
Lecture 6

Time-Harmonic Fields, Complex
Power

The analysis of Maxwell’s equations can be greatly simplified by assuming the fields to be
time harmonic, or sinusoidal (cosinusoidal). Electrical engineers use a method called phasor
technique [32,52], to simplify equations involving time-harmonic signals. This is also a poor-
man’s Fourier transform [53]. That is one begets the benefits of Fourier transform technique
without knowledge of Fourier transform. Since only one time-harmonic frequency is involved,
this is also called frequency domain analysis.1 Phasors are represented in complex numbers.
From this we will also discuss the concept of complex power.

1It is simple only for linear systems: for nonlinear systems, such analysis can be quite unwieldy. But rest
assured, as we will not discuss nonlinear systems in this course.
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62 Electromagnetic Field Theory

6.1 Time-Harmonic Fields—Linear Systems

Figure 6.1: A commemorative stamp showing the contribution of Euler (courtesy of Wikipedia
and Pinterest).

To learn phasor technique, one makes use the formula due to Euler (1707–1783) (Wikipedia)

ejα = cosα+ j sinα (6.1.1)

where j =
√
−1 is an imaginary number.2

From Euler’s formula one gets

cosα = <e
(
ejα
)

(6.1.2)

Hence, all time harmonic quantity can be written as

V (x, y, z, t) = V ′(x, y, z) cos(ωt+ α) (6.1.3)

= V ′(r)<e(ej(ωt+α)) (6.1.4)

= <e
(
V ′(r)ejαejωt

)
(6.1.5)

= <e
(
V˜ (r)ejωt

)
(6.1.6)

Now V˜ (r) = V ′(r)ejα is a complex number called the phasor representation or phasor of

V (r, t) a time-harmonic quantity.3 Here, the phase α = α(r) can also be a function of
position r, or x, y, z. Consequently, any component of a field can be expressed as

Ex(x, y, z, t) = Ex(r, t) = <e
[
E˜x(r)ejωt

]
(6.1.7)

2But lo and behold, in other disciplines,
√
−1 is denoted by “i”, but “i” is too close to the symbol for

current. So the preferred symbol for electrical engineering for an imaginary number is j: a quirkness of
convention, just as positive charges do not carry current in a wire.

3We will use under tilde to denote a complex number or a phasor here, but this notation will be dropped
later. Whether a variable is complex or real is clear from the context.
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The above can be repeated for y and z components. Compactly, one can write

E(r, t) = <e
[
E˜(r)ejωt

]
(6.1.8)

H(r, t) = <e
[
H˜ (r)ejωt

]
(6.1.9)

where E˜ and H˜ are complex vector fields. Such phasor representations of time-harmonic fields
simplify Maxwell’s equations. For instance, if one writes

B(r, t) = <e
(
B˜ (r)ejωt

)
(6.1.10)

then

∂

∂t
B(r, t) =

∂

∂t
<e
[
B˜ (r)ejωt

]
= <e

(
∂

∂t
B˜ (r)ejωt

)
= <e

(
B˜ (r)jωejωt

)
(6.1.11)

Therefore, a time derivative can be effected very simply for a time-harmonic field. One just
needs to multiply jω to the phasor representation of a field or a signal. Therefore, given
Faraday’s law that

∇×E = −∂B

∂t
−M (6.1.12)

assuming that all quantities are time harmonic, then

E(r, t) = <e
[
E˜(r)ejωt

]
(6.1.13)

M(r, t) = <e
[
M˜(r)ejωt

]
(6.1.14)

using (6.1.11), and (6.1.14), into (6.1.12), one gets

∇×E(r, t) = <e
[
∇×E˜(r)ejωt

]
(6.1.15)

and that

<e
[
∇×E˜(r)ejωt

]
= −<e

[
B˜ (r)jωejωt

]
−<e

[
M˜(r)ejωt

]
(6.1.16)

Since if

<e
[
A(r)ejωt

]
= <e

[
B(r)ejωt

]
, ∀t (6.1.17)
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then A(r) = B(r), it must be true from (6.1.16) that

∇×E˜(r) = −jωB˜ (r)−M˜(r) (6.1.18)

Hence, finding the phasor representation of an equation is clear: whenever we have ∂
∂t , we

replace it by jω. Applying this methodically to the other Maxwell’s equations, we have

∇×H˜ (r) = jωD˜ (r) + J˜(r) (6.1.19)

∇ ·D˜ (r) = %˜e(r) (6.1.20)

∇ ·B˜ (r) = %˜m(r) (6.1.21)

In the above, the phasors are functions of frequency. For instance, H˜ (r) should rightly be
written as H˜ (r, ω), but the ω dependence is implied.

6.2 Fourier Transform Technique

In the phasor representation, Maxwell’s equations has no time derivatives; hence the equations
are simplified. We can also arrive at the above simplified equations using Fourier transform
technique. To this end, we use Faraday’s law as an example. By letting

E(r, t) =
1

2π

∞�

−∞

E(r, ω)ejωtdω (6.2.1)

B(r, t) =
1

2π

∞�

−∞

B(r, ω)ejωtdω (6.2.2)

M(r, t) =
1

2π

∞�

−∞

M(r, ω)ejωtdω (6.2.3)

Substituting the above into Faraday’s law given by (6.1.12), we get

∇×
∞�

−∞

dωejωtE(r, ω) = − ∂

∂t

∞�

−∞

dωejωtB(r, ω)−
∞�

−∞

dωejωtM(r, ω) (6.2.4)

Using the fact that

∂

∂t

∞�

−∞

dωejωtB(r, ω) =

∞�

−∞

dω
∂

∂t
ejωtB(r, ω) =

∞�

−∞

dωejωtjωB(r, ω) (6.2.5)

and that

∇×
∞�

−∞

dωejωtE(r, ω) =

∞�

−∞

dωejωt∇×E(r, ω) (6.2.6)
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Furthermore, using the fact that

∞�

−∞

dωejωtA(ω) =

∞�

−∞

dωejωtB(ω), ∀t (6.2.7)

implies that A(ω) = B(ω), and using (6.2.5) and (6.2.6) in (6.2.4), and the property (6.2.7),
one gets

∇×E(r, ω) = −jωB(r, ω)−M(r, ω) (6.2.8)

These equations look exactly like the phasor equations we have derived previously, save
that the field E(r, ω), B(r, ω), and M(r, ω) are now the Fourier transforms of the field E(r, t),
B(r, t), and M(r, t). Moreover, the Fourier transform variables can be complex just like
phasors. Repeating the exercise above for the other Maxwell’s equations, we obtain equations
that look similar to those for their phasor representations. Hence, Maxwell’s equations can
be simplified either by using phasor technique or Fourier transform technique. However, the
dimensions of the phasors are different from the dimensions of the Fourier-transformed fields:
E˜(r) and E(r, ω) do not have the same dimension on closer examination.

6.3 Complex Power

Consider now that in the phasor representations, E˜(r) and H˜ (r) are complex vectors, and
their cross product, E˜(r) ×H˜ ∗(r), which still has the unit of power density, has a different
physical meaning. First, consider the instantaneous Poynting’s vector

S(r, t) = E(r, t)×H(r, t) (6.3.1)

where all the quantities are real valued. Now, we can use phasor technique to analyze the
above. Assuming time-harmonic fields, the above can be rewritten as

S(r, t) = <e
[
E˜(r)ejωt

]
×<e

[
H˜ (r)ejωt

]
=

1

2

[
E˜ejωt + (E˜ejωt)∗

]
× 1

2

[
H˜ ejωt + (H˜ ejωt)∗

]
(6.3.2)

where we have made use of the formula that

<e(Z) =
1

2
(Z + Z∗) (6.3.3)

Then more elaborately, on expanding (6.3.2), we get

S(r, t) =
1

4
E˜ ×H˜ e2jωt +

1

4
E˜ ×H˜ ∗ +

1

4
E˜∗ ×H˜ +

1

4
E˜∗ ×H˜ ∗e−2jωt (6.3.4)

Then rearranging terms and using (6.3.3) yield

S(r, t) =
1

2
<e
[
E˜ ×H˜ ∗

]
+

1

2
<e
[
E˜ ×H˜ e2jωt

]
(6.3.5)
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where the first term is independent of time, while the second term is sinusoidal in time. If we
define a time-average quantity such that

Sav = 〈S(r, t)〉 = lim
T→∞

1

T

� T

0

S(r, t)dt (6.3.6)

then it is quite clear that the second term of (6.3.5) time-averages to zero, and

Sav = 〈S(r, t)〉 =
1

2
<e
[
E˜ ×H˜ ∗

]
(6.3.7)

Hence, in the phasor representation, the quantity

S˜ = E˜ ×H˜ ∗ (6.3.8)

is termed the complex Poynting’s vector . The power flow associated with it is termed complex
power.

Figure 6.2: A simple circuit example to illustrate the concept of complex power in circuit
theory.

To understand what complex power is , it is fruitful if we revisit complex power [50, 54]
in our circuit theory course. The circuit in Figure 6.2 can be easily solved by using phasor
technique. The impedance of the circuit is Z = R+ jωL. Hence,

V˜ = (R+ jωL)I˜ (6.3.9)

where V˜ and I˜ are the phasors of the voltage and current for time-harmonic signals. Just as
in the electromagnetic case, the complex power is taken to be

P˜ = V˜I˜∗ (6.3.10)

But the instantaneous power is given by

Pinst(t) = V (t)I(t) (6.3.11)
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where V (t) = <e{V˜ejωt} and I(t) = <e{I˜ejωt}. As shall be shown below,

Pav = 〈Pinst(t)〉 =
1

2
<e
[
P˜
]

(6.3.12)

It is clear that if V (t) is sinusoidal, it can be written as

V (t) = V0 cos(ωt) = <e
[
V˜ejωt

]
(6.3.13)

where, without loss of generality, we assume that V˜ = V0. Then from (6.3.9), it is clear that
V (t) and I(t) are not in phase. Namely that

I(t) = I0 cos(ωt+ α) = <e
[
I˜ejωt

]
(6.3.14)

where I˜ = I0e
jα. Then

Pinst(t) = V0I0 cos(ωt) cos(ωt+ α)

= V0I0 cos(ωt) [cos(ωt) cos(α)− sin(ωt) sinα]

= V0I0 cos2(ωt) cosα− V0I0 cos(ωt) sin(ωt) sinα (6.3.15)

It can be seen that the first term does not time-average to zero, but the second term, by
letting cos(ωt) sin(ωt) = 0.5 sin(2ωt), does time-average to zero. Now taking the time average
of (6.3.15), we get

Pav = 〈Pinst〉 =
1

2
V0I0 cosα =

1

2
<e
[
V˜I˜∗

]
(6.3.16)

=
1

2
<e
[
P˜
]

(6.3.17)

On the other hand, the reactive power

Preactive =
1

2
=m

[
P˜
]

=
1

2
=m

[
V˜I˜∗

]
=

1

2
=m

[
V0I0e

−jα] = −1

2
V0I0 sinα (6.3.18)

One sees that amplitude of the time-varying term in (6.3.15) is precisely proportional to
=m

[
P˜].4The reason for the existence of imaginary part of P˜ is because V (t) and I(t) are out of

phase or V˜ = V0, but I˜ = I0e
jα. The reason why they are out of phase is because the circuit

has a reactive part to it. Hence the imaginary part of complex power is also called the reactive
power [35,50,54]. In a reactive circuit, the plots of the instantaneous power is shown in Figure
6.3. It is seen that when α 6= 0, the instantaneous power can be negative. This means that
the power is flowing from the load to the source instead of flowing from the source to the
load. This happens only when the reactive power is nonzero or when a reactive component
like an inductor or capacitor exists in the circuit. When a power company delivers power

4Because that complex power is proportional to V˜I˜∗, it is the relative phase between V˜ and I˜ that matters.
Therefore, α above is the relative phase between the phasor current and phasor voltage.
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to our home, the power is complex because the current and voltage are not in phase. Even
though the reactive power time-averages to zero, the power company still needs to deliver it
to and from our home to run our washing machine, dish washer, fans, and air conditioner
etc, and hence, charges us for it. Part of this power will be dissipated in the transmission
lines that deliver power to our home. In other words, we have to pay to the use of imaginary
power!

Figure 6.3: Plots of instantaneous power for when the voltage and the current is in phase
(α = 0), and when they are out of phase (α 6= 0). In the out-of-phase case, there is an
additional time-varying term that does not contribute to time-average power as shown in
(6.3.15).


