
Lecture 35

Spectral Expansions of Source
Fields—Sommerfeld Integrals

In previous lectures, we have assumed plane waves in finding closed form solutions. Plane
waves are simple waves, and their reflections off a flat surface or a planarly layered medium
can be found easily. When we have a source like a point source, it generates a spherical
wave. We do not know how to reflect exactly a spherical wave off a planar interface. But
by expanding a spherical wave in terms of sum of plane waves and evanescennt waves using
Fourier transform technique, we can solve for the solution of a point source over a layered
medium easily in terms of spectral integrals. Sommerfeld was the first person to have done
this, and hence, these integrals are often called Sommerfeld integrals. Finally, we shall apply
the method of stationary phase to approximate these integrals to elucidate their physics.
From this, we can see ray theory emerging from the complicated mathematics. It reminds
me of a lyric from the musical The Sound of Music—Ray, a drop of golden sun! Ray has
mesmerized the human mind, and it will be interesting to see if the mathematics behind it is
equally enchanting.

By this time, you probably feel inundated by the ocean of knowledge that you are imbibing.
If you can assimilate them, it will be an exhilarating experience.

35.1 Spectral Representations of Sources

A plane wave is a mathematical idealization that does not exist in the real world. In practice,
waves are nonplanar in nature as they are generated by finite sources, such as antennas
and scatterers: For example, a point source generates a spherical wave which is nonplanar.
Fortunately, these waves can be expanded in terms of sum of plane waves. Once this is done,
then the study of non-plane-wave reflections from a layered medium becomes routine. In the
following, we shall show how waves resulting from a point source can be expanded in terms of
plane waves summation. This topic is found in many textbooks [1,32,35,95,96,181,205,215].
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384 Electromagnetic Field Theory

35.1.1 A Point Source

There are a number of ways to derive the plane wave expansion of a point source. We will
illustrate one of the ways. The spectral decomposition or the plane-wave expansion of the
field due to a point source could be derived using Fourier transform technique. First, notice
that the scalar wave equation with a point source at the origin is(

∇2 + k2
0

)
φ(x, y, z) =

[
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

0

]
φ(x, y, z) = −δ(x) δ(y) δ(z). (35.1.1)

The above equation could then be solved in the spherical coordinates, yielding the solution
given in the previous lecture, namely, Green’s function with the source point at the origin,
or1

φ(x, y, z) = φ(r) =
eik0r

4πr
. (35.1.2)

The solution is entirely spherically symmetric due to the symmetry of the point source.
Next, assuming that the Fourier transform of φ(x, y, z) exists,2 we can write

φ(x, y, z) =
1

(2π)3

∞�

−∞

dkxdkydkz φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz. (35.1.3)

Then we substitute the above into (35.1.1), after exchanging the order of differentiation and
integration,3 one can simplify the Laplacian operator in the Fourier space, or spectral domain,
to arrive at

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= −k2

x − k2
y − k2

z

Then, together with the Fourier representation of the delta function, which is4

δ(x) δ(y) δ(z) =
1

(2π)3

∞�

−∞

dkxdkydkz e
ikxx+ikyy+ikzz (35.1.4)

we convert (35.1.1) into

∞�

−∞

dkxdkydkz [k2
0 − k2

x − k2
y − k2

z ]φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz (35.1.5)

= −
∞�

−∞

dkxdkydkz e
ikxx+ikyy+ikzz. (35.1.6)

1From this point onward, we will adopt the exp(−iωt) time convention to be commensurate with the optics
and physics literatures.

