
Lecture 9

Waves in Gyrotropic Media,
Polarization

Gyrotropy is an important concept in electromagnetics. When a wave propagates through
a gyrotropic medium, the electric field rotates changing the polarization of the wave. Our
ionosphere is such a medium, and it affects radio and microwave communications between the
Earth and the satellite by affecting the polarization of the wave. We will study this important
topic in this lecture.

9.1 Gyrotropic Media and Faraday Rotation

This section derives the effective permittivity tensor of a gyrotropic medium in the ionsphere.
Our ionosphere is always biased by a static magnetic field due to the Earth’s magnetic field
[75]. But in this derivation, to capture the salient feature of the physics with a simple model,
we assume that the ionosphere has a static magnetic field polarized in the z direction, namely
that B = ẑB0. Now, the equation of motion from the Lorentz force law for an electron with
q = −e, (in accordance with Newton’s second law that F = ma or force equals mass times
accelration) becomes

me
dv

dt
= −e(E + v ×B) (9.1.1)

Next, let us assume that the electric field is polarized in the xy plane. The derivative of v is
the acceleration of the electron, and also, v = dr/dt where r = x̂x+ ŷy+ ẑz. Again, assuming
linearity, we use frequency domain technique for the analysis. And in the frequency domain,
the above equation in the cartesian coordinates becomes

meω
2x = e(Ex + jωB0y) (9.1.2)

meω
2y = e(Ey − jωB0x) (9.1.3)

The above constitutes two equations with two unknowns x and y. They cannot be solved easily
for x and y in terms of the electric field because they correspond to a two-by-two matrix system
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with cross coupling between the unknowns x and y. But they can be simplified as follows:
We can multiply (9.1.3) by ±j and add it to (9.1.2) to get two decoupled equations [76]:

meω
2(x+ jy) = e[(Ex + jEy) + ωB0(x+ jy)] (9.1.4)

meω
2(x− jy) = e[(Ex − jEy)− ωB0(x− jy)] (9.1.5)

In the above, if we take the new unknowns to be x ± jy, the two equations are decoupled
with respect to to these two unknowns. Defining new variables such that

s± = x± jy (9.1.6)

E± = Ex ± jEy (9.1.7)

then (9.1.4) and (9.1.5) become

meω
2s± = e(E± ± ωB0s±) (9.1.8)

Thus, solving the above yields

s± =
e

meω2 ∓ eB0ω
E± = C±E± (9.1.9)

where

C± =
e

meω2 ∓ eB0ω
(9.1.10)

(By this manipulation, the above equations (9.1.2) and (9.1.3) transform to new equations
where there is no cross coupling between s± and E±. The mathematical parlance for this is
the diagonalization of a matrix equation [77]. Thus, the new equation can be solved easily.)

Next, one can define Px = −Nex, Py = −Ney, and that P± = Px± jPy = −Nes±. Then
it can be shown that

P± = ε0χ±E± (9.1.11)

The expression for χ± can be derived, and they are given as

χ± = −NeC±
ε0

= −Ne
ε0

e

meω2 ∓ eBoω
= − ωp

2

ω2 ∓ Ωω
(9.1.12)

where Ω and ωp are the cyclotron frequency1 and plasma frequency, respectively.

Ω =
eB0

me
, ωp

2 =
Ne2

meε0
(9.1.13)

At the cyclotron frequency, |χ±| → ∞. In other words, P± is finite even when E± = 0, or a
solution exists to the equation of motion (9.1.1) without a forcing term, which in this case is
the electric field. Thus, at this frequency, the solution blows up if the forcing term, E± is not

1This is also called the gyrofrequency.
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zero. This is like what happens to an LC tank circuit at resonance whose current or voltage
tends to infinity when the forcing term, like the voltage or current is nonzero.

