissonian photon statis-
tics, we have proven that Poissonian statistics are preserved in the scattering
process of a linear system. We shall confirm this result in Chap. 9 using a
different approach.

7.6 Characteristic Functions
and Probability Distributions

In the analysis of linear circuits, such as discussed in Chap. 5, one deals with
amplitudes of the electric field. Hence, in the context of linear circuits one
is interested in the probability distribution of the field. It is clear that the
so-called “characteristic function”, defined by

C(€) = (exp(i€E)) , (7.63)

contains all the moments of the electric field. Indeed, expansion of the expo-
nential gives

o0

i&n .
cE) =Y, —T{E") . (7.64)
n=0 .
We now turn to the evaluation of the characteristic function of the electric
field, using the creation and annihilation operators:

C(e) = <exp [ig-;-(/i‘f + A)]> . (7.65)

An expansion of the exponential involves products of the annihilation oper-
ators in various orders. This is an inconvenient form of the expansion. The
analysis is greatly simplified through the use of the Baker-Hausdorff iden-
tity [66], which puts exponentials of sums of noncommuting operators into
normal order. If A and B are operators, and their commutator [/i, B] is a
¢ number, then the Baker-Hausdorff theorem states (see Appendix A.12)

exp [i{(/i + B)] = exp(i€ A) exp(i¢ B) exp (52—2 [/i, B]) . (7.66)

7.6.1 Coherent State

When this theorem is applied to a coherent state |a) we find
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0(6) = exp (-5 ) (ol exp (16A"/2) exp (164/2) o
= exp (—-%2-) exp(ifa* /2) exp(i§a/2) (7.67)

2
= exp (—%—) explié(a* + a)/2] .
This is the characteristic function of a Gaussian for an E field centered at

E;, = (a* + o)/2. Indeed, using the classical interpretation of the character-
istic function of a field E with the probability distribution p(E), we obtain

ce = [ "~ 4E p(E) exp(i¢ E)

—00

o 1 E - E,)? ,
= - dEm exp (—(—iﬁl) exp(l&E) (768)

= exp (—52;’ 2) exp(i€E,)

where we have used a Gaussian distribution of mean square deviation o,
centered around E,. We find indeed that the characteristic function of a
coherent state is equal to the characteristic function of a Gaussian with o =
1/2 and centered at E, = (o + a)/2. The characteristic function for the
quadrature field (1/2i)(A — A") gives the same kind of expression, with E, =
(a — a*)/(21). Let us look at some further properties of the characteristic
function in the classical interpretation. If we expand C(£) we have

cle) = /oo dE p(E) expli¢ E) = lw dEp(E)Z (15):“Em

—00

(7.69)
_ Z 15)

The characteristic function contains the moments of the field as the coeffi-
cients of the expansion.

The expansion of the characteristic function of a Gaussian distribution
with zero average field (E, = 0} gives

exp (—5—220—2> = %:( 1)"‘ (522> o™ (7.70)

Comparison of (7.69) and (7.70) gives zero for all odd-order moments, and
for the even-order moments
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(EP™) = %—Z%ozm : (7.71)

Hence, all moments of a Gaussian distribution with zero average field can
be expressed in terms of 2. This is why a Gaussian distribution is fully
described by its mean square deviation.

7.6.2 Bose—Einstein Distribution

Next we evaluate the characteristic function of the in-phase field component
for a Bose—Einstein distribution:

=S caln), (7.72)

with
{enCp) = dnmpB-E(n) . (7.73)

In analogy with (7.67) we find

& A A
c() = exp (-5 ) (Wl exotied'/2) explic/2)lw)
2 1 t 1
oo (€)1 wz“/‘/z Z(EA/2 “

- e (-5) Sy s S pa-sn(n ~1)(n =7 +1).
(7.74)

The characteristic function contains the falling factorial moments F,. of the
Bose-Einstein distribution. These will be derived in Sect. 9.1. Here we use
the result (9.13) of Chap. 9. We find the following simple answer for (7.74):

2r
0© = exp (-5 ) S oy

2 2 r
—ew (-5) S e (7.75)

~ exp (_52(1;2@))) _

According to (7.68), this is the characteristic function of a Gaussian distribu-
tion of zero average field with the mean square deviation 02 = 1/4 + (n)/2.
The quadrature field of a Gaussian distribution has the same fluctuations.
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7.7 Two-Dimensional Characteristic Functions
and the Wigner Distribution

In the preceding section we looked at the characteristic function of the in-
phase and quadrature components of the electric field. The Fourier transform
gave us Gaussian probability distributions of these components. The Fourier
transformation of the characteristic function of a single observable always
leads to a positive definite function that can be interpreted as a probability
distribution.

Two classical random variables x; and x5 are described by the joint prob-
ability distribution p(z,,3), which is the Fourier transform of the charac-
teristic function

C(€1,8) = (exp(i1z1 + i&a72)) - (7.76)

Indeed, let us evaluate (7.76) with the aid of the joint probability distri-
bution p(z;, z2):

C(,6) = /dﬂil /dzzp(zl,zz)exp(i&zl +i€23) - (7.77)

The Fourier transformation of C(£1,€5) gives

(271r)2 /d&/dﬁzexp(—i&Xl — i€ X5)C (&1, &2)

= -(2—;)—2/(1931/‘1932/‘151 /d€2exp[—i€1($1 - Xy)

—ié2(z2 — Xa)|p(1, 22) (7.78)

= /d_’l:l/d.’tzé(.’l‘l —X1)5(1:2—X2)p(.’111,-'1?2)

= p(XlaX2) .

Thus, the Fourier transform of the characteristic function of two random
variables gives the joint probability distribution.

The characteristic function of two quantum observables £, and %5 is well
defined as

C(&1, &) = (exp(i&i 21 + i6222)) - (7.79)

An expansion of the exponential in powers of £; and & contains terms like
€T (274T). Thus the characteristic function gives full information about
the moments of the observables. However, the Fourier transform of the char-
acteristic function of two noncommuting observables is not always positive
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definite. Even if positive definite, it cannot always be interpreted as a prob-
ability distribution in the classical sense. This is shown by the following
example.

We consider the entangled state produced by a 50/50 beam splitter as
derived in Sect. 7.4. There we found that a beam splitter produces the wave
function

|9) = (cos ¢[1)1 ®[0)2 ~ isin$|0)1 ® [1)2) . (7.80)

We have added subscripts as a reminder of the fact that the A operator
operates only on the wave function with the subscript 1, and the B operator
only on the wave function with the subscript 2. For a 50/50 beam splitter
¢ = 7 /4, and

) = —}5<|1>1 ®10)2 —10)1 ® [1)2) . (7.81)

The characteristic function of the photon number at the two outputs is

C(&1,&) = (expli(GATA + &BTB)))

i

%(2(0| ®1 (1] +iz(1] ®; (0]) expli(61 AT A + &,B1B)]  (7.82)

x(|1)1 ® [0)2 — i|0); ® [1)2) .

Thus, we obtain

Clér, &) = lexplits) + exp(i&a)] (7.83)

The inverse Fourier transform gives for the probability of the photon numbers
n1 and ng

1 1
p(ni,ng) = 3 forn; =1,n, =0, and 3 forn, =1,n1=0. (7.84)

This result seems very “classical”: if a photon enters the beam splitter from
the input port (a), it ends up with probability 1/2 in either of the two output
ports. This classical interpretation is, however, misleading. To see this, pass
the output of the beam splitter through another 50/50 beam splitter. The
classical interpretation would say that we pass the photon that ended up
with probability 1/2 in one of the output ports through the second beam
splitter and again it would end up with probability 1/2 in either of the two
output ports. We do the same for the events when the photon ended up in
the second port of the first beam splitter. Again the photon ends up with
equal probabilities in either of the two output ports of the second beam
splitter. Thus the answer is that we see a photon in either of the output ports
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with probability 1/2. The quantum problem arrives at a completely different
answer. Instead of ¢ = m/4 in (7.80), the two beam splitters in cascade are
described by ¢ = m/2. The input photon to the two beam splitters ends up
with certainty in output port {(a). This is a consequence of the coherence in
the wave function at the output of the first beam splitter. Wave functions
add, not probabilities!

The quantum nature of a situation emerges when one deals with the
characteristic function of two noncommuting observables. The characteristic
function itself is well defined, since it deals with the weighted moments of an
observable that is the linear combination of the two observables &1%; + £245.
The Fourier transform of the characteristic function is the Wigner function

2
W(z1,22) = (o= ) [ dés [ deaCler,60) exp(—itaz) — itazs) . (7.85)
2T

The Wigner function integrated over one of the two variables is positive
and can be interpreted as a probability

p(z1) = /dz2 W(zy,z2) . (7.86)

However, if one attempts to interpret the Wigner function as the joint prob-
ability of both observables, one may run into negative values of the function.
The experimental measurement of the Wigner function of particle diffraction
through a double slit has actually been carried out, in which £; is the the po-
sition § and 9 is the momentum p [69]. Appendix A.13 evaluates the Wigner
function for the position and momentum of a particle.

On the other hand, the Wigner function of a coherent state shows no
idiosyncrasies, a fact which reinforces the picture of coherent states as quan-
tum states with a classical character. Let us evaluate this Wigner function
for a coherent state. It is convenient to recast the characteristic function in
terms of creation and annihilation operators. The characteristic function can
be written as

C(&1,&) = (expli(&;A;)]) = (exp(n*A — nAl)), (7.87)

where n = (1/21)(£; + i€2), and where we use the Einstein summation con-
vention. The Fourier transform gives the Wigner function:

Wiaan = (&) [ at. [ detolits (3, - 4,

- <%>2 / dn (expln* (A ~ A) - (AT — A7) (7.88)

=W(4A).
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The two expressions for the Wigner function are equivalent. The first expres-
sion is written in terms of the real coordinates A; and A; and the Wigner
function is a function in the A;—Aj plane. The second expression uses com-
plex notation and creation and annihilation operators. The integral is a func-
tion in the A;-iA; complex plane. If one is in doubt about how to carry
out the double integral in the complex plane, one may always resort to the
two-dimensional Fourier integral with real variables.

Note that the integral of the Wigner function over A; and A is unity.
Indeed,

/dA1 /dA2 W (A,, A2)

_ (2_17;) [am [ aa, [ der [ dgatensiies(d; - 453
_ (%) [aas [ [ [ agaexpticsas)iennies )

=/d€1/d€25(51)5(52)<exp(i€j*‘ij)) =1.