2The Fourier transform of a function f(x) exists if it is absolutely integrable, namely that
�∞
−∞ |f(x)|dx is

finite (see [110]).
3Exchanging the order of differentiation and integration is allowed if the integral converges after the

exchange.
4We have made use of that δ(x) = 1/(2π)

�∞
−∞ dkx exp(ikxx) three times.
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Since the above is equal for all x, y, and z, we can Fourier inverse transform the above to get

φ̃(kx, ky, kz) =
−1

k2
0 − k2

x − k2
y − k2

z

. (35.1.7)

Consequently, we have

φ(x, y, z) =
−1

(2π)3

∞�

−∞

dk
eikxx+ikyy+ikzz

k2
0 − k2

x − k2
y − k2

z

. (35.1.8)

where dk = dkxdkydkz. The above expresses the fact the φ(x, y, z) which is a spherical wave
by (35.1.2), is expressed as an integral summation of plane waves. But these plane waves are
not physical plane waves in free space since k2

x + k2
y + k2

z 6= k2
0.

C

Re [kz]

– k2
0 – k2

x – k2
y

⊗

Fourier Inversion Contour

Im [kz]

k2
0 – k2

x – k2
y

×

Figure 35.1: The integration along the real axis is equal to the integration along C plus the
residue of the pole at (k2

0 − k2
x − k2

y)1/2, by invoking Jordan’s lemma.

Weyl Identity

To make the plane waves in (35.1.8) into physical plane waves, we have to massage it into
a different form. We rearrage the integrals in (35.1.8) so that the dkz integral is performed
first. In other words,

φ(r) =
1

(2π)3

∞�

−∞

dkxdkye
ikxx+ikyy

� ∞
−∞

dkz
eikzz

k2
z − (k2

0 − k2
x − k2

y)
(35.1.9)

where we have deliberately rearrange the denominator with kz being the variable in the inner
integral. Then the integrand has poles at kz = ±(k2

0 − k2
x − k2

y)1/2.5 Moreover, for real k0,
and real values of kx and ky, these two poles lie on the real axis, rendering the integral in

5In (35.1.8), the pole is located at k2
x + k2

y + k2
z = k2

0 . This equation describes a sphere in k space, known
as the Ewald’s sphere [216].
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(35.1.8) undefined. However, if a small loss is assumed in k0 such that k0 = k′0 + ik′′0 , then
the poles are off the real axis (see Figure 35.1), and the integrals in (35.1.8) are well-defined.
In actual fact, this is intimately related to the uniqueness principle we have studied before:
An infinitesimal loss is needed to guarantee uniqueness in an open space as shall be explained
below.

First, the reason is that without loss, |φ(r)| ∼ O(1/r), r → ∞ is not strictly absolutely
integrable, and hence, its Fourier transform does not exist [52]: The manipulation that leads
to (35.1.8) is not strictly correct. Second, the introduction of a small loss also guarantees the
radiation condition and the uniqueness of the solution to (35.1.1), and therefore, the equality
of (35.1.2) and (35.1.8) [35].

Observe that in (35.1.8), when z > 0, the integrand is exponentially small when =m[kz]→
∞. Therefore, by Jordan’s lemma [89], the integration for kz over the contour C as shown
in Figure 35.1 vanishes. Then, by Cauchy’s theorem [89], the integration over the Fourier
inversion contour on the real axis is the same as integrating over the pole singularity located
at (k2

0 − k2
x − k2

y)1/2, yielding the residue of the pole (see Figure 35.1). Consequently, after
doing the residue evaluation, we have

φ(x, y, z) =
i

2(2π)2

∞�

−∞

dkxdky
eikxx+ikyy+ik′zz

k′z
, z > 0, (35.1.10)

where k′z = (k2
0 − k2

x − k2
y)1/2 is the value of kz at the pole location.

Similarly, for z < 0, we can add a contour C in the lower-half plane that contributes zero
to the integral, one can deform the contour to pick up the pole contribution. Hence, the
integral is equal to the pole contribution at k′z = −(k2

0 − k2
x − k2

y)1/2 (see Figure 35.1). As
such, the result for all z can be written as

φ(x, y, z) =
i

2(2π)2

∞�

−∞

dkxdky
eikxx+ikyy+ik′z|z|

k′z
, all z. (35.1.11)

