
Lecture 39

Quantum Coherent State of
Light

As mentioned in the previous lecture, the discovery of Schrödinger wave equation was a
resounding success. When it was discovered by Schrödinger, and appplied to a very simple
hydrogen atom, its eigensolutions, especially the eigenvalues En coincide beautifully with
spectroscopy experiment of the hydrogen atom. Since the electron wavefunctions inside a
hydrogen atom does not have a classical analog, less was known about these wavefunctions.
But in QED and quantum optics, the wavefunctions have to be connected with classical
electromagnetic oscillations. As seen previously, electromagnetic oscillations resemble those
of a pendulum. The original eigenstates of the quantum pendulum were the photon number
states also called the Fock states. The connection to the classical pendulum was tenuous, but
required by the correspondence principle–quantum phenomena resembles classical phenomena
in the high energy limit. This connection was finally established by the establishment of the
coherent state.

39.1 The Quantum Coherent State

We have seen that a photon number states1 of a quantum pendulum do not have a classical
correspondence as the average or expectation values of the position and momentum of the
pendulum are always zero for all time for this state. Therefore, we have to seek a time-
dependent quantum state that has the classical equivalence of a pendulum. This is the
coherent state, which is the contribution of many researchers, most notably, Roy Glauber
(1925–2018) [269] in 1963, and George Sudarshan (1931–2018) [270]. Glauber was awarded
the Nobel prize in 2005.

We like to emphasize again that the modes of an electromagnetic cavity oscillation are
homomorphic to the oscillation of classical pendulum. Hence, we first connect the oscillation
of a quantum pendulum to a classical pendulum. Then we can connect the oscillation of

1In quantum theory, a “state” is synonymous with a state vector or a function.
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448 Electromagnetic Field Theory

a quantum electromagnetic mode to the classical electromagnetic mode and then to the
quantum pendulum.

39.1.1 Quantum Harmonic Oscillator Revisited

To this end, we revisit the quantum harmonic oscillator or the quantum pendulum with more
mathematical depth. Rewriting Schrödinger equation as the eigenequation for the photon
number state for the quantum harmonic oscillator, we have

Ĥψ(x) =

[
− ~2

2m

d2

dx2
+

1

2
mω2

0x
2

]
ψ(x) = Eψ(x). (39.1.1)

where ψ(x) is the eigenfunction, and E is the eigenvalue. The above can be changed into
a dimensionless form first by dividing ~ω0, and then let ξ =

√
mω0

~ x be a dimensionless
variable. The above then becomes

1
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(
− d2

dξ2
+ ξ2

)
ψ(ξ) =

E

~ω0
ψ(ξ) (39.1.2)

We can define π̂ = −i ddξ and ξ̂ = Îξ to rewrite the Hamiltonian as

Ĥ =
1

2
~ω0(π̂2 + ξ̂2) (39.1.3)

Furthermore, the Hamiltonian in (39.1.2) looks almost like A2−B2, and hence motivates
its factorization. To this end, we first show that
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(39.1.4)

It can be shown easily that as operators (meaning that they will act on a function to their
right), the last term on the right-hand side is an identity operator, namely that(
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)
= Î (39.1.5)

Therefore
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(39.1.6)

We define the operator

â† =
1√
2

(
− d

dξ
+ ξ

)
(39.1.7)

The above is the creation, or raising operator and the reason for its name is obviated later.
Moreover, we define

â =
1√
2

(
d

dξ
+ ξ

)
(39.1.8)
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which represents the annihilation or lowering operator. With the above definitions of the
raising and lowering operators, it is easy to show that by straightforward substitution that[

â, â†
]

= ââ† − â†â = Î (39.1.9)

Therefore, Schrödinger equation (39.1.2) for quantum harmonic oscillator can be rewritten
more concisely as

1

2

(
â†â+ ââ†

)
ψ =

(
â†â+

1

2

)
ψ =

E

~ω0
ψ (39.1.10)

In mathematics, a function is analogous to a vector. So ψ is the implicit representation of a
vector. The operator (

â†â+
1

2

)
is an implicit2 representation of an operator, and in this case, a differential operator. So in
the above, (39.1.10), is analogous to the matrix eigenvalue equation A · x = λx.

Consequently, the Hamiltonian operator can be expressed concisely as

Ĥ = ~ω0

(
â†â+

1

2

)
(39.1.11)

Equation (39.1.10) above is in implicit math notation. In implicit Dirac notation, it is(
â†â+

1

2

)
|ψ〉 =

E

~ω0
|ψ〉 (39.1.12)

In the above, ψ(ξ) is a function which is a vector in a functional space. It is denoted as ψ
in math notation and |ψ〉 in Dirac notation. This is also known as the “ket”. The conjugate
transpose of a vector in Dirac notation is called a “bra” which is denoted as 〈ψ|. Hence, the
inner product between two vectors is denoted as 〈ψ1|ψ2〉 in Dirac notation.3

If we denote a photon number state by ψn(x) in explicit notation, ψn in math notation
or |ψn〉 in Dirac notation, then we have(

â†â+
1

2

)
|ψn〉 =

En
~ω0
|ψn〉 =

(
n+

1

2

)
|ψn〉 (39.1.13)

where we have used the fact that En = (n+ 1/2)~ω0. Therefore, by comparing terms in the
above, we have

â†â|ψn〉 = n|ψn〉 (39.1.14)

and the operator â†â is also known as the number operator because of the above. It is often
denoted as

n̂ = â†â (39.1.15)

2A notation like A · x, we will call implicit, while a notation
∑
i,j Aijxj , we will call explicit.

3There is a one-to-one correspondence of Dirac notation to matrix algebra notation. Â|x〉 ↔ A ·x, 〈x| ↔
x† 〈x1|x2〉 ↔ x†1 · x2.
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and |ψn〉 is an eigenvector of n̂ = â†â operator with eigenvalue n. It can be further shown by
direct substitution that

â|ψn〉 =
√
n|ψn−1〉 ⇔ â|n〉 =

√
n|n− 1〉 (39.1.16)

â†|ψn〉 =
√
n+ 1|ψn+1〉 ⇔ â†|n〉 =

√
n+ 1|n+ 1〉 (39.1.17)

hence their names as lowering and raising operator.4

39.2 Some Words on Quantum Randomness and Quan-
tum Observables

We saw previously that in classical mechanics, the conjugate variables p and x are determin-
istic variables. But in the quantum world, they become random variables with means and
variance. It was quite easy to see that x is a random variable in the quantum world. But the
momentum p is elevated to become a differential operator p̂, and it is not clear that it is a
random variable anymore.

Quantum theory is a lot richer in content than classical theory. Hence, in quantum theory,
conjugate variables like p and x are observables endowed with the properties of mean and
variance. For them to be endowed with these properties, they are elevated to become quantum
operators, which are the representations of these observables. To be meaningful, a quantum
state |ψ〉 has to be defined for a quantum system, and these operators representing observables
act on the quantum state.

Henceforth, we have to extend the concept of the average of a random variable to the
“average” of a quantum operator. Now that we know Dirac notation, we can write the
expectation value of the operator p̂ with respect to a quantum state ψ as

p̄ = 〈p〉 = 〈ψ|p̂|ψ〉 (39.2.1)

The above is the elevated way of taking the “average” of an operator which is related to the
mean of the random variable p. In the above, the two-some, {p̂, |ψ〉} endows the quantum
observable p with random properties. Here, p becomes a random variable whose mean is
given by the above formula.

As mentioned before, Dirac notation is homomorphic to matrix algebra notation. The
above is similar to ψ† ·P ·ψ = p̄. This quantity p̄ is always real if P is a Hermitian matrix.
Hence, in (39.2.1), the expectation value p̄ is always real if p̂ is Hermitian. In fact, it can be
proved that p̂ is Hermitian in the function space that it is defined.

Furthermore, the variance of the random variable p can be derived from the quantum
operator p̂ with respect to to a quantum state |ψ〉. It is defined as

σ2
p = 〈ψ|(p̂− p̄)2|ψ〉 = 〈ψ|p̂2|ψ〉 − p̄2 (39.2.2)

where σp is the standard deviation of the random variable p and σ2
p is its variance [71,72].

4The above notation for a vector could appear cryptic or too terse to the uninitiated. To parse it, one can
always down-convert from an abstract notation to a more explicit notation. Namely, |n〉 → |ψn〉 → ψn(ξ).
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The above implies that the definition of the quantum operators and the quantum states

is not unique. One can define a unitary matrix or operator U such that U
† ·U = I. Then

the new quantum state is now given by the unitary transform ψ′ = U ·ψ. With this, we can
easily show that

p̄ = ψ† ·P ·ψ = ψ† ·U† ·U ·P ·U† ·U ·ψ

= ψ′† ·P′ ·ψ′ (39.2.3)

where P
′

= U·P·U† via unitary transform. Now, P
′
is the new quantum operator representing

the observable p and ψ′ is the new quantum state vector.
In the previous section, we have elevated the position variable or observable ξ to become an

operator ξ̂ = ξÎ. This operator is clearly Hermitian, and hence, the expectation value of this
position operator is always real. Here, ξ̂ is diagonal in the coordinate space representation,
but it need not be in other Hilbert space representations using unitary transformation shown
above.

39.3 Derivation of the Coherent States

As one cannot see the characteristics of a classical pendulum emerging from the photon
number states, one needs another way of bridging the quantum world with the classical
world. This is the role of the coherent state: It will show the correspondence principle, with
a classical pendulum emerging from a quantum pendulum when the energy of the pendulum
is large. Hence, it will be interesting to see how the coherent state is derived.

The derivation of the coherent state is more math than physics. Nevertheless, the deriva-
tion is interesting. We are going to present it according to the simplest way presented in
the literature. There are deeper mathematical methods to derive this coherent state like
Bogoliubov transform which is outside the scope of this course.

Now, endowed with the needed mathematical tools, we can derive the coherent state
simply. To say succinctly, the coherent state is the eigenstate of the annihilation operator,
namely that

â|α〉 = α|α〉 (39.3.1)

Here, we use α as an eigenvalue as well as an index or identifier of the state |α〉.5 Since the
number state |n〉 is complete, the coherent state |α〉 can be expanded in terms of the number
state |n〉. Or that

|α〉 =
∞∑
n=0

Cn|n〉 (39.3.2)

When the annihilation operator is applied to the above, we have

â|α〉 =
∞∑
n=0

Cnâ|n〉 =
∞∑
n=1

Cnâ|n〉 =
∞∑
n=1

Cn
√
n|n− 1〉 =

∞∑
n=0

Cn+1

√
n+ 1|n〉 (39.3.3)

5This notation is cryptic and terse, but one can always down-convert it as |α〉 → |fα〉 → fα(ξ) to get a
more explicit notation.
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The last equality follows from changing the variable of summation from n to n+ 1. Equating
the above with α|α〉 on the right-hand side of (39.3.1), then

∞∑
n=0

Cn+1

√
n+ 1|n〉 = α

∞∑
n=0

Cn|n〉 (39.3.4)

By the orthonormality of the number states |n〉 and the completeness of the set,

Cn+1 = αCn/
√
n+ 1 (39.3.5)

Or recursively

Cn = Cn−1α/
√
n = Cn−2α

2/
√
n(n− 1) = . . . = C0α

n/
√
n! (39.3.6)

Consequently, the coherent state |α〉 is

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (39.3.7)

But due to the probabilistic interpretation of quantum mechanics, the state vector |α〉 is
normalized to one, or that6

〈α|α〉 = 1 (39.3.8)

Then

〈α|α〉 = C∗0C0

∞∑
n,n′

αn√
n!

αn
′

√
n′!
〈n′|n〉

= |C0|2
∞∑
n=0

|α|2n

n!
= |C0|2e|α|

2

= 1 (39.3.9)

Therefore, C0 = e−|α|
2/2 for normalization, or that

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (39.3.10)

In the above, to reduce the double summations into a single summation, we have made use
of 〈n′|n〉 = δn′n, or that the photon-number states are orthonormal. Also since â is not a
Hermitian operator, its eigenvalue α can be a complex number.

Since the coherent state is a linear superposition of the photon number states, an average
number of photons can be associated with the coherent state. If the average number of
photons embedded in a coherent is N , then it can be shown that N = |α|2. As shall be
shown, α is related to the amplitude of the quantum oscillation: The more photons there are
in a coherent state, the larger |α| is.

6The expression can be written more explicitly as 〈α|α〉 = 〈fα|fα〉 =
�∞
−∞ dξf∗α(ξ)fα(ξ) = 1.
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39.3.1 Time Evolution of a Quantum State

The Schrödinger equation can be written concisely as

Ĥ|ψ〉 = i~∂t|ψ〉 (39.3.11)

The above not only entails the form of Schrödinger equation, it is the form of the general
quantum state equation. Since Ĥ is time independent, the formal solution to the above is

|ψ(t)〉 = e−iĤt/~|ψ(0)〉 (39.3.12)

Meaning of the Function of an Operator

At this juncture, it is prudent to digress to discuss the meaning of a function of an operator,
which occurs in (39.3.12): The exponential function is a function of the operator Ĥ. This
is best explained by expanding the pertinent function into a Taylor series, namely,

f(A) = f(0)I + f ′(0)A +
1

2!
f ′′(0)A

2
+ . . .+

1

n!
f (n)(0)A

n
+ . . . (39.3.13)

Without loss of generality, we have used the matrix operator A as an illustration. The
above series has no meaning unless it acts on an eigenvector of the matrix operator A,
where Av = λv. Hence, by applying the above equation (39.3.13) to an eigenvector v of A,
we have

f(A)v = f(0)v + f ′(0)Av +
1

2!
f ′′(0)A

2
v + . . .+

1

n!
f (n)(0)A

n
v + . . .

= f(0)v + f ′(0)λv +
1

2!
f ′′(0)λ

2
v + . . .+

1

n!
f (n)(0)λnv + . . . = f(λ)v (39.3.14)

The last equality follows by re-summing the Taylor series back into a function. Applying
this to an exponential function of an operator, we have

eAv = eλv (39.3.15)

Applying this to the photon number state with Ĥ being that of the quantum pendulum
and that |n〉 is the eigenvector of Ĥ, then

e−iĤt/~|n〉 = e−iωnt|n〉 (39.3.16)

where ωn =
(
n+ 1

2

)
ω0. In particular, |n〉 is an eigenstate of the Hamiltonian Ĥ for the

quantum pendulum, or that from (39.1.11) and (39.1.14)

Ĥ|n〉 = ~ωn|n〉 = ~ω0

(
n+

1

2

)
|n〉 (39.3.17)

In other words, |n〉, a shorthand notation for |ψn〉 in (39.1.13), is an eigenvector of Ĥ.
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Time Evolution of the Coherent State

Using the above time-evolution operator, then the time dependent coherent state evolves in
time as7

|α, t〉 = e−iĤt/~|α〉 = e−|α|
2/2

∞∑
n=0

αne−iωnt√
n!

|n〉 (39.3.18)

By letting ωn = ω0

(
n+ 1

2

)
, the above can be written as

|α, t〉 = e−iω0t/2e−|α|
2/2

∞∑
n=0

(
αe−iω0t

)n
√
n!

|n〉 (39.3.19)

Now we see that the last factor in (39.3.19) is similar to the expression for a coherent state
in (39.3.10). Therefore, we can express the above more succinctly by replacing α in (39.3.10)
with α̃ = αe−iω0t as

|α, t〉 = e−iω0t/2|αe−iω0t〉 = e−iω0t/2|α̃〉 (39.3.20)

Consequently,

â|α, t〉 = âe−iω0t/2|αe−iω0t〉 = e−iω0t/2
(
αe−iω0t

)
|αe−iω0t〉 = α̃|α, t〉 (39.3.21)

Therefore, |α, t〉 is the eigenfunction of the â operator with eigenvalue α̃. But now, the
eigenvalue of the annihilation operator â is a complex number which is a function of time t.
It is to be noted that in the coherent state in (39.3.19), the photon number states time-evolve
coherently together in a manner to result in a phase shift e−iω0t in the eigenvalue giving rise
to a new eigenvalue α̃!

39.4 More on the Creation and Annihilation Operator

As seen in the photon-number states, the oscillation of the pendulum does not emerge in
the quantum solutions to Schrödinger equation. Hence it is prudent to see if this physical
phenomenon emerge with the coherent state. In order to connect the quantum pendulum to
a classical pendulum via the coherent state, we will introduce some new operators. Since

â† =
1√
2

(
− d

dξ
+ ξ

)
(39.4.1)

â =
1√
2

(
d

dξ
+ ξ

)
(39.4.2)

We can relate â† and â, which are non-hermitian, to the momentum operator π̂ and position
operator ξ̂ previously defined which are hermitian. Then

â† =
1√
2

(
−iπ̂ + ξ̂

)
(39.4.3)

â =
1√
2

(
iπ̂ + ξ̂

)
(39.4.4)

7Note that |α, t〉 is a shorthand for fα(ξ, t).
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From the above, by subtracting and adding the two equations, we arrive at

ξ̂ =
1√
2

(
â† + â

)
= ξÎ (39.4.5)

π̂ =
i√
2

(
â† − â

)
= −i d

dξ
(39.4.6)

Notice that both ξ̂ and π̂ are Hermitian operators in the above, with real expectation values
in accordance to (39.2.1). With this, the average or expectation value of the position of the
pendulum in normalized coordinate, ξ, can be found by taking expectation with respect to
the coherent state, or

〈α|ξ̂|α〉 =
1√
2
〈α|â† + â|α〉 (39.4.7)

Since by taking the complex conjugate transpose of (39.3.1)8

〈α|â† = 〈α|α∗ (39.4.8)

and (39.4.7) becomes

ξ̄ = 〈ξ〉 = 〈α|ξ̂|α〉 =
1√
2

(α∗ + α) 〈α|α〉 =
√

2<e (α) 6= 0 (39.4.9)

Repeating the exercise for time-dependent case, when we let α → α̃(t) = αe−iω0t, then,
letting α = |α|e−iψ yields

ξ̄(t) = 〈ξ(t)〉 = 〈α̃(t)|ξ̂|α̃(t)〉 =
1√
2

(α̃∗(t) + α̃(t)) 〈α̃(t)|α̃(t)〉 =
√

2<e (α̃(t)) 6= 0 (39.4.10)

where for the last equality, we have made used of that 〈α̃(t)|α̃(t)〉 = 1. Then

ξ̄(t) = 〈ξ(t)〉 =
√

2|α| cos(ω0t+ ψ) (39.4.11)

In the above, we use ξ to denote the random variable. So 〈ξ(t)〉 refers to the average of the
random variable ξ, or ξ̄(t) that is a function of time.

By the same token,

π̄ = 〈π〉 = 〈α|π̂|α〉 =
i√
2

(α∗ − α) 〈α|α〉 =
√

2=m (α) 6= 0 (39.4.12)

For the time-dependent case, we let α→ α̃(t) = αe−iω0t,

π̄(t) = 〈π(t)〉 = −
√

2|α| sin(ω0t+ ψ) (39.4.13)

Hence, we see that the expectation values of the normalized coordinate and momentum just
behave like a classical pendulum. There is however a marked difference: These values have

8Dirac notation is homomorphic with matrix algebra notation. (a · x)† = x† · (a)†.
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standard deviations or variances that are non-zero. Thus, they have quantum fluctuation or
quantum noise associated with them. Since the quantum pendulum is homomorphic with the
oscillation of a quantum electromagnetic mode, the amplitude of a quantum electromagnetic
mode will have a mean and a fluctuation as well.

Figure 39.1: The time evolution of the coherent state. It follows the motion of a classical
pendulum or harmonic oscillator (courtesy of Gerry and Knight [271]).

.

Figure 39.2: The time evolution of the coherent state for different α’s. The left figure is for
α = 5 while the right figure is for α = 10. Recall that N = |α|2.

.
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39.4.1 Connecting Quantum Pendulum to Electromagnetic Oscilla-
tor9

We see that the electromagnetic oscillator in a cavity is similar or homomorphic to a pendu-
lum. The classical Hamiltonian is

H = T + V =
p2

2m
+

1

2
mω2

0x
2 =

1

2

[
P 2(t) +Q2(t)

]
= E (39.4.14)

where E is the total energy of the system. In the above, ω0 is the resonant frequency of
the classical pendulum. To make the cavity mode homomorphic to a pendulum, we have to
replace ω0 with ωl, the resonant frequency of the cavity mode. In the above, P is a normalized
momentum and Q is a normalized coordinate, and their squares have the unit of energy. We
have also shown that when the classical pendulum is elevated to be a quantum pendulum,
then H → Ĥ, where Ĥ = ~ωl

(
â†â+ 1

2

)
. Then Schrödinger equation becomes

Ĥ|ψ, t〉 = ~ωl
(
â†â+

1

2

)
|ψ, t〉 = i~∂t|ψ, t〉 (39.4.15)

Our next task is to connect the electromagnetic oscillator to this pendulum. In general,
the total energy or the Hamiltonian of an electromagnetic system is

H =
1

2

�

V

dr

[
εE2(r, t) +

1

µ
B2(r, t)

]
. (39.4.16)

It is customary to write this Hamiltonian in terms of scalar and vector potentials. For
simplicity, we use a 1D cavity, and let A = x̂Ax, ∇ ·A = 0 so that ∂xAx = 0, and letting

Φ = 0. Then B = ∇ ×A and E = −
.

A, and the classical Hamiltonian from (39.4.16) for a
Maxwellian system becomes

H =
1

2

�

V

dr

[
ε
.

A2(r, t) +
1

µ
(∇×A(r, t))

2

]
. (39.4.17)

For the 1D case, the above implies that By = ∂zAx, and Ex = −∂tAx = −
.

Ax. Hence, we
let

Ax = A0(t) sin(klz) (39.4.18)

Ex = −
.

A0(t) sin(klz) = E0(t) sin(klz) (39.4.19)

By = klA0(t) cos(klz). (39.4.20)

where E0(t) = −
.

A0(t). After integrating over the volume such that
�
V
dr = A

� L
0
dz, the

Hamiltonian (39.4.17) then becomes

H =
V0ε

4

( .
A0(t)

)2

+
V0

4µ
k2
l A

2
0(t). (39.4.21)

9May be skipped on first reading.
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where V0 = AL, is the mode volume. The form of (39.4.21) now resembles the pendulum
Hamiltonian. We can think of A0(t) as being related to the displacement of the pendulum.
Hence, the second term resembles the potential energy. The first term has the time derivative
of A0(t), and hence, can be connected to the kinetic energy of the system. Therefore, we can
rewrite the Hamiltonian as

H =
1

2

[
P 2(t) +Q2(t)

]
(39.4.22)

where

P (t) =

√
V0ε

2

.

A0(t) = −
√
V0ε

2
E0(t), Q(t) =

√
V0

2µ
klA0(t) (39.4.23)

By elevating P and Q to be quantum operators,

P (t)→ P̂ =
√
~ωlπ̂(t), Q(t)→ Q̂ =

√
~ωlξ̂(t) (39.4.24)

so that the quantum Hamiltonian now is

Ĥ =
1

2

[
P̂ 2 + Q̂2

]
=

1

2
~ωl

(
π̂2 + ξ̂2

)
(39.4.25)

similar to (39.1.3) as before except now that the resonant frequency of this mode is ωl instead
of ω0 because these are the cavity modes, each of which is homomorphic to a quantum
pendulum of frequency ωl. An equation of motion for the state of the quantum system can
be associated with the quantum Hamiltonian just as in the quantum pendulum case.

We have shown previously that

â† + â =
√

2ξ̂ (39.4.26)

â† − â = −
√

2iπ̂ (39.4.27)

Then we can let

P̂ = −
√
V0ε

2
Ê0 =

√
~ωlπ̂ (39.4.28)

Finally, we arrive at

Ê0 = −
√

2~ωl
εV0

π̂ =
1

i

√
~ωl
εV0

(
â† − â

)
(39.4.29)

Now that E0 has been elevated to be a quantum operator Ê0, from (39.4.19), we can put in
the space dependence in accordance to (39.4.19) to get

Êx(z) = Ê0 sin(klz) (39.4.30)

Consequently, the fully quantized field is a field operator given by

Êx(z) =
1

i

√
~ωl
εV0

(
â† − â

)
sin(klz) (39.4.31)
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Notice that in the above, Ê0, and Êx(z) are all Hermitian operators and they correspond to
quantum observables that have randomness associated with them but with real mean values.
Also, the operators are independent of time because they are in the Schrödinger picture.

Heisenberg Picture and Schrödinger Picture

Because the quantum state equation can be solved formally in closed form, we can look
at the quantum world in two pictures: The Heisenberg picture or the Schrödinger picture.
A quantum observable is an operator, and the mean value of the observable, which is
measurable, is given by

Ō(t) = 〈ψ(t)|Ôs|ψ(t)〉. (39.4.32)

Alternatively, one can rewrite the above using (39.3.12) as

Ō(t) = 〈ψ(0)|eiĤt/~Ôse−iĤt/~|ψ(0)〉. (39.4.33)

In other words, the above can be rewritten as

Ō(t) = 〈ψ(0)|Ôh(t)|ψ(0)〉. (39.4.34)

where
Ôh(t) = eiĤt/~Ôse

−iĤt/~. (39.4.35)

The above illustrates the two different ways to look at the quantum world that produce
the same expectation value of a quantum operator. The first way, called the Schrödinger
picture, keeps the quantum operator Ôs to be time independent, but retain the quantum
state vector |ψ(t)〉 as a function of time. The second way, called the Heisenberg picture, lets
the operator be time dependent, but the state vector is independent of time. Hence, one can
derive the equation of motion of an operator in the Heisenberg picture. Also, note that the
operators Ôh and Ôs in the Heisenberg picture and the Schrödinger picture, respectively,

are related to each other by a unitary transform via the time-evolution operator e−iĤt/~.

In the Schrödinger picture, to get time dependence fields, one has to take the expectation
value of the operators with respect to time-varying quantum state vector like the time-varying
coherent state.

To let Êx have any meaning, it should act on a quantum state. For example,

|ψE〉 = Êx|ψ〉 (39.4.36)

Notice that thus far, all the operators derived are independent of time. To derive time
dependence of these operators, one needs to find their expectation value with respect to
time-dependent state vectors.10

To illustrate this, we can take expectation value of the quantum operator Êx(z) with

10This is known as the Schrödinger picture.
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respect to a time dependent state vector, like the time-dependent coherent state, Thus

〈Ex(z, t)〉 = 〈α, t|Êx(z)|α, t〉 =
1

i

√
~ωl
εV0
〈α, t|â† − â|α, t〉

=
1

i

√
~ωl
εV0

(α̃∗(t)− α̃(t)) 〈α, t|α, t〉 = −2

√
~ωl
εV0
=m(α̃) (39.4.37)

From (39.3.19), we can show that 〈α, t|α, t〉 = 1. Using the time-dependent α̃(t) = αe−iωlt =
|α|e−i(ωlt+ψ) in the above, similar to (39.4.13), we have

〈Ex(z, t)〉 = 2

√
~ωl
εV0
|α| sin(ωlt+ ψ) (39.4.38)

where α̃(t) = αe−iωlt. The expectation value of the operator with respect to a time-varying
quantum state, in fact, gives rise to a time-varying quantity. The above, which is the average
of a random field, resembles a classical field. But since it is rooted in a random variable, it
has a standard deviation in addition to having a real-value mean.

We can also show that

B̂y(z) = klÂ0 cos(klz) =

√
2µ~ωl
V0

ξ̂ =

√
µ~ωl
V0

(â† + â) (39.4.39)

Again, these are time-independent operators in the Schrödinger picture. To get time-dependent
quantities, we have to take the expectation value of the above operator with respect to to a
time-varying quantum state.

39.5 Epilogue

In conclusion, the quantum theory of light is a rather complex subject. It cannot be taught
in just two lectures, but what we wish is to give you a peek into this theory. It takes much
longer to learn this subject well: after all, it is the by product of a century of intellectual
exercise. This knowledge is still very much in its infancy. Hopefully, the more we teach
this subject, the better we can articulate, understand, and explain this subject. When James
Clerk Maxwell completed the theory of electromagnetics over 150 years ago, and wrote a book
on the topic, rumor has it that most people could not read beyond the first 50 pages of his
book [39]. But after over a century and a half of regurgitation, we can now teach the subject
to undergraduate students! When Maxwell put his final stroke to the equations named after
him, he could never have foreseen that these equations are valid from nano-meter lengthscales
to galactic lengthscales, from static to ultra-violet frequencies. Now, these equations are even
valid from classical to the quantum world as well!

Hopefully, by introducing these frontier knowledge in electromagnetic field theory in this
course, it will pique your interest enough in this subject, so that you will take this as a
life-long learning experience.