(7.89)

In this respect, the Wigner function satisfies a condition of a probability
distribution. Let us now evaluate the Wigner function for a coherent state
|a). For this purpose we put the kernel of the integrand in (7.88) into normal
order using the Baker—-Hausdorff theorem:

exp[n* (A — A) — n(At - 4%)]

~ . IT’|2 (790)
= exp[-n(AT — A")) exp[n*(A — A)]exp ( - _2_) )
We evaluate next the expectation value of the kernel:
Af * %/ A A IT’|2
(o exp[-n(Af — 4")] exply” (4 — )] exp { 11~ ) o)
(7.91)

2
= exp[—n(a* — A*)] exp[n*(a — A)]exp (_ %) .

The arguments in the exponentials can be written in terms of the original
coordinates £ and &2 and in terms of the in-phase components A; and As.
When this is done and the Fourier transformation (7.85) is carried out, we
obtain for the Wigner function

W (A1, Ag) = 51; exp{—2[A1 — Re(a)]2} exp{—2[As — Im(a)]2} . (7.92)
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\

W(Ay,A2)

Fig. 7.5. The Wigner function of a coherent state

This is the Gaussian shown in Fig. 7.5 in the A;—A3 plane. This Gaussian
was illustrated by the shaded circle in Fig. 6.1. The probability distribution
is in perfect correspondence with that of a classical signal amplitude with
additive Gaussian noise.

7.8 The Schrodinger Cat State
and Its Wigner Distribution

In this book we are mainly interested in the quantum noise of electromagnetic
fields at the optical frequencies that are used in optical communications. In
all practical situations, these fields are relatively intense, in that they carry
many photons per mode. The quantum noise of such fields bears a close re-
semblance to classical fields in the presence of additive thermal noise and
thus permits simple interpretations. In this context one does not encounter
the strange behavior exhibited by optical fields with only a few photons.
However, optical fields of higher intensities may also exhibit strange behav-
ior if they are prepared by a nonlinear system sensitive to the presence or
absence of a photon. Quantum states of this kind are called Schrodinger cat
states [70]. The name derives from Schrédinger’s thought experiment con-
cerning the prediction of the state of a cat whose life or death is determined
by the outcome of a quantum measurement. How such states can be gener-
ated in principle will be discussed in Chap. 12. The Schrodinger cat thought
experiment itself will be discussed in more detail in Chap. 14, where we shall
attempt to show that the seeming paradoxes associated with this thought
experiment can be removed by a proper definition of the experiment that de-
termines the fate of the cat. At this point we consider Schrodinger cat states
of a photon field in order to show the strangeness of the associated Wigner
function.
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An example of a pure state is a photon state |n) or a coherent state o.
An example of an entangled state was considered in the preceding section, of
a photon state passing through a beam splitter. Entangled states need not
involve two observables, such as the photons in each of the ports of the beam
splitter; they can be constructed in the Hilbert space of one observable. Thus,
the state [1)) formed from the superposition of two coherent states

[¥) = N(e™*|a) +€%|8)) , (7.93)

is an entangled state. Here N is a normalizing factor to ensure a unity magni-
tude of (1[¢)). In order to evaluate N we need to know {(a|3). This projection
is found easily using the photon state representation of a coherent state:

(ol = 1o /21P12 3 ) S

nlml!

n,m

n
= e-lal?/2,-18] /2Za "B (7.94)

= exp[~(lal® +|8]*)/2} exp(e”B) -

In this way one finds for NV

|_1‘}'|—2- =2 [1 + cos(2) + ¢) exp (j_ql_;l_@ﬁ)] , (7.95)

where ¢ = arg(a*3). Let us consider the state (7.93) with
[¥) = N(e™/4|a) + e7/4| - a)) (7.96)

and evaluate its Wigner function. We must evaluate projections with the bras
and kets of a and —a. The four expectation values in the kernel of (7.88) are
the following.

Self-term (a||a):

2
(ol expln(A! — 4" expl (A~ ] exp ( - 12 ) (7.972)

2
= explonta” - A% explr(a — A exp (- 12).
Self-term (—al| — a):
(ol exp[~n(A" — A%)] expln’ (A - 4)]exp (— 7>| —a)  (7.97b)

= exp[n(a” + A*)] exp[—n*(c: + A)] exp ( B Pﬁ) :

Cross term {—calla):
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(~alexpl-n(AT — A%)] exp[n*(4 — A)]exp ( ik )ra> (7.97¢)

= exp[n(a* + A*)]exp[n* (o — A)] exp (— @) exp(—2la|?) .
Cross term {a}| — a):

(ol expl=n(A" — 4*)] expl-n*(4 - 4)] exp ( - w)| Ca)  (r97d)

2
= exp[-n(a* — A*)] exp[-n*(a + A)] exp ( - %) exp(—2|a?) .

With these four terms we construct the kernel in the Fourier transform (7.85)
that leads to the Wigner function. The arguments in the exponentials can
be written in terms of the original coordinates £; and &; and in terms of the
in-phase components A; and A;. We assume for simplicity that o is real.
Then

Wi, D) = (5 ) s exp(-249

x{exp[—2(A; — @)?] + exp[-2(4; + a)?] (7.98)

+2sin(4ad;) exp(—242)} .

If the state were an incoherent superposition of the two coherent states
|a) and | — a), the Wigner function would consist of two Gaussian peaks at
Ay = +a, Ay = 0. We shall denote these terms the “self-terms”. The quantum
character of the Schrédinger cat state is expressed by the coherence beat at
the origin at A; = 0, Az = 0, which we shall call the “cross term.” The cross
term depends on the phase of the superposition of the states |a) and | — ).
Had we used the state |) o |a) + | — @), the beat term would be a cosine,
rather than a sine. The cross term is not positive definite, indicating that
the Wigner function does not allow an interpretation in terms of a classical
probability distribution. The Wigner function is shown in Fig. 7.6. We also
see that one may not define a probability of the field being either in the state
|a) or | — a).

The Schrédinger cat state illustrates the peculiar nature of entangled
states. Clearly, the Wigner function of Fig. 7.6 does not permit an interpre-
tation in terms of a signal amplitude with additive noise. This is in spite of
the fact that the parameter o could be large, the photon number of the state
could be large, i.e. the state could have an intensity that is “macroscopic”.
Entangled states do not occur in optical communication systems operating
with large photon numbers, since these states are extremely fragile, as we
now proceed to show. The quantum beat, the cross term, is destroyed by
the loss of a very few photons. To see this, let us pass the Schrédinger cat
state through a beam splitter. The state after the beam splitter is easily
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W(A4, Az)

W(0,A3)

()

-2

Fig. 7.6. The Wigner function of a Schrédinger cat state: (a) a = 2; (b) a = 4i
(c) W(0,A2);, a =4
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evaluated for each of the two components of the product state entering the
beam splitter, the second port being unexcited. The state is a superposition
of products of coherent states, which remain products of coherent states after
passage through the beam splitter. The output state is

) = N(e™*|cos¢ @) ® | —ising a) + e™ /4| cos b o) ® |ising o)),
(7.99)

where N is a new normalization constant. The Wigner function of the cat
state now involves four new projections with pairwise combinations of the
product states. If the beam splitter lets most of the Schrédinger cat state
through, ¢ <« 1, the self-terms remain unchanged when cos ¢ is replaced by
unity. The cross terms involve the projection

(~isin¢ alisin ¢ o) = (—igaliga) = exp(—2|dal?) . (7.100)

The term in the exponent is twice the number of photons siphoned off
by the beam splitter. The cross term is decreased exponentially with the
number of photons lost by the Schrodinger cat state. Once the cross term is
removed, the Schrodinger cat state becomes an incoherent superposition of
two coherent « states, a state with classical probabilistic character.

7.9 Passive and Active Multiports

In the preceding three sections we have studied the probability distributions
of the in-phase and quadrature components of the field of a coherent state,
and the Wigner function of a coherent state. We evaluated the Wigner func-
tion of a Schrodinger cat state in order to show the peculiar behavior of such
special quantum states. However, as mentioned earlier, our main interest is
in the simpler case of linear systems with quantum noise that is additive to
the signal amplitude, in analogy with linear noisy classical networks. Our
objective is to compare the behavior of linear quantum multiports with their
classical counterparts.
The classical description of a passive or active linear multiport is

b=Sa+s, (7.101)

where a is the column matrix containing the signal waves, b is the matrix
containing output waves, and s contains the noise sources. If the multiport
is passive and at thermal equilibrium, the noise sources are evaluated as
shown in Chap. 4. Active multiports contain media that provide gain. The
media are never strictly linear in the sense that excitation at one frequency
Produces a response whose amplitude is proportional to the amplitude of the
excitation field and that no mixing of different frequency components occurs.
Since every medium with gain saturates, nonlinear frequency mixing occurs.
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Thus, active systems can be described as linear multiports only after certain
linearizing approximations have been made. Further, active multiports cannot
be at thermal equilibrium, and their noise sources must be determined by the
physics of the gain mechanism.

The quantization of lossless systems has led us to scattering-matrix de-
scriptions of the output in terms of the input. Systems with loss or gain are
physically more sophisticated. We have seen how loss can be treated as cou-
pling to a reservoir of oscillators. Gain can be treated analogously, where the
oscillators must now be able to supply energy to the system. The complexity
of this analysis can be avoided if we adhere to the principle of commutator
conservation and introduce sources that will ensure such conservation. Thus
let us look at a multiport with loss or gain. This multiport is described by
the operator analog of (7.101),

b=Sa+3s. (7.102)

The incoming waves contained in the column matrix @ and the outgoing waves
contained in b are waves on open waveguides with commutators that are their
fundamental physical characteristics. In the normalization introduced in Sect.
7.1 (compare (7.5a) and (7.5b) with Aw, — Aw),

b,b'] = [a,a!] = =21 (7.103)

Using the equation for the multiport (7.102), the implication of (7.103) is
best evaluated using subscript notation:

[b:, 1] = [Suxéix + 31, Sjea} + 31 = [Sikdix, SJe}] + (3, 81]

7.104
= SieS% + [8:,81] = A, (7109

€58 195 o i

since the mode amplitude operators and noise source operators commute. We

find for the commutators of the noise sources

. Aw .
[§i,3;] = —2‘;(51' — SieS3,) (7.105)
or, in matrix notation,
A
3,5 = 2—7‘:’(1 ~ssty. (7.105a)

Let us apply this relation to a section of a lossy waveguide with a power
loss £(< 1) and a scattering matrix relating the input wave to the output
wave

1 V€
S = [\/Z | } . (7.106)
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We find from (7.106)

A a s n A s a
(51,81 = [52,8}) = (1 - £)2—: and [5,8]]=0. (7.107)

It is possible to justify physically the use of an operator noise source for
conservation of the commutator. Consider the case of a lossy waveguide. The
output power is less than the input power, because some of the power is lost
on the way. This situation is represented equivalently by a waveguide coupler
as shown in Fig. 7.4, where a; produces the outputs b3 and b,. If we did not
look at waveguide (3), we would conclude that the waveguide was lossy; part
of the power has been lost. Starting with the equation 132 = So181 + So4dy,
suppressing subscripts in the spirit that we are looking only at an incident
wave @ and transmitted wave b, we would write b = v£a + §, with VL = S21
and § = Sp4G44. Clearly, a noise source has appeared, which in the present
case of a coupler can be identified with the input to the second guide (4).
If the guide is unexcited, the noise is due to zero-point fluctuations. The
commutator of the noise source is

(5,81 = |S24|?[Ga,8}] = |S2a2 =1 = |Smu|? =1 L. (7.108)

Thus, we have recovered the commutator of the noise source that accounts
for the conservation of the commutator bracket. The noise comes from the
unexcited port, which is fed only zero-point fluctuations. In this way we have
justified the model of a loss element, starting with a fully reversible system.
The irreversibility is introduced by suppressing the accounting for the outputs
in the other waveguides.