By the uniqueness of the solution to the partial differential equation (35.1.1) satisfying
radiation condition at infinity, we can equate (35.1.2) and (35.1.11), yielding the identity

eik0r

r
=

i

2π

∞�

−∞

dkxdky
eikxx+ikyy+ikz|z|

kz
, (35.1.12)

where k2
x+k2

y+k2
z = k2

0, or kz = (k2
0−k2

x−k2
y)1/2. The above is known as the Weyl identity

(Weyl 1919). To ensure the radiation condition, we require that =m[kz] > 0 and <e[kz] > 0
over all values of kx and ky in the integration. Furthermore, Equation (35.1.12) could be
interpreted as an integral summation of plane waves propagating in all directions, including
evanescent waves. It is the plane-wave expansion (including evanescent wave) of a spherical
wave.



Spectral Expansions of Source Fields—Sommerfeld Integrals 387

Figure 35.2: The wave is propagating for kρ vectors inside the disk, while the wave is evanes-
cent for kρ outside the disk.

One can also interpret the above as a 2D surface integral in the Fourier space over the
kx and ky plane or variables. When k2

x + k2
y < k2

0, or the spatial spectrum is inside a disk
of radius k0, the waves are propagating waves. But for contributions outside this disk, the
waves are evanescent (see Figure 35.2). And the high Fourier (or spectral) components of
the Fourier spectrum correspond to evanescent waves. The high spectral components, which
are related to the evanescent waves, are important for reconstructing the singularity of the
Green’s function.

y
kρ

a
φ x

ρ

Figure 35.3: The kρ and the ρ vector on the xy plane.

Sommerfeld Identity

The Weyl identity has double integral, and hence, is more difficult to integrate numerically.
Here, we shall derive the Sommerfeld identity which has only one integral. First, in (35.1.12),
we express the integral in cylindrical coordinates and write kρ = x̂kρ cosα + ŷkρ sinα, ρ =
x̂ρ cosφ + ŷρ sinφ (see Figure 35.3), and dkxdky = kρdkρ dα. Then, kxx + kyy = kρ · ρ =
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kρ cos(α− φ), and with the appropriate change of variables, we have

eik0r

r
=

i

2π

∞�

0

kρdkρ

� 2π

0

dα
eikρρ cos(α−φ)+ikz|z|

kz
, (35.1.13)

where kz = (k2
0−k2

x−k2
y)1/2 = (k2

0−k2
ρ)1/2, where in cylindrical coordinates, in the kρ-space,

or the Fourier space, k2
ρ = k2

x + k2
y. Then, using the integral identity for Bessel functions

given by6

J0(kρρ) =
1

2π

2π�

0

dα eikρρ cos(α−φ), (35.1.14)

(35.1.13) becomes

eik0r

r
= i

∞�

0

dkρ
kρ
kz
J0(kρρ)eikz|z|. (35.1.15)

The above is also known as the Sommerfeld identity (Sommerfeld 1909 [109]; [205][p.
242]). Its physical interpretation is that a spherical wave can now be expanded as an integral
summation of conical waves or cylindrical waves in the ρ direction, times a plane wave in
the z direction over all wave numbers kρ. This wave is evanescent in the ±z direction when
kρ > k0.

By using the fact that J0(kρρ) = 1/2[H
(1)
0 (kρρ) + H

(2)
0 (kρρ)], and the reflection formula

that H
(1)
0 (eiπx) = −H(2)

0 (x), a variation of the above identity can be derived as

eik0r

r
=
i

2

∞�

−∞

dkρ
kρ
kz
H

(1)
0 (kρρ)eikz|z|. (35.1.16)

–k0
•

Im [kρ]

• +k0

Sommerfeld
Integration Path

Re [kρ]

Figure 35.4: Sommerfeld integration path.