Now, one can express the original variables Px, Py, Ex, Ey in terms of P± and E±. With
the help of (9.1.11), we arrive at

Px =
P+ + P−

2
=
ε0

2
(χ+E+ + χ−E−) =

ε0

2
[χ+(Ex + jEy) + χ−(Ex − jEy)]

=
ε0

2
[(χ+ + χ−)Ex + j(χ+ − χ−)Ey] (9.1.14)

Py =
P+ − P−

2j
=
ε0

2j
(χ+E+ − χ−E−) =

ε0

2j
[χ+(Ex + jEy)− χ−(Ex − jEy)]

=
ε0

2j
[(χ+ − χ−)Ex + j(χ+ + χ−)Ey] (9.1.15)

The above relationship in cartesian coordinates can be expressed using a tensor where

P = ε0χχχ ·E (9.1.16)

where P = [Px, Py], and E = [Ex, Ey]. From the above, χ is of the form

χ =
1

2

(
(χ+ + χ−) j(χ+ − χ−)
−j(χ+ − χ−) (χ+ + χ−)

)
=

(
− ωp

2

ω2−Ω2 −j ωp
2Ω

ω(ω2−Ω2)

j
ωp

2Ω
ω(ω2−Ω2) − ωp

2

ω2−Ω2

)
(9.1.17)

Notice that in the above, when the B field is turned off or Ω = 0, the above resembles
the solution of a collisionless, cold plasma again. For the B = 0 case with electric field in the
x (or y) direction, it will drive a motion of the electron to be in the x (or y) direction. In
this case, v ×B term is zero, and the electron motion is unaffected by the magnetic field as
can be seen from the Lorentz force law or (9.1.1). Hence, it behaves like a simple collisionless
plasma without a biasing magnetic field.

Consequently, for the B 6= 0 case, the above can be generalized to 3D to give

χ =

 χ0 jχ1 0
−jχ1 χ0 0

0 0 χp

 (9.1.18)

where χp = −ω2
p/ω

2. Notice that since we assume that B = ẑB0, the z component of (9.1.1)
is unaffected by the v × B force. Hence, the electron moving in the z is like that of a cold
collisionless plasma.

Using the fact that D = ε0E + P = ε0(I + χ) ·E = ε ·E, the above implies that

ε = ε0

1 + χ0 jχ1 0
−jχ1 1 + χ0 0

0 0 1 + χp

 (9.1.19)

Now, ε is that of an anisotropic medium, of which a gyrotropic medium belongs. Please notice
that the above tensor is a hermitian tensor. We shall learn later that this is the hallmark of
a lossless medium.
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Another characteristic of a gyrotropic medium is that a linearly polarized wave will rotate
when passing through it. This is the Faraday rotation effect [76], which we shall learn more
later. This phenomenon poses a severe problem for Earth-to-satellite communication, using
linearly polarized wave as it requires the alignment of the Earth-to-satellite antennas. This
can be avoided using a rotatingly polarized wave, called a circularly polarized wave that we
shall learn in the next section.

As we have learnt, the ionosphere affects out communication systems two ways: It acts as
a mirror for low-frequency electromagnetic or radio waves (making the experiment of Marconi
a rousing success). It also affects the polarization of the wave. But the ionosphere of the
Earth and the density of electrons that are ionized is highly dependent on temperature, and
the effect of the Sun. The fluctuation of particles in the ionosphere gives rise to scintillation
effects due to electron motion and collision that affect radio wave communication systems [78].

9.2 Wave Polarization

Studying wave polarization is very important for communication purposes [32]. A wave whose
electric field is pointing in the x direction while propagating in the z direction is a linearly
polarized (LP) wave. The same can be said of one with electric field polarized in the y
direction. It turns out that a linearly polarized wave suffers from Faraday rotation when
it propagates through the ionosphere. For instance, an x polarized wave can become a y
polarized wave due to Faraday rotation. So its polarization becomes ambiguous as the wave
propagates through the ionosphere: to overcome this, Earth to satellite communication is
done with circularly polarized (CP) waves [79]. So even if the electric field vector is rotated
by Faraday’s rotation, it remains to be a CP wave. We will study these polarized waves next.