The noise source operators associated with a lossy segment of waveguide
have the usual interpretation of annihilation (§;) and creation (§I) operators,
since £ < 1. If the reservoir modes associated with the noise source are in
the ground state, then the expectation value of the operator product §:‘ §;is
zZero,

(01515;10) = 0. (7.109)

On the other hand, because of the commutation relation (7.107), the expec-
tation value of the operators in reverse order is

Aw
5.5710) = §..(1 — LY==
(013;5710) = d8i5(1 ~ L) 5 (7.110)
If the waveguide has power gain G (> 1), we obtain
1 VG
= , 7.111
[\/E’ 1 } (7.111)

and
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(51,31 = (62,80 = (1 G)%‘) and [1,8]] = 0. (7.112)

In the case of a segment of waveguide with gain, the roles of creation
and annihilation operators are reversed, since G > 1. This has profound
consequences, already partially explored in Chap. 6. With the gain reservoir
modes in the ground state, and the operator §; interpreted as a creation
operator and $; as an annihilation operator, we have the relations

Aw

(013:8}10) =0 and  (0[3]85]0) = 6,5(G — 1)

(7.113)

In Chap. 9 we shall use the commutators to derive the full probability
distribution of the output photons from an amplifier. Here, let us evaluate
the photon number flow and the field fluctuations for a passive structure of
loss £ and an active structure of gain G. We assume that the reservoir of
the noise sources is at absolute zero, in the ground state (since at optical
frequencies with fiw > k@, room temperature can be approximated by zero
temperature for all practical purposes). We assume that the signal is in a
coherent state . Thus, the input state is the product state |«}|0). We have
for the photon number at the output

(0l{alblbala)[0) = (Ol(el[(VLal + 8]) (Va1 + 1))l 0)

v (7.114)
= -I—f[l|04|2 .
The output photon flow is the input photon flow reduced by a factor of L.
The mean square fluctuations of the in-phase field component at the input
port (1), indicated by the superscript (1), are:

1., ata s oAt oa .
:Z(|a§2+a§a1+alaf+a%|)—”fg(a +a)? (7.115)
_ 1oy s * 2 o 2y 14w
_4L[a +2a'a+a’+1—(a +a)]_427r,

These are the standard zero-point fluctuations. If we repeat the calculation
(7.114) with the b operators replacing the a operators and use the commu-
tation relations for the noise sources, we find the fluctuations at the output
port (2) to be
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(B = (BPN? = 2106 + 52 ~ (164 +b2))7)

= TWIVEa] +8)) + (VEar + )] - 3 2(VZa® + VZa)?

4
1
=ZU—£’[£(a*2+2a*a+a)+£+(|s 5 + 581 — (VLa* + VLa)? )]
_ 14w
T 492
(7.116)

The field at the output experiences the same zero-point fluctuations as
the input. The situation is very different for an amplifier. We have for the
expectation value of the output photon number flow

(0)(alblba|)|0) = (0l(al[(VGal + 8])(VGay + §1)]|)[0)

(7.117)

I

Yg 11412 _ 4w
£Glal® +(G-1)7—.

The output photon number flow is G times the input photon number flow
plus the contribution of amplified spontaneous emission, (G — 1)/(Aw/2™).
Whereas the input fluctuations are the same as those for the lossy waveguide
under the same input conditions, the output fluctuations of the in-phase field
component are

(B — (B) = ZU(6] +B)%) — (64 + Ba))?)
1

= ~{([(VGa} + 8)) + (VGa + 51)]*)}
(7.118)

—l&\/_a +VGa)? =12G—1)Aw
4 27

= (EP?) — (EP)?

The fluctuations of the quadrature component are found to be equal to those
of the in-phase component, as is easily confirmed by a detailed evaluation.
The gain increases the fluctuations. In the limit of high gain the fluctuations
are twice the value of the amplified zero-point fluctuations at the input.
The fact that the mean square fluctuations of the field have twice the value
of the amplified zero-point fluctuations has a profound significance related
to the quantum theory of simultaneous measurement of two noncommuting
observables. A precise measurement of a quantum observable A implies total
uncertainty in the conjugate observable B, whose operator does not commute
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with A. This statement still allows a less than perfect measurement of the
observable A that will not totally destroy knowledge of the observable B.

_ The problem of a simultaneous measurement of two observables A and
B with [A, B] # 0 has been analyzed in a seminal paper by Arthurs and
Kelly [15]. They coupled the system containing the observables to a measure-
ment apparatus and showed that an optimal measurement arrangement will
arrive at measured values of A and B with an uncertainty twice that imposed
by the uncertainty principle. This is the penalty attached to a “simultane-
ous measurement”. Linear amplifiers of large gain provide an output signal
that is classical, one that could be viewed on a scope. The signal can be ob-
served without the disturbance implied by the uncertainty principle. We have
shown that the noise accompanying a signal passing through a linear ampli-
fier of large gain is doubled. In the process of amplification, noise has been
added. However, the amplifier now permits a simultaneous measurement of
the conjugate quadrature component. The fact that the signal-to-noise ratio
has been halved and the noise has been doubled is a manifestation of the
proof presented by Arthurs and Kelly.

7.10 Optimum Noise Measure of a Quantum Network

The characteristic noise matrix defined in the context of classical networks
in Chap. 5 dealt with the available or exchangeable power of a network. The
excess noise figure F' — 1 of a two-port in the classical domain is the available
or exchangeable noise power within the bandwidth B at the output of the
amplifier divided by the amplifier gain and normalized to k6,B.

Turning to quantized linear multiports, we note that (at least some) of the
internal noise source operators of active networks described by the scattering-
matrix relation (7.102) are creation operators. A consequence of this fact is
that active networks emit photons even if no photons are fed into the input.
The output of the network contains so-called amplified spontaneous emission.
The concept of the power available from a port of a network defined in the
classical regime is easily generalizable to the quantum case since it involves
a thought experiment in which a passive load connected to the port is varied
until the power into the load is maximized. The exchangeable power from a
port with a negative internal resistance involves loading of the port with a
source-free negative resistance. Quantum mechanically, a negative resistance
cannot be source-free; it has to emit its own amplified spontaneous emission.
For this reason we shall limit ourselves in the following discussion to ampli-
fiers with terminal impedances with positive real part. This is not a serious
restriction, since all important cases are of this type, e.g. a fiber laser am-
plifier or a semiconductor laser amplifier. If an amplifier did not meet this
condition, it would be embedded into a circulator to ensure a match at input
and output for stability, thus ensuring terminal impedances with positive real
parts.
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The definition of the noise figure of an optical amplifier is still a contro-
versial issue taken up in Chap. 9. Here we take the point of view, justified in
Chap. 9, that an excess noise figure can be defined for an optical amplifier
as the available power at the amplifier output within the bandwidth B due
to the internal noise sources, divided by the gain and normalized to k6,B.
The normalization itself is not an important issue at this point and will be
reconsidered in Chap. 9. From this definition of excess noise figure a noise
measure can be defined by division by 1 — 1/G. The question then arises as
to the optimum noise measure of a linear quantum amplifier. This question
is answered in this section. Before we do this we introduce the characteris-
tic commutator matrix and determine its connection with the characteristic
noise matrix of Chap. 5.

‘We have found commutators for the noise source operators were we inter-
pret §; as either an annihilation operator or a creation operator. The com-
mutators are ¢ numbers. The commutators are, according to (7.105),

. a Aw .
[Si,S;] = —27‘:(5@' — SuS3,) - (7.119)

Equation (7.119) suggests the definition of a characteristic commutator
matrix

C=(8st-1)713,3 = —%&%1 : (7.120)

This matrix is proportional to the identity matrix. It reminds one of the
characteristic noise matrix defined in Chap. 5, in particular of the charac-
teristic noise matrix applied to a passive network at thermal equilibrium, in
which case the characteristic noise matrix is also proportional to the identity
matrix. In the present case, the characteristic commutator matrix applies to
both passive and active networks. It is easy to see that lossless embeddings
as defined in Chap. 5 leave this matrix invariant. It should be emphasized,
however, that lossless embeddings imply subtle source transformations that
deserve further scrutiny.

First of all, let us suppose that the network is a passive one. Then the
matrix (1 — SS1) is positive definite. All eigenvalues of the characteristic
commutator matrix are negative and of equal magnitude. Since the com-
mutator determines the mean square fluctuations, with the noise sources in
their ground states, we see immediately that the network emits zero-point
fluctuations from every one of its ports. Lossless embeddings transform both
(SSt — 1)7! and the noise sources s;. The transformations result in linear
combinations of the s;. Thus, the new sources are still formed from annihila-
tion operators.

We may construct a characteristic noise matrix analogous to (5.65) of
Chap. 5. The mean square field fluctuations are equal to (1/ 4)(§,§I) for each
of the two (in-phase and quadrature) field components and thus the proper
definition of the characteristic noise matrix as a predictor of the expectation
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value of the sum of the field amplitudes squared indicated by the subscript
“fas” is

1
N fas = 5(551 —1)"Y(s3t), (7.121)
and, according to (7.120), this can be evaluated as

Nspos==7-1. (7.122)
This is negative definite and proportional to the identity matrix. Its eigen-
values are all the same. In the classical interpretation of the characteristic
noise matrix, its eigenvalues yield the extrema of the noise power emitted
into loads under arbitrary variation of the loads. The loads are all passive. In
the quantum interpretation, the eigenvalues give the the mean square field
fluctuations under arbitrary variation of the passive loads. The mean square
field fluctuations of the outgoing waves are all the same and equal to Aw/4r.
Hence this finding simply confirms that all outgoing waves of a passive net-
work experience standard zero-point fluctuations.

Next, consider a network with a negative definite matrix (1 — §S*). This
is a fully active network. In the ideal case of a perfectly inverted gain medium,
all noise sources are creation operators. The ideal minimum available photon
flux (the available power divided by fiw) of the network is the same at all
ports and equal to Aw/2x. A lossless embedding again results in new sources
that are linear combinations of the s;, which are now creation operators. The
minimum available photon flux remains unchanged. Of course, a superposi-
tion of a creation operator and an annihilation operator could be responsible
for a net commutator bracket, as we have seen in the case of an incompletely
inverted gain medium. In this case the available photon flux is larger than
in the case when all operators §; are pure creation operators. In order to
predict the available photon flux, the composition of the operators §; must
be known. One may take as a simple example a two-port fiber amplifier. Its
scattering matrix is

vG 0
S = —| . 7.123
Its commutator matrix is, according to (7.119),
Aw [G -1 0
A —
(s,87) = -5~ [ 0 G_l] (7.124)

If the gain medium is perfectly inverted, both noise operators are creation
operators and the available photon flux from either of the two ports is

available photon flux = —?%(G -1). (7.125)
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One may again construct a characteristic noise matrix. Now, however, we can-
not appeal to the classical interpretation in terms of a thought experiment in
which the loads are varied arbitrarily, and the eigenvalues of the characteris-
tic noise matrix give the extrema of the exchangeable power. These extrema
require loading with active terminations, which cannot be noise-free in the
quantum limit. We must interpret the eigenvalues in terms of the stationary
values of the noise measure. These stationary values may be reached with
passive loading if the amplifier is constructed so that the input impedances
are all passive (achieved, if necessary, with embeddings using a circulator).
In the classical interpretation, the noise measure involves the excess noise
figure, which in turn is determined by the noise output power referred to
the input by division by the gain. Hence, in the case of an active network
with a negative definite matrix (1 — §S*), the quantum interpretation of the
characteristic noise matrix can be in terms of the power (or photon flux),
which involves (§1§1) The characteristic noise matrix, as a predictor of the
amplified spontaneous emission (ASE) noise, is

Nsasg = (S8t —1)"1(3'3) = %‘51 . (7.126)
The extrema of the noise measure are given by the eigenvalues of this matrix,
which are all identical.

The situation of an indefinite network is more complicated. According to
(7.119), the commutators of the noise sources are both positive and negative,
i.e. the column matrix consisting of the operators §; contains both creation
operators and annihilation operators. This information can be used to evalu-
ate either the zero-point fluctuations of the field or the photon flow from the
network. To use it one needs to be specific as to whether one is looking for
mean square fluctuations or photon flow. An example may be helpful. Con-
sider the equivalent circuit of an FET in the scattering-matrix formulation.
This could also be the equivalent circuit of an optical amplifier (as described
by (7.123) and (7.124)), followed by a circulator with a matched termination,
as in Fig. 5.8. The scattering matrix is

P [6‘21 8} _ [\%g] _ (7.127)

We find, from the commutator matrix (7.120),

[6,5] = [é ) EG} %‘” , (7.128)

For G > 1, there is one negative and one positive commutator. Hence the
two noise sources are represented by a creation operator and an annihilation
operator, respectively. From the positive commutator one may evaluate the
zero-point fluctuations at the input. From the negative commutator one may
obtain the optimum noise measure under conditions of complete inversion,
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hwo

Mopt = k_0:7

(7.129)
giving a number of the order of 40 for visible or near-infrared light. A mi-
crowave traveling-wave tube operating at 10 GHz can have an excess noise
figure as low as 1 dB. Thus, optical amplifiers, even under the most ideal
conditions, are terribly noisy in comparison with microwave amplifiers. Fur-
ther, their noise performance is determined by fundamental physical laws.
(The quantum limit for traveling-wave tubes is negligible owing to the low
energy of a microwave photon.) Yet, long-distance fiber communication is
now the major technology for long-distance communications. Why did this
happen, when microwave amplifiers have so much better noise performance?
The answer lies in the exceedingly low loss and excellent broadband propa-
gation properties of optical fibers. Optical-fiber communication has won out
because of the exceptional properties of optical fibers and because it is rela-
tively easy to generate optical signals of sufficiently high power level that a
large signal-to-noise ratio can be maintained.

It should be mentioned that it is customary to define noise figures for
optical amplifiers normalized to Aw,, and not to kf,. Then, of course, their
excess noise figure does not seem so high. Ideal amplification with high gain
leads to an excess noise figure of unity, or a noise figure of 2 (3 dB).

7.11 Summary

In this chapter we introduced one of several renormalizations of the creation
and annihilation operators. This renormalization was designed to emphasize
the correspondence between classical and quantum mechanical linear, noisy
networks. The noise, expressed classically as the power in the bandwidth
Aw/2m = B, was expressed as the photon flux in the same bandwidth.

A linear, lossless, phase-insensitive network has a Hamiltonian that con-
tains sums of the photon number operators, i.e. products of creation and
annihilation operators. This Hamiltonian leads to linear equations of mo-
tion for the annihilation operators. Integration of Heisenberg’s equation of
motion yields a unitary scattering matrix that is in one-to-one correspon-
dence with its classical counterpart. Since operators evolve via pre- and post-
multiplication by unitary matrices it was of interest to explore how this evo-
lution corresponded to the evolution described by a scattering matrix. We
showed this to be the case using some simple functional relations among
operator expressions.

While we prefer the Heisenberg formalism to that of Schrédinger, we
looked briefly at so-called entangled states, which emerge explicitly only in
the Schrédinger formalism. These are nonclassical states that will find ap-
plication in the analysis of Chap. 14. We studied the characteristic function
of a quantum observable which contains the information on the moments of
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the observable. In the classical regime, the Fourier transform of the charac-
teristic function of two random variables is the joint probability function. In
the quantum regime, the Fourier transform may not be positive definite, and
thus cannot be interpreted as a probability. We showed with an interferome-
ter example that the interpretation of the Fourier transform as a probability,
even when positive definite, can lead to erroneous conclusions. In the case
when the two noncommuting observables are position and momentum, the
Fourier transform of the characteristic function is the so-called Wigner func-
tion. The in-phase and quadrature components of a quantized electric field
are equivalent stand-ins for position and momentum.

Coherent states are “classical” states in that they do not exhibit peculiar
quantum behavior. Hence, it was of interest to determine how a linear, lossless
network transforms an input consisting of coherent states. We found the
expected: coherent states remain coherent as they are transformed by a linear,
lossless network.

A linear network with loss or gain is not describable by a Hamiltonian. The
equations of motion of the annihilation operator are still linear, but photons
are not conserved. Conservation of the commutator brackets is provided by
operator noise sources. From the commutator relations of the noise sources it
was possible to construct a characteristic noise matrix for the network that
sets a lower limit on the optimum noise measure achievable with a multiport.

Linear phase-insensitive amplification to a classical level permits the de-
termination of both the in-phase and the quadrature components of the elec-
tric field. The operators representing these fields do not commute and thus
“are not measurable simultaneously”. However, as originally pointed out by
Arthurs and Kelly, the measurement is possible at the expense of an un-
certainty twice that set by the Heisenberg uncertainty principle. An ideal
amplifier permits such a measurement and so does a heterodyne receiver, as
shown in the next chapter. It is thus no coincidence that the signal-to-noise
ratios of an ideal amplifier of large gain and of a heterodyne detector are the
same.

Problems

7.1% Show that the state (1/+/2)(]2)|0) —|0)|2)) passes through a beam split-
ter unchanged.

7.2* The photon state |2)|0) enters the input ports of a beam splitter with
|M|T = ¢. What is the state at the output?

7.3 The coherent-state wave function |a})|3) enters the input ports of a 50/50
beam splitter. What is the output wave function?
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7.4* Consider the scattering-matrix equivalent circuit of the FET, Fig. 5.13,
and use it as a model for a nonreciprocal optical amplifier. Find the commuta-
tors of the noise wave generators so that they conserve commutator brackets.
What is the optimum noise performance?

It may be worth pointing out that this equivalent circuit applies to a fiber
amplifier with a Faraday circulator.

7.5 Evaluate the expectation value oﬁ the cosine operator C for a coherent
state |a). Evaluate the projection (3|C|a). See Appendix A.7.

7.6 Evaluate the probability distribution of the in-phase and quadrature
components of the field, B{Y) and B®, at the output of the amplifier de-
scribed in Sect. 7.10 for a coherent input state |a).

7.7 Evaluate the characteristic function for the in-phase and quadrature
components of the output field of an attenuator of loss £ with a single-
photon input. Note: you can use the Baker—-Hausdorff theorem on the output
field since commutators are preserved. Plot the characteristic function as a
function of € and L. Plot the probability distributions as functions of B®
and £, i =1,2.

7.8 Determine the Wigner function of the in-phase and quadrature compo-
nents of the number state [1) and plot it.

7.9 Find the characteristic function for the number state |2) and plot it.

Solutions

7.1 From (7.49) we find

oo_.¢,nAA a1
) = 3 S AB + BIAY (200~ 0)2)

n

The operator A operates on the first wave function in the product, the oper-
ator B on the second.

(A'B + E*A)%(IZ)IO) —10)12)) = (IN[1) - [1)[1)) = 0.

Thus the series stops at the first term and the state is indeed unchanged.

7.2 The input state can be expressed as the sum of a symmetric and an
antisymmetric state

[2)10) = 5(12310) + [0)[2)) + 5 (12)10) — [0)12)).
From (7.49) we find
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[H(T))

We follow the evolutions of the symmetric state and the antisymmetric state
through the system separately. From Prob. 7.1 we know that the antisym-
metric state remains unchanged. The operator A operates on the first wave
function in the product, the operator B on the second:

A B+ BA [5200) + 02 + L2210~ 0y2)]

VO |
(A'B + BtA)§(|2>|0> +0)2)) = V2I1)[1) .
Operation with the second power gives

(A1B + BLAPS(12)[0) +10)12)

= (A'B + BtA)v2|1)[1)
=2(|2)/0) + |0)|2)) .
Operation with the third power gives

(1B + B A2 (12)0) + [0)]2)
= (A'B + B A)2(12)10) +10)12)

= 4V/2|1)]1) .

Operation with the fourth power gives

(1B + BIAZ(12)(0) + [0)[2))
= (A'B + BtA)av21)1)

= 165(12)10) + 0}2))

We can now discern the structure of the wave function. The nth odd power
gives 2"(1/4/2)|1)|1). The nth even power gives 2*(1/2)(]2)|0) + |0)|2)). The
antisymmetric wave function remains unchanged. We find for the entire series

[%(T))

=%(I2>|0>+|0>I2>)0052¢—\/—|1>|1>Sln2¢+ (12)10) ~ [0)[2)) .

It is easily checked that (y(T)|¥(T)) = 1.
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7.4 We use the wave formalism in the transfer matrix formulation, (5.129).
We have

=[] erefi).

The noise source commutator matrix is
A [Fas 3] [0 5]
)b -

[ [ ;%) ] ] 7(1 7[;

The characteristic commutator matrix is

(46, 41] [%, 72}

Bar ¥l (50, %)]
_ 11 A — 2 —_— 2
Cr = (Pq—..l - TPTth) 1[7’7 } = 1 4/|#‘I 1 4/|#‘|

R AN
This commutator matrix must be equal to —Aw /27 times the identity matrix.
From this requirement we find

. 4 A o
[mﬁh—ﬁ——)mw«[%m=m%bm

|ul?

["yb,"yf,} = Aw/2m .

The operator 4, is a creation operator when |u|?/4 > 1, when there is gain.
The characteristic noise matrix is

_Aw(1 0

T 27 [0 Of
The zero eigenvalue is associated with loss. The eigenvalue associated with
gain is the standard eigenvalue of an ideal optical amplifier.
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In Chap. 6, we studied a measurement of the spontaneous emission of an
amplifier. A bolometer detects power directly by measuring the amount of
heat generated by the power absorbed. Microwave radiation impinging upon a
diode terminating a waveguide induces curents in the diode. The nonlinearity
of the diode leads to current or voltage rectification and the d.c. voltage across
the diode is a measure of the electric field across the diode. From the electric
field, the incident power can be inferred, if there is no reflection or if proper
account is taken of the reflection. The power can be calibrated versus the d.c.
voltage.

The photons of optical waves impinging upon a photocathode can propel
electrons across the potential barrier between the cathode material and the
vacuum. The emitted electrons are collected on the anode and their flow is a
measure of the incident flow of photons. A p—n junction can act like a vacuum
diode. If the photons are absorbed in the depletion region of a p—n junction
generating electron—hole pairs, the holes travel to the n side and the electrons
to the p side, constituting a photocurrent that is a measure of the absorbed
photon flow. The ratio of the number of carriers collected to the number of
photons impinging on the photodetector is the so-called quantum efficiency.
The quantum efficiency of photodetectors of near-infrared light can approach
unity.

In this chapter, we study the noise in detectors in general and photo-
detectors in particular. We start with the classical analysis of a square-law
detector. Then we look at a photodetector whose current is a measure of the
incident photon flux. We determine the signal-to-noise ratio of photodetec-
tion. Direct photodetection loses the phase information about the incident
optical wave. The phase can be detected by heterodyne detection, which is
equivalent to amplification and detection of an incident optical wave. We
determine the signal-to-noise ratio of balanced heterodyne detection both
classically and quantum mechanically. We also look at homodyne detection,
in which the local-oscillator frequency coincides with the signal frequency
and in which only one of the two components of the field is detected. The
signal-to-noise ratio turns out to be double that of heterodyne detection for
reasons that can be traced to the theory of a simultaneous measurement of
two noncommuting quantum observables.
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8.1 Classical Description of Shot Noise
and Heterodyne Detection

Microwave p—n junctions can be used as square-law detectors. The current
through the detector is proportional to the square of the electric field. If the
detector is not fast enough to follow a microwave cycle, the current can be
written

is(t) = ¢v|Bs () (8.1)

where E,(t) is the complex electric-field amplitude of the signal, q is the
electron charge, and + is a proportionality constant. The d.c. current is given
by the time average. All detectors that produce a time-averaged current flow
exhibit shot noise (or higher levels of noise if there is avalanche multiplication)
corresponding to the average current in the detector. The mean square current
fluctuations of a d.c. current I, in a bandwidth B are those of shot noise
(compare (4.15)):

(i2) = 2¢I,B . (8.2)

If the detector has a resistance R, there may be thermal noise associated with
the resistance according to the Nyquist formula (4.76). The signal-to-noise
ratio is computed from the ratio of the mean square signal current to the
mean square noise current. Suppose that the signal is a steady-state sinusoid
E,(t) = Asexp(—iwt). The d.c. current is then I, = qv|E;|? = gv|4,|?, and
the signal-to-noise ratio is

S _(20) _ AL

N= @) - 2B (83)
if thermal noise can be neglected.

An optical detector of unity quantum efficiency can detect, in principle,
single photons. The photon flow rate must be low enough that the detector
can resolve the incident photons and the thermal noise must be negligible.
Such an ideal detector may be considered to be noise-free; it reproduces
faithfully the photonic signal. Noise-free detection is consistent with quantum
mechanics, since there is no fundamental limit imposed on the accuracy of
measurement of an observable. As we have seen earlier, in the example of
an optical amplifier, only a simultaneous measurement of two noncommuting
observables is accompanied by unavoidable noise.

When a signal is passed through a narrow-band optical preamplifier, as
studied in detail in Chap. 9, the ASE photon flow imposes a background
noise that is not Poissonian but, rather, has Bose-Einstein statistics; it is
not simple shot noise. On the other hand, if the detector is illuminated by
attenuated laser light, with photons that are Poisson-distributed, as will be
shown in Chap. 9, then the charge current is also Poisson-distributed with a
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shot noise spectrum. The discussion in this chapter will be limited to laser
light with photons and charge carriers that have a Poisson distribution.

An optical power P at an optical frequency w, incident upon a pho-
todetector of quantum efficiency 1 produces a current i(t) according to the
formula

P(t)

hwy

i(t) = ng (8.4)
where P(t)/fuw, represents the instantaneous photon flow, an identification
possible when the optical radiation is sufficiently narrow-band that the as-
signment of the fixed energy hw, to all photons is legitimate. The physical
picture associated with (8.4) is carrier generation in one-to-one correspon-
dence with the incident photon flux. Just how this photon flow is to be
defined will be the topic of this chapter. As a simple semiclassical expedient
one may write the power in terms of the complex field amplitude E(t), with
E(t) so normalized that

E*()E(t) = P(t) . (8.5)

Note that in (8.4) the absolute magnitude of the complex field amplitude
squared is used, not the instantaneous F field squared. This is not an ap-
proximation, as it was in the case of a microwave square-law detector, but a
consequence of the fact that the process of photodetection responds to the
incident photon flux. The photocurrent is thus

: E*(t)E(t)
i(t) = ng . (8.6)
The current fluctuations are those of shot noise accompanying the d.c. current
ngP(t)/hw,. The spectrum of shot noise is white. If the optical power varies
with time, the spectrum of the current is composed of a white shot noise
background and the spectrum of P(t), as shown in Chap. 4.

All phase information of an optical signal is lost in direct detection. Phase
information can be recovered in heterodyne detection. An experimental ar-
rangement for microwave heterodyne detection is shown in Fig. 8.1. The mode
incident upon the detector is made up of a local-oscillator mode amplitude
E,(t) and a signal mode amplitude E;(t), superimposed via a waveguide
junction as shown. If the junction is highly transmissive for the signal, no ap-
preciable sacrifice in signal power incident upon the detector need be made.
There is, of course, a sacrifice of local-oscillator power, which can be avoided
in a balanced detector arrangement as shown later on. The current in the
photodetector to first order in the signal field is

i(t) = qv[ES(8) Eo(t) + ES (1) Es(t) + ES(E)Eo(t)] = 4o +45(2) , (8.7)

where we neglect the square of the signal field as very much smaller than the
local-oscillator power. The detector current is made up of two parts: a d.c.
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Fig. 8.1. Experimental arrangement for microwave heterodyne detection

current i, due to the local oscillator and a part due to the beat between the
local oscillator and the signal, i4(t). If the local oscillator produces a simple
sinusoid at frequency w, and the signal has frequency wyg, then the fields can
be written

E,(t) = Apexp(—iwot) and Eg(t) = A;exp(—iwst) . (8.8)
The signal current is

is(t) = qv{A}A;s expli(wo — ws)t] + Ao A} exp[—i(w, — wst]}
(8.9)
= 2q7|AoAs| cos[(wo — ws)t + ] ,

where ¢ = arg(A%A;). The detector current carries both phase and amplitude
information. The noise in the detector is the shot noise due to the local-
oscillator bias current, which is time-independent, since the small amplitude
of the beat term can be ignored (signal-dependent noise is ignored):

(iZ) = 2g714,/*B. (8.10)
The signal-to-noise ratio of heterodyne detection is thus

S _ (1) _ |4
NTT@ 7B

(8.11)

The time average of the square of the photodetector current introduces a
factor of 1/2, the average of a cosine-squared function. Note that |A4,|? is
the number of carriers produced by the signal impinging upon the detector
per unit time. The signal-to-noise ratio is equal to the number of carriers
produced by the signal in the time interval 1/B.

The same analysis can be repeated for a photodetector, as shown in Fig.
8.2. Instead of the waveguide junction, a beam splitter is used. The splitting
ratio is such that most of the signal is transmitted, but local-oscillator power
is sacrificed. We assume that the signal wave and the local-oscillator wave
have the same polarization and are phase-coherent across the detector surface.
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Fig. 8.2. Experimental arrangement for optical heterodyne detector

If not, a mode decomposition is required, and only pairs of modes of the
same order and same polarization give a current response., We shall not be
concerned with this more complicated situation, since it must be avoided in
practice. The analysis is carried through completely analogously. Instead of
the coefficient +, the coefficient n/fiw, is used, and the signal-to-noise ratio
is

S _ (1)) _ A2

= - =7 .
N @) P, B

(8.12)

Just as in the microwave case, the signal to noise ratio is the the number of
charge carriers produced by the signal in the time interval 1/B.

8.2 Balanced Detection

Heterodyne detection by a local oscillator, coherent with the signal, is a very
important processing method for a returning radar signal. However, the de-
tection of a radar signal encounters a serious problem. The signal is the return
echo from a powerful pulse, but attenuated by 60 dB or more. In the analysis
of detection we have assumed that the noise accompanying the bias current
produced by the local oscillator is shot noise. This may not be true, since
the local oscillator undergoes disturbances that cause fluctuations of the lo-
cal oscillator power. Even if they are 60 dB below the local oscillator power
level, they become comparable to the level of the returning signal. Balanced
heterodyne detection, invented in radar technology, overcomes the problem
of oscillator noise. Figure 8.3 shows both the radar implementation and the
optical implementation of balanced heterodyne detection. The local oscillator
is fed through one waveguide port of a magic T, the signal through the other
port. The fields in the outgoing waves in the two waveguides are superposi-
tions of the incident fields, but with sign changes due to the symmetry of the
magic T. The local oscillator excites outgoing waves with symmetric electric
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Fig. 8.3. (a) Microwave and (b) optical implementations of balanced heterodyne
detection. The magic T is a four-port matched at all ports

fields, the signal excites them antisymmetrically, as can be seen easily by
just sketching the field distribution within the magic T. Thus the complex
amplitudes of the electric fields impinging upon the detectors are

1 1
Ey=-—=(E,—-E;) and E; =-—
1 \/ﬁ( o s) 2 \/§
The currents of the two detectors are subtracted. If the square of the signal
is neglected the net output current is

i(t) = a¥(|E2l? — |E1|?) = qv(EoE: + ELE;) . (8.14)

The rectified local-oscillator current cancels. If this current fluctuates, the
fluctuations do not appear in the current output. With E, = A, exp(—iw,t)
and E; = A; exp(—iwst), the square of the signal current averaged over time
is

(Eo+ Es) . (8.13)
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(i2(t)) = V(| 4. A; + AL A1)

= ‘12724|Ao|2|A3|2<COS2[(w0 —wg)t + ¢)) (8.15)
= q2722le|2|As|2 ,

where ¢ = arg(E}E;). The noise is due to the shot noise current in each
of the detectors, with a current %q’y|Ea|2 each, adding to the net shot noise
value

(i2) = 2¢°4|A,|’B . (8.16)
Thus, the signal-to-noise ratio is

S _ <i3)2 — ’Y|A3|2

N @) B (8.17)
In the numerator is the rate at which charge carriers would be produced by
the signal alone impinging upon the detector. Division by B gives the number
of carriers that would be produced by the signal alone in a time interval equal
to the inverse bandwidth. The signal-to-noise ratio is the same as (8.12) for
heterodyne detection with a single detector. The arrangement of the balanced
detector has the advantage that it cancels fluctuations of the local-oscillator
power to first order and that it uses the total local-oscillator power.

The optical version of the balanced detector, Fig. 8.3b, is entirely anal-
ogous. Instead of the magic T, a 50/50 beam splitter is used. The balanced
detector utilizes the full local-oscillator power incident upon the 50/50 beam
splitter. The factor v in (8.17) is replaced by n/hw,. Note that the photon-
energy-normalizing factor iw, has not been changed, since detectors can re-
spond only to low beat frequencies. Thus, the energies of the signal photons
and local-oscillator photons differ by a negligible amount.

The semiclassical analysis of balanced optical detection is simple. The
photons passing through the beam splitter are randomly sent to either one
detector or the other. Each of the two detectors experiences the full shot noise
associated with the current through it. Fluctuations of the local-oscillator
power are coherent at the two detectors and cancel in the subtraction circuit.
The shot noise in the two detectors is uncorrelated and the fluctuations add
in the subtraction circuit. Hence the difference current has shot noise fluctu-
ations of magnitude equal to the sum of the fluctuations in each detector. In
the linearized theory, in which only the local-oscillator current is responsible
for the noise, the signal-to-noise ratio of the balanced detector is the same as
of the simple heterodyne detector of Fig. 8.2 for equal local-oscillator power as
given in (8.12). Thus the balanced optical heterodyne detector gives the same
signal-to-noise ratio as a single heterodyne detector, but with fluctuations of
local-oscillator power suppressed.

Homodyne detection is the degenerate heterodyne detection that occurs
when the local-oscillator and signal frequencies are equal. Then, the current
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is a measure of the electric field that is in phase with the local oscillator. Not
all of the shot noise is detected. Shot noise consists of randomly excited am-
plitudes of cosine and sine waves referred to the phase of the local oscillator.
Of these, only the cosine waves are detected. The noise is halved. This fact
was pointed out by B. Oliver in 1962 [71]. In a follow-up note by C. H. Townes
and the author it was pointed out that the increase in signal-to-noise ratio is
accompanied by a loss of information contained in the detected signal [72].
It took some years before the full implication of the difference was grasped
in the context of detection of squeezed light, as discussed in Chap. 11.

8.3 Quantum Description of Direct Detection

In the quantum analysis of photocurrent generation, the incident photon flux
is responsible for the current, photons are annihilated and carriers are gener-
ated. In the quantum analysis of modes, the modes were set up as functions of
the propagation constant (3,,. We shall now derive the quantum description
of the photon current for radiation that consists of a succession of coherent
states. The photon number in a quantization interval of length L is A;fnfim.
A photodetection measurement that converts photons into photoelectrons is,
essentially, a measurement describable by the operator A;rnfim In its defini-
tion, the quantization interval L plays an essential role. Its choice fixes the
increment AS of the Fourier decomposition of the modes. This increment also
fixes the frequency increment Aw = (dw/dB)ApB. Changes in the choice of the
interval change the interpretation of the “photons” contained in the optical
field. This appears surprising, at first. However, we shall emphasize later on,
and in detail in Chap. 14, that the interpretation of the “physical meaning” of
a quantum concept requires the specification of the measurement apparatus.
The measurement i1s performed with an apparatus of a certain bandwidth
(temporal resolution). It is the bandwidth of the apparatus that dictates the
choice of L.
The charge registered by the detector over the time interval L/vg is

Q=qAl A, , (8.18)

a Hermitian operator. For a coherent state, the expectation value of the
charge is

(alQla) = g(alAtAla) = qlal® = q(n) , (8.19)

where (n) is the expectation value of the photon number. We shall omit
the subscript m henceforth, since we are dealing with one mode only. Let
us now determine the fluctuation properties of the charge. We have, from
the defining equation and the commutation relations of the creation and
annihilation operators of the electromagnetic field,
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(a|lQ%a) = ¢*(a|ATAAt A|a) = ¢*(a| AT ATAA + Al Ao
(8.20)
= ¢’la|* + Plof* = ¢*(n)* + ¢*(n) .

Here, we have put the operators into normal order: creation operators pre-
cede annihilation operators. In the process, the commutation relation is used,
which accounts for the added term in the last expression. The terms in normal
order are easily evaluated for a coherent state, since the annihilation oper-
ators operating on a ket on the right produce an «, and creation operators
operating on a bra on the left produce an o*.

The mean square fluctuations of the charge are

(@lQe) - (alQla)® = ¢*(n) . (8.21)

These are the fluctuations of a Poisson process, consistent with the derivation
in Chap. 4 for a completely random flow of charge. One may model the
generation of a photocurrent by an optical field as a random generation of
photocarriers with the rate of generation determined by the power level of
the incident light. Conversely, according to the analysis of Chap. 6, one may
view the process as the generation of carriers in one-to-one correspondence
with an incident photon flux with a Poisson distribution of photons. Both
interpretations are possible at this level of the analysis.

Equation (8.21) shows that the mean square fluctuations of the charge
carriers are equal to the photon number. The photon number is evaluated
for a length interval L. Photons assigned to a length interval L enter the
photon detector within a time interval T' = L/v,. Hence the choice of the
length interval fixes the time interval of the observation. This time interval,
in turn, is related to the time resolution of the detector, the measurement
instrument. If the electronic bandwidth of the detector is B, then the detector
can resolve changes of the photon flow within a time T' = 1/B. This implies
that the quantization of the incoming photons must choose a length L such
that L = v,T = vy/B. How this assignment is to be interpreted when the
optical spectrum has a bandwidth much larger than Aw = 27 B will be
discussed in greater detail further on.

It is worth pointing out that the fluctuations have arisen from the commu-
tator of the field operators. Since the commutator is responsible for the zero-
point fluctuations, one is justified in interpreting the shot noise as originating
from carrier emission fluctuations induced by the zero-point fluctuations of
the field. This interpretation is analogous to, yet different from, the interpre-
tation of spontaneous emission in an amplifier as being the emission induced
by the zero-point fluctuations of the field. In the amplifier, the zero-point
fluctuations induce emission of photons. In the photodetector case, they only
contribute to the fluctuations. Zero-point fluctuations by themselves produce
no photocurrent.
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8.4 Quantum Theory of Balanced Heterodyne Detection

We have presented a classical analysis of heterodyne detection and shown that
it detects both the phase and the amplitude of the signal. Now we look at the
quantum analysis of heterodyne detection. Consider Fig. 8.3b. The output of
the local oscillator impinges upon one port of a beam splitter, the signal on
the other port. The beam splitter was analyzed in Sect. 7.2. If only one pair
of incident waves is involved, one need not use the full four-by-four scattering
matrix; one may use the reduced two-by-two portion of the scattering matrix
that is analogous to that of a mirror, (7.10). The waves B; and Bj incident
upon the two photodetectors are

. 1 - "
By, = —(A;, — i4y) ,
1 \/5( L 1 )

(8.22)
By = %(—ML +4,).
The difference between the charges collected by the two detectors is
Q = Q(BIE - Bng)
= 1A}, + 14D (AL - 14s) - (A} + AD(=idL + A,)] (8.23)

— _iq(ALA, — AtAy).

In the Heisenberg representation, the operators Ap and A, are time-dependent,
with the time dependences exp(—iwrt) and exp(—iwst), respectively. The ex-
pectation value obtained by projection via the coherent states, product states
of the local oscillator and signal states, gives

(Q) = —iglas|(arl(AL A, ~ AlAr)lar)es)
(8.24)
= 2q|apos]sinf(wr, — ws)t + @],
where ¢ = arg(asaj ). The mean square fluctuations of the charge are
(@) = (@ = ~(asl(awlg*(ALA, - AlAL)(ALA,
—AlAp)ar)los) (8.252)
+¢*(asl(arle®(ALA; — AlAp)lar)|as)? .

This expression is evaluated by casting the operators into normal order:
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(Q2> - (QA>2 = —(asl(aquz(AA},AA},AAsAAs
CALALAIA, - ALA AL A,

+ALALALAL)|QL>Ias>
(8.25b)
+a*(asl(arlg®(AL A, + AL Ap)|or) o)

+q%(as|(ar|(AL A, — AYAL)|ar)|as)?

= ¢*(larl” +lasl®) = ¢*((nr) + (ny)) -

The first of the above expressions contains the expectation value of the
normally ordered operator Q2 and that of the “remainder operator” of the
normal-ordering process, minus the expectation value squared of the opera-
tor Q. The expectation value of the normally ordered operator Q2 cancels
the expectation value squared of the operator Q. The fluctuations are due
entirely to the expectation value of the “remainder operator”. The fluctua-
tions are proportional to the sum of the signal and local-oscillator photon
numbers. They originate from the commutators. In the classical discussion of
heterodyne detection in Sect. 8.2 we attributed all the noise to the local os-
cillator and ignored the signal-induced noise, which is legitimate if the signal
power is much smaller than the local-oscillator power. In the present, more
accurate, analysis of the heterodyne detector we find that the fluctuations
¢*lar|? = ¢*(ny) arise from the commutator of the signal field. One may
interpret this term as fluctuations induced by the signal zero-point fluctua-
tions in the charge generated by the local-oscillator photons, and the term
q%(n,) as the fluctuations produced by the zero-point fluctuations of the local
oscillator field in the charge generated by the signal photons.

It should be pointed out that the analysis which led to (8.25) is not
complete. We assumed that the input to the beam splitter consisted solely of
the local-oscillator output and the signal. A detector tuned to the difference
frequency 2 = |w; — wy | will pick up “signals” at both frequencies wy, + £2,
i.e. the signal and its “image”. Thus, we should have used for the “signal”
operator A, in (8.22) the sum of the signal operator A, at frequency w;, and
the image operator A; at frequency w; = |2wy, — w,|. If the image band is
unexcited, then (AIAI) = 0. Yet the presence of A; in (8.22) contributes
to the fluctuations. Without writing down explicitly the extended equations
(8.23)~(8.25), it is easy to see that the commutator [A;, A!] = 1 doubles the
contribution to the fluctuations of the local oscillator:

(@) — (@7 = ¢*2low|? + o) - (8.26)
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8.5 Linearized Analysis of Heterodyne Detection

In the linearized approximation, the local oscillator operator in (8.22) is writ-
ten as a ¢ number,

/iL — aj, exp(—ith) . (8.27)

When the replacement (8.27) is entered into (8.23), and we take note that
the image band must also be included in the analysis, we find

Q = —igla} exp(iwpt)(As + A;) — ap exp(—iwpt) (A} + AI)] . (8.28)

The mean square fluctuations of charge can be obtained in the usual way by
putting the creation and annihilation operators in the expression for $? into
normal order and noting that the expectation value of the normally ordered
expression cancels against (Q))2

(@) —(@)? = —¢X{aal{a]

{o} (AlAL + AlA] 4 2A1AT)

+a (A A, + A A + 24,A)

—lar*[2(A} + AD)(As + Ai) + 2]} o))

+a (el (aillof (As + Ai) — ar(A] + AD)]law) o)

= 2¢%|ar|® = 2¢*(nL) .
(8.29)

We have found a result like (8.26), except for the fact that the contribution to
the fluctuations of the signal is missing. If the signal photon number is much
smaller than that of the local oscillator, the approximation is legitimate.

In the classical analysis we evaluated the mean square fluctuations of the
detector current, rather than the charge. We may convert (8.28) into a current
operator by noting that the waves propagate at the group velocity vg, that
the wave packets occupy a length L, and thus that the charge per unit time,
namely the current, is v,/L times the operator (8.28):

i =¢2Q = —igZlo} (A + A) - (4l + 4D)]. (8.30)

A coherent state has the time dependence exp(—iwt) = exp(—ifBvgz). The
expectation value of the current is thus

(i) = g%)g{lamgl sinf(wr — ws)t + 4]}, (8.31)
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where ¢ = arg(a,aj). A display of the current on an oscilloscope would show
a sinusoidal function of time, lasting a time L /v,. Since the current operator
differs from the charge operator only by a ¢ number factor, the mean square
fluctuations of the current may be evaluated in the same way as those of the
charge. Accordingly,

@ - 62 = (%) (@ - @ =20 (%) tna). (832)

The quantization interval L is determined by the bandwidth of the detector
Aw = 27B. 1t is chosen so that AS = 27/L = (df/dw)Aw = Aw/vg, and
thus
=2 _% (8.33)
T Aw B’ )
When we introduce (8.33) into (8.32), we obtain the noise current fluctua-
tions:

() — (1)* = (i2) = 2¢I.B, (8.34)
with
I, = qu, ("LL) , (8.35)

the d.c. current induced by the local oscillator. Note that the quantum origin
of the noise is from the commutators of the signal and image. We have men-
tioned before that this noise can be viewed as detector current fluctuations
induced by the zero-point fluctuations of the signal and image.

The signal-to-noise ratio follows from the evaluation of the mean square
signal current divided by the mean square noise fluctuations. The signal cur-
rent is

(is) = ~{el(0ig
x o, exp(iwt)(As + A;) — ag exp(—iwpt) (Al + AD)]0;)|as)

= 2q-—laLas\ sinf(wr, — ws)t + ¢] ,
(8.36)

where ¢ = arg(asaj). The time average of the mean square current is

—/T/2 (is)? = 2¢° (L) sl (8.37)

T/2

and the signal-to-noise ratio is
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T/2
S _ WD I5,dt 6 au, /L) asnf?
N (@) 22 (0, /L) o

= |as|* = (ns) . (8.38)

The signal-to-noise ratio is equal to the average photon number in one ob-
servation time (inverse bandwidth).

In homodyne detection of a signal the noise decreases by a factor of two,
since the idler channel merges with the signal channel and thus does not con-
tribute zero-point fluctuations of its own. This is the quantum interpretation
of homodyne detection.

Offhand, one might expect that the time average of the signal of a homo-
dyne detector does not incur a reduction by a factor of 1/2 as in heterodyne
detection. However, one must note that the signal is independent of the local
oscillator; its phase is not locked with it. From observation time to observa-
tion time its phase relative to the local oscillator changes and thus a statistical
average of these phase variations will also introduce a factor of 1/2.

We have shown in Chap. 6 that the signal-to-noise ratio after amplification
with a linear amplifier of large gain is equal to the photon number received
in a time interval corresponding to the inverse bandwidth. We have found
the same result for heterodyne detection. Homodyne detection has twice the
signal-to-noise ratio. Now, in the case of a linear amplifier we mentioned that
amplification by a phase-insensitive amplifier enables an observer to measure
both the in-phase and the quadrature components of the field, two noncom-
muting observables. The spontaneous noise added in the amplification was
the penalty incurred by a simultaneous measurement of two noncommuting
observables. Homodyne detection gives information only on the component
of the electric field that is in phase with the local oscillator. Thus, a homo-
dyne measurement need not incur the same penalty. Indeed, we found that
the fluctuations in the homodyne measurement are just those associated with
the zero-point fluctuations of the field being measured, the field having been
assumed to be in a coherent state. A homodyne measurement is a noise-free
measurement of the input field; no additional noise is added in the process of
measurement. It is a phase-sensitive measurement. In Chap. 11 we shall study
degenerate parametric amplification, which accomplishes noise-free measure-
ment of one component of the input field, and find the same signal-to-noise
ratio as for homodyne detection.

It is of interest to ask about the current and its mean square fluctuations
in the case when the signal is in a photon number state |n,). Then we find
from (8.30) that (|z)) = 0. Does this mean that a display on the scope of the
detector current would show no deflection other than noise? To determine

this, let us ask for the mean square fluctuations. We find, in analogy with
(8.32),

2
@) - @ =@ = q2—z—%[nL(ns +2)]. (8.39)
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These are large fluctuations, proportional to n, + 2. The interpretation is
simple. A photon state has a sinusoidal time dependence of the field, with an
arbitrary phase. A scope display would show such a sinusoid from sample to
sample, but with arbitrary shifts of phase. Hence the average of the current
at any instant of time (any value of z) is zero. But the current does vary
sinusoidally within each sample, and thus the mean square fluctuations are
proportional to ng + 2, roughly proportional to the mean square amplitude
of the sinusoids.

8.6 Heterodyne Detection of a Multimodal Signal

In the preceding section we considered heterodyne detection of a sinusoidal
signal. If the signal is not sinusoidal (an example is an optical pulse), then the
analysis has to be generalized to include a superposition of modes, the sum
of which may represent a pulse, in the same way as a Fourier superposition
represents a time-dependent signal. We write for the current operator

i = -lq—- {A* t)z Yk — AL t)z (At + Ay (8.40)

where we have replaced the ¢ number ap of (8.27) by its time-dependent
generalization

L(t) = Zal,,k eXp(—'le,kt) . (8.41)
k

We have included the same number of image modes as signal modes, since the
detected image band is equal to the signal band. We shall assume that the
image band is unexcited, except, of course, for its zero-point fluctuations. The
expectation value of the current involves the product of the time-dependent
local-oscillator and signal fields:

(i(t)) = ~ig=2 7 F[AL (DA () ~ AL AS(1)] (8.42)
where
As(t) = <Z(As)k> : (8.43)
k

Since the kth component of the signal has a time dependence exp(—iws xt),
the sum can give an arbitrary waveform.

The fluctuations are obtained by constructing (i(¢)i(¢)) — ((£))2. The
operators are put into normal order using the commutators. When this is
done, only the contribution of the commutators remains:
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2
(i) - GO = (%2 ) 1AL S (Aer ALl + (A Al
k
(8.44)
2
=2Nq2<%-> |AL()?,

where IV is the number of modes in the expansion of the signal. If we introduce
the expression for the time-dependent current, we find

(B(t)i(t)) — (i(t))* = 2¢IL(t)NB, (8.45)

where B = v,/L. How are we to interpret this expression? It is the shot
noise formula for a time-dependent current and a bandwidth NB. Now, the
definition of the bandwidth came from the quantization interval L, chosen
large enough to accomodate the modes used for the quantization. If N modes
participate, the waveform varies within the time interval At = 1/NB; the
net bandwidth is increased by the factor V.

In order to find the fluctuation spectrum, we need to construct the auto-
correlation function involving the average of the currents at different times,
i.e. the expression %(E(t)i(t’) + #(t)2(t)). The current operator was defined
within the time interval At = 1/B = L/v,. When the current waveforms are
shifted apart by the time At, the fluctuations are uncorrelated and average
to zero. Hence one may write

SGOIE) + i) - GO = 2L - 1), (8.46)

where the delta function is of magnitude 1/At in the time interval |t —t/| <
At/2 and zero outside this time interval. The Fourier transform of this ex-
pression gives us the proper shot noise formula. If the bandwidth is increased
by a factor N, the fluctuations increase by the same factor.

8.7 Heterodyne Detection
with Finite Response Time of Detector

Thus far we have derived relations for the current operator of heterodyne
detection without considering the finite response time of the detector. The
current produced by the beat between the local oscillator and signal is unaf-
fected by the finite response time if the beat frequency is much smaller than
the inverse response time. When this is not true, then the output signal of
the detector is reduced. The response times of the fastest detectors are of
the order of 10 ps. Within a time interval 7 of 10 ps, the optical radiation
contains many cycles (of the order of 10,000). Hence the quantization interval
L < vgT can be picked long enough that the photon concept can be applied.
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If the response of the detector is limited by a simple R~C time constant,
the output current operator obeys a simple linear differential equation. The
solutions of linear operator equations are the same as the solutions for c¢-
number time functions. Hence, we may describe the output current operator
I(t) by the convolution integral

It) = / = h(t —t')i(t") (8.47)

— 00

where h(t) is the detector impulse response and charge conservation dictates
that ffooo dt h(t) = 1. The expectation value of the current is

(@) = /_ Zat h(t —t')(i(t)) . (8.48)

The expectation value of the current was computed in (8.36). The convolution
in the time domain becomes multiplication in the frequency domain. Thus,
with

H(w) = / dtexp(iwt)h(t) and (i(w)) =51; / dt exp(iwt) (i(t)) ,
(8.49)

we have from (8.48)

-

([(w)) = HW)(i(w)) - (8.50)

In the case of two sinusoidal signals beating in the balanced heterodyne
detector, the current is a sinusoid. The signal is reduced by the factor |H (ws—
wL)I.

The autocorrelation function is computed analogously:

A

SO + T )

— /oo dt” /oo dt/li h(t _ t”)h(tl _ t”l)%(%(t”)%(t”l) + ‘Ai(tm);:(t”)) .
T (8.51)

The operators in the autocorrelation function can be put into normal order. If
the excitation is by coherent states, the normally ordered part of the expres-
sion can be written as a product of expectation values. The term resulting
from the commutators is derived as in (8.46). We obtain for the autocorrefa-
tion function of the current
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(FOIE") + 1))

N =

= / Tt /_ T @ Rt — PYR(E — G GE)) (8.52)

+2¢1;, / dt" h(t —t"Yn(t' —t").

— 00

The first part is the signal part; the second part gives the fluctuations. The
evaluation of the spectrum of the current is left as a problem at the end of
the chapter.

8.8 The Noise Penalty of a Simultaneous Measurement
of Two Noncommuting Observables

The theory of quantum measurements has been extensively discussed in the
literature and is still a subject of controversy. In later chapters we shall discuss
the issues in greater detail and argue that there exists a self-consistent point of
view on the meaning of quantum measurements and the concept of “physical
reality” as raised by Einstein, Podolsky, and Rosen [73]. At this point, we have
investigated a special case of a measurement apparatus, on the basis of which
one may gain some insight into the the meaning of a quantum measurement.

A quantum measurement need not introduce noise, or uncertainty. An
ideal photodector detects the incoming photon flux and emits carriers that
can be counted. In principle, the number of incoming photons can be deter-
mined with no uncertainty. The uncertainty underlying quantum theory and
stated by Heisenberg’s uncertainty principle refers to the properties of the
state and not directly to the measurement of the state. The ideal photode-
tector may be considered noise-free if applied to the measurement of photon
states.

Heterodyne detection has been found not to be noise-free. Heterodyne de-
tection permits the simultaneous measurement of the in-phase and quadra-
ture components of an electric field and it is this property of the detector
that calls for the addition of noise to the signal by the detector. A similar
situation exists with linear amplifiers, which also permit such a simultaneous
measurement if they possess large gain.

Arthurs and Kelly [15] addressed the issue of a simultaneous measure-
ment of two noncommuting variables in a classic paper in 1965. They went
through a detailed analysis of the coupling of a system containing the ob-
servables to a measurement apparatus, and of the measurement carried out
with the apparatus. They showed that the estimation of the values of two
noncommuting observables from the measurement incurred an uncertainty
penalty that at least doubled the uncertainty predicted from Heisenberg’s
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zero-point fluctuations
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Fig. 8.4. A beam splitter for simultaneous measurement of amplitude and phase

uncertainty principle. The optical measurements discussed thus far afford a
very simple illustration of this general proof.

The homodyne detector does not add noise of its own. Its noise at the
output is produced by the fluctuations of the signal. It measures a single ob-
servable, the component of the electric field in phase with the local oscillator.
Both components of the electric field can be measured in a setup such as
shown in Fig. 8.4. A beam splitter splits the incoming signal into two com-
ponents. Two homodyne detectors measure the two components separately
by adjustment of the phases of the respective local oscillators. This is an
example of a simultaneous measurement.

In the following we shall show that the operators representing the in-phase
and quadrature components of the signal after the beam splitter commute.
Thus a simultaneous measurement of these operators is possible without the
measurement of one observable affecting the measurement of the other. Phys-
ically, this is of course obvious since a measurement apparatus can intercept
each of the outgoing beams ¢ and d independently. Mathematically, the find-
ing is of interest since it shows that the commutation has been brought about
by the introduction of the vacuum fluctuations of the unused port of the beam
splitter.

The beam splitter is represented by a unitary scattering matrix that is
power-conserving. In the balanced heterodyne measurement apparatus, we
represented the beam splitter by the unitary scattering matrix

Al

"The response of the beam splitter is thus
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.1

C = E(a - lb) y (853)
d= 2 (-ia+b) 8
_\/_2_(——10, . (.54)

The in-phase and quadrature operators of the beams ¢ and d, respectively,
are

&0 = %(Haf) = E%(a—iémf +ib1) (8.55)
4@ = l((j_ dh = ! (i@ + b —ial — B7) . (8.56)
2i 2iv/2

The commutator of &V and d® is
. 1 .. .
6, d®] = < (~la.a"] + b,6'] + [a,a"] - [b,8]) = 0. (8.57)

Indeed, the observables commute and there is now no impediment to mea-
suring them simultaneously. What has happened is that the vacuum port of
the beam splitter has introduced fluctuations (or commutators) that change
the in-phase and quadrature components of the incoming signal into commut-
ing operators. The measurement can now be carried out with two homodyne
detectors independently and in a noise-free manner in each beam after the
beam splitter. It is clear, however, that a noise penalty has been incurred.
Only half of the original signal intensity impinges upon each of the two detec-
tors. The signal-to-noise ratio inferred from the measurement is half of that
which would have been attained if the signal impinged directly on one of the
detectors.

8.9 Summary

‘We have studied the current induced in square-law detectors as well as pho-
todetectors. The current is accompanied by shot noise. If shot noise is the
most important noise in the detector circuit, then the signal-to-noise ratio
of a heterodyne photodection circuit of unity quantum efficiency is equal to
the number of photons received in a time corresponding to the inverse band-
width of the detection. The quantum analysis used the concept of the current
operator. The shot noise was interpreted in the quantum analysis as current
fluctuations induced by the zero-point fluctuations of the field. The results
of the quantum analysis agreed with those of the classical approach.
Balanced detection was discussed as a means of suppressing fluctuations
of the local oscillator. The quantum analysis of the balanced detector led us
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to a surprising interpretation of the source of the shot noise: we found that
the cause of the shot noise is the zero-point fluctuations of the signal and
image. In this respect, the quantum picture mimics the original purpose of the
balanced detector, namely cancellation of the oscillator noise. In the quantum
picture we found that the zero-point fluctuations of the oscillator field can be
ignored and that the entire noise excitation is attributable to the fluctuations
entering the signal port of the beam splitter in the signal and image bands. In
homodyne detection the signal and image bands merge and thus the noise is
due solely to the zero-point fluctuations of the signal itself. One may consider
the homodyne measurement to be a noise-free measurement of the incoming
signal field.

Finally, we looked at the noise penalty incurred in a simultaneous mea-
surement of the in-phase and quadrature components of the electric field,
two observables with noncommuting operators. We showed that the uncer-
tainty in the values of these two observables inferred from the measurement
is double that of the Heisenberg uncertainty.

Problems

8.1 What is the value of the d.c. current producing the same mean square
voltage fluctuations due to shot noise across a 50 §2 load resistor as the
thermal noise at room temperature? Note that for a detector current greater
than this value, the thermal noise can be neglected.

8.2% In a heterodyne receiver, the local oscillator mode at the detector
has the profile exp(—r?/w?)exp(i¢r?/w?)/wr. The signal has the profile
exp(—r2/w?)/w,. Show how the signal decreases with deviation from a per-
fect mode match.

8.3 A non-return to zero (NRZ) bit pattern at the optical carrier frequency
Wy is incident on a detector. NRZ implies that two “ones”, represented by two
rectangles (of current) that follow each other, merge into a single rectangle
of twice the width.

(a) If the pattern is random, i.e. the zeros (blanks) and the ones (rectangles
of height A and width 7,) occur randomly, find the spectrum of the
waveform. Under the assumption that the numbers of zeros and ones are
equal on average, the average rate of carrier generation (i.e. the average
rate of photons) is (R(t)) = (1/2)A.

(b) Find the spectrum of the detector current.

See Appendix A.14.
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8.4*% A return-to-zero (RZ) bit pattern at the optical carrier frequency w,
is incident on a detector. RZ implies that the “ones” are pulses, the zeros
blanks, and there is a clear separation of two ones following each other. The
pulses are Gaussians A4, exp(—t2/272) and their width 7, is 1/8 of the symbo]
interval.

(a) If the pattern is random, i.e. the zeros (blanks) and the ones occur ran-
domly, find the autocorrelation function of the waveform. Make the as-
sumption that the numbers of zeros and ones are equal on average.

(b) Find the spectrum of the detector current.

8.5* A Mach—Zehnder interferometer with two 50/50 beam splitters has a
phase delay difference between the two paths of Af. The output beam splitter
is followed by a balanced detector.

(a) Find the output annihilation operators ¢ and d of the Mach-Zehnder
interferometer in terms of the input operators @ and b.

(b) If the Mach-Zehnder interferometer is excited by two coherent states
|a)]B), find the charge collected by the detector.

8.6 A photon number state “has no phase”. Yet a photon state |n) can
interfere with itself. To show this determine the charge (Q) collected by a
balanced detector at the output of a Mach-Zehnder interferometer with the
same photon state at input (a) as analyzed in the preceding problem.

8.7 Determine the charge in the setup of the preceding problem for an in-
cident photon state |ng)|ng), where |ng) is a photon state of propagation
constant B and |ng) is a photon state of propagation constant (.

Solutions

8.2 The detector, illuminated by a signal field E4(r) and a local-oscillator
field E(r), produces a current whose magnitude is proportional to

l/dSE E}
2 oo 2 2 2
/ d¢/ rdr exp (——7:—2- — %) exp (igor—2)
2] o wL Wy wL

The integral gives

1 /27!' /00 ( T2 T2 ) ( T2 )
d rdrexp{ — — — — | exp{ip—
wws J, ), wf i) P\t

™

X
WL Ws

) \/(w8/wL + wL/w8)2 + ¢? (w8/wL)2
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This expression has a maximum of #/2 when ¢ = 0 and w, = wy,. Hence the
deterioration of the signal is

2

\/(ws/wL +wi/w)® + 02 (wefwr)’
8.4 The autocorrelation function is, classically,
(ABA(E+1)

where

ZA exp — ———— t_t)

The ensemble average can be replaced b