Since H
(1)
0 (x) has a logarithmic branch-point singularity at x = 0,7 and kz = (k2

0 − k2
ρ)1/2

has algebraic branch-point singularities at kρ = ±k0, the integral in Equation (35.1.16) is

6See Chew [35], or Whitaker and Watson(1927) [217].
7H

(1)
0 (x) ∼ 2i

π
ln(x), see Chew [35][p. 14], or Abromawitz or Stegun [117].
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undefined unless we stipulate also the path of integration. Hence, a path of integration
adopted by Sommerfeld, which is even good for a lossless medium, is shown in Figure 35.4.
Because of the manner in which we have selected the reflection formula for Hankel functions,

i.e., H
(1)
0 (eiπx) = −H(2)

0 (x), the path of integration should be above the logarithmic branch-
point singularity at the origin. With this definition of the Sommerfeld integration, the integral
is well defined even when there is no loss, i.e., when the bronach points ±k0 are on the real
axis.

35.2 A Source on Top of a Layered Medium

Previously, we have studied the propagation of plane electromagnetic waves from a single
dielectric interface in Section 14.1 as well as through a layered medium in Section 16.1. It
can be shown that plane waves reflecting from a layered medium can be decomposed into
TE-type plane waves, where Ez = 0, Hz 6= 0, and TM-type plane waves, where Hz = 0,
Ez 6= 0.8 One also sees how the field due to a point source can be expanded into plane waves
in Section 35.1.

In view of the above observations, when a point source is on top of a layered medium, it
is then best to decompose its field in terms of plane waves of TE-type and TM-type. Then,
the nonzero component of Ez characterizes TM waves, while the nonzero component of Hz

characterizes TE waves. Hence, given a field, its TM and TE components can be extracted
readily. Furthermore, if these TM and TE components are expanded in terms of plane waves,
their propagations in a layered medium can be studied easily.

The problem of a vertical electric dipole on top of a half space was first solved by Som-
merfeld (1909) [109] using Hertzian potentials, which are related to the z components of the
electromagnetic field. The work is later generalized to layered media, as discussed in the liter-
ature. Later, Kong (1972) [218] suggested the use of the z components of the electromagnetic
field instead of the Hertzian potentials.

35.2.1 Electric Dipole Fields–Spectral Expansion

The representation of a spherical wave in terms of plane waves can be done using Weyl
identity or Sommerfeld identiy. Here, we will use Sommerfeld identity in anticipation of
simpler numerical integration, since only single integrals are involved. The E field in a
homogeneous medium due to a point current source or a Hertzian dipole directed in the α̂
direction, J = α̂I` δ(r), is derivable via the vector potential method or the dyadic Green’s
function approach. Then, using the dyadic Green’s function approach, or the vector/scalar
potential approach, the field due to a Hertzian dipole is given by

E(r) = iωµ

(
I +
∇∇
k2

)
· α̂I` e

ikr

4πr
, (35.2.1)

where I` is the current moment and k = ω
√
µε , the wave number of the homogeneous

medium. Furthermore, from ∇ × E = iωµH, the magnetic field due to a Hertzian dipole is

8Chew, Waves and Fields in Inhomogeneous Media [35]; Kong, Electromagnetic Wave Theory [32].
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shown to be given by

H(r) = ∇× α̂I` e
ikr

4πr
. (35.2.2)

With the above fields, their TM and TE components can be extracted easily in anticipation
of their plane wave expansions for propagation through layered media.

(a) Vertical Electric Dipole (VED)

Region 1

Region i

z

x

–d1

–di

Figure 35.5: A vertical electric dipole over a layered medium.

A vertical electric dipole shown in Figure 35.5 has α̂ = ẑ; hence, in anticipation of their plane
wave expansions, the TM component of the field is characterized by Ez 6= 0 or that

Ez =
iωµI`

4πk2

(
k2 +

∂2

∂z2

)
eikr

r
, (35.2.3)

and the TE component of the field is characterized by

Hz = 0, (35.2.4)

implying the absence of the TE field.
Next, using the Sommerfeld identity (35.1.16) in the above, and after exchanging the order

of integration and differentiation, we have9

Ez =
−I`
4πωε

∞�

0

dkρ
k3
ρ

kz
J0(kρρ)eikz|z|, |z| 6= 0 (35.2.5)

after noting that k2
ρ + k2

z = k2. Notice that now Equation (35.2.5) expands the z component
of the electric field in terms of cylindrical waves in the ρ direction and a plane wave in the z
direction. Since cylindrical waves actually are linear superpositions of plane waves, because
we can work backward from (35.1.16) to (35.1.12) to see this. As such, the integrand in