We can write a general uniform plane wave propagating in the z direction in the time
domain as

E = x̂Ex(z, t) + ŷEy(z, t) (9.2.1)

Clearly, ∇ ·E = 0, and Ex(z, t) and Ey(z, t), by the principle of linear superposition, are so-
lutions to the one-dimensional wave equation. For a time harmonic field, the two components
may not be in phase, and we have in general

Ex(z, t) = E1 cos(ωt− βz) (9.2.2)

Ey(z, t) = E2 cos(ωt− βz + α) (9.2.3)

where α denotes the phase difference between these two wave components. We shall study
how the linear superposition of these two components behaves for different α’s. First, we set
z = 0 to observe this field. Then

E = x̂E1 cos(ωt) + ŷE2 cos(ωt+ α) (9.2.4)

For α = π
2

Ex = E1 cos(ωt), Ey = E2 cos(ωt+ π/2) (9.2.5)
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Next, we evaluate the above for different ωt’s

ωt = 0, Ex = E1, Ey = 0 (9.2.6)

ωt = π/4, Ex = E1/
√

2, Ey = −E2/
√

2 (9.2.7)

ωt = π/2, Ex = 0, Ey = −E2 (9.2.8)

ωt = 3π/4, Ex = −E1/
√

2, Ey = −E2/
√

2 (9.2.9)

ωt = π, Ex = −E1, Ey = 0 (9.2.10)

The tip of the vector field E traces out an ellipse as show in Figure 9.1. With the left-hand
thumb pointing in the z direction, and the wave rotating in the direction of the fingers, such
a wave is called left-hand elliptically polarized (LHEP) wave.

Figure 9.1: If one follows the tip of the electric field vector, it traces out an ellipse as a
function of time t.

When E1 = E2, the ellipse becomes a circle, and we have a left-hand circularly polarized
(LHCP) wave. When α = −π/2, the wave rotates in the counter-clockwise direction, and
the wave is either right-hand elliptically polarized (RHEP), or right-hand circularly polarized
(RHCP) wave depending on the ratio of E1/E2. Figure 9.2 shows the different polarizations
of the wave wave for different phase differences and amplitude ratio. Figure 9.3 shows a
graphic picture of a CP wave propagating through space.
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Figure 9.2: Due to different phase difference between the Ex and Ey components of the field,
and their relative amplitudes E2/E1, different polarizations will ensure. The arrow indicates
the direction of rotation of the field vector.

Figure 9.3: The rotation of the field vector of a right-hand circular polarization wave as it
propagates in the right direction [80] (courtesy of Wikipedia).

9.2.1 Arbitrary Polarization Case and Axial Ratio2

As seen before, the tip of the field vector traces out an ellipse in space as it propagates.
The axial ratio (AR) is the ratio of the major axis to the minor axis of this ellipse. It is an
important figure of merit for designing CP (circularly polarized) antennas (antennas that will
radiate circularly polarized waves). The closer is this ratio to 1, the better is the antenna
design. We will discuss the general polarization and the axial ratio of a wave.

For the general case for arbitrary α, we let

Ex = E1 cosωt, Ey = E2 cos(ωt+ α) = E2(cosωt cosα− sinωt sinα) (9.2.11)

2This section is mathematically complicated. It can be skipped on first reading.
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Then from the above, expressing Ey in terms of Ex, one gets

Ey =
E2

E1
Ex cosα− E2

[
1−

(
Ex
E1

)2
]1/2

sinα (9.2.12)

Rearranging and squaring, we get

aEx
2 − bExEy + cEy

2 = 1 (9.2.13)

where

a =
1

E1
2 sin2 α

, b =
2 cosα

E1E2 sin2 α
, c =

1

E2
2 sin2 α

(9.2.14)