9By using (35.1.16) in (35.2.3), the ∂2/∂z2 operating on eikz |z| produces a Dirac delta function singularity.
Detail discussion on this can be found in the chapter on dyadic Green’s function in Chew, Waves and Fields
in Inhomogeneous Media [35].
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(35.2.5) in fact consists of a linear superposition of TM-type plane waves. The above is also
the primary field generated by the source.10

Consequently, for a VED on top of a stratified medium as shown, the downgoing plane
wave from the point source will be reflected like TM waves with the generalized reflection
coefficient R̃TM12 . Hence, over a stratified medium, the field in region 1 can be written as

E1z =
−I`

4πωε1

∞�

0

dkρ
k3
ρ

k1z
J0(kρρ)

[
eik1z|z| + R̃TM12 eik1zz+2ik1zd1

]
, (35.2.6)

where k1z = (k2
1 − k2

ρ)
1
2 , and k2

1 = ω2µ1ε1, the wave number in region 1.

The phase-matching condition dictates that the transverse variation of the field in all the
regions must be the same. Consequently, in the i-th region, the solution becomes

εiEiz =
−I`
4πω

∞�

0

dkρ
k3
ρ

k1z
J0(kρρ)Ai

[
e−ikizz + R̃TMi,i+1e

ikizz+2ikizdi
]
. (35.2.7)

Notice that Equation (35.2.7) is now expressed in terms of εiEiz because εiEiz reflects and
transmits like Hiy, the transverse component of the magnetic field or TM waves.11 Therefore,

R̃TMi,i+1 and Ai could be obtained using the methods discussed in Chew, Waves and Fields in
Inhomogeneous Media [110].

This completes the derivation of the integral representation of the electric field everywhere
in the stratified medium. These integrals are known as Sommerfeld integrals. The case
when the source is embedded in a layered medium can be derived similarly.

(b) Horizontal Electric Dipole (HED)

The HED is more complicated. Unlike the VED that excites only the TM waves, an HED will
excite both TE and TM waves. For a horizontal electric dipole pointing in the x direction,
α̂ = x̂; hence, (35.2.1) and (35.2.2) give the TM and the TE components, in anticipation of
their plane wave expansions, as

Ez =
iI`

4πωε

∂2

∂z∂x

eikr

r
, (35.2.8)

Hz = − I`
4π

∂

∂y

eikr

r
. (35.2.9)

10One can perform a sanity check on the odd and even symmetry of the fields’ z-component by sketching
the fields of a static horizontal electric dipole.

11See Chew, Waves and Fields in Inhomogeneous Media [35], p. 46, (2.1.6) and (2.1.7). Or we can gather
from (14.1.6) to (14.1.7) that the µiHiz transmits like Eiy at a dielectric interface, and by duality, εiEiz
transmits like Hiy .
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Then, with the Sommerfeld identity (35.1.16), we can expand the above as

Ez = ± iI`

4πωε
cosφ

∞�

0

dkρ k
2
ρJ1(kρρ)eikz|z| (35.2.10)

Hz = i
I`

4π
sinφ

∞�

0

dkρ
k2
ρ

kz
J1(kρρ)eikz|z|. (35.2.11)

Now, Equation (35.2.10) represents the wave expansion of the TM field, while (35.2.11) repre-
sents the wave expansion of the TE field in terms of Sommerfeld integrals which are plane-wave
expansions in disguise. Observe that because Ez is odd about z = 0 in (35.2.10), the down-
going wave has an opposite sign from the upgoing wave. At this point, the above are just the
primary field generated by the source.

On top of a stratified medium, the downgoing wave is