After letting Ex → x, and Ey → y, equation (9.2.13) is of the form,

ax2 − bxy + cy2 = 1 (9.2.15)

The equation of an ellipse in its self coordinates is(
x′

A

)2

+

(
y′

B

)2

= 1 (9.2.16)

where A and B are axes of the ellipse as shown in Figure 9.4. We can transform the above
back to the (x, y) coordinates by letting

x′ = x cos θ − y sin θ (9.2.17)

y′ = x sin θ + y cos θ (9.2.18)

to get

x2

(
cos2 θ

A2
+

sin2 θ

B2

)
− xy sin 2θ

(
1

A2
− 1

B2

)
+ y2

(
sin2 θ

A2
+

cos2 θ

B2

)
= 1 (9.2.19)

Comparing (9.2.13) and (9.2.19), one gets

θ =
1

2
tan−1

(
2 cosαE1E2

E2
2 − E1

2

)
(9.2.20)

AR =

(
1 + ∆

1−∆

)1/2

> 1 (9.2.21)

where AR is the axial ratio and

∆ =

(
1− 4E1

2E2
2 sin2 α(

E1
2 + E2

2
)2
)1/2

(9.2.22)
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Figure 9.4: This figure shows the parameters used to derive the axial ratio (AR) of an
elliptically polarized wave.

9.3 Polarization and Power Flow

For a linearly polarized wave in the time domain,

E = x̂E0 cos(ωt− βz), H = ŷ
E0

η
cos(ωt− βz) (9.3.1)

Hence, the instantaneous power we have learnt previously in Section 5.3 becomes

S(t) = E(t)×H(t) = ẑ
E0

2

η
cos2(ωt− βz) (9.3.2)

indicating that for a linearly polarized wave, the instantaneous power is function of both time
and space. It travels as lumps of energy through space. In the above E0 is the amplitude of
the linearly polarized wave.

Next, we look at power flow for for elliptically and circularly polarized waves. It is to be
noted that in the phasor world or frequency domain, (9.2.1) becomes

E(z, ω) = x̂E1e
−jβz + ŷE2e

−jβz+jα (9.3.3)

For LHEP wave,

E(z, ω) = e−jβz(x̂E1 + jŷE2) (9.3.4)

whereas for LHCP wave,

E(z, ω) = e−jβzE1(x̂+ jŷ) (9.3.5)
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For RHEP wave, the above becomes

E(z, ω) = e−jβz(x̂E1 − jŷE2) (9.3.6)

whereas for RHCP wave, it is

E(z, ω) = e−jβzE1(x̂− jŷ) (9.3.7)

Focussing on the circularly polarized wave,

E = (x̂± jŷ)E0e
−jβz (9.3.8)

Using that

H =
β ×E

ωµ
,

where β = ẑβ, then

H = (∓x̂− jŷ)j
E0

η
e−jβz (9.3.9)

where η =
√
µ/ε is the intrinsic impedance of the medium. Therefore,

E(t) = x̂E0 cos(ωt− βz)± ŷE0 sin(ωt− βz) (9.3.10)

H(t) = ∓x̂E0

η
sin(ωt− βz) + ŷ

E0

η
cos(ωt− βz) (9.3.11)

Then the instantaneous power becomes

S(t) = E(t)×H(t) = ẑ
E0

2

η
cos2(ωt− βz) + ẑ

E0
2

η
sin2(ωt− βz) = ẑ

E0
2

η
(9.3.12)

In other words, a CP wave delivers constant instantaneous power independent of space and
time, as opposed to a linearly polarized wave which delivers a non-constant instantaneous
power as shown in (9.3.2).

It is to be noted that the complex Poynting’s vector for a lossless medium

S˜ = E×H∗ (9.3.13)

is real and constant independent of space both for linearly, circularly, and elliptically polarized
waves. This is because there is no reactive power in a plane wave of any polarization: the
stored energy in the plane wave cannot be returned to the source!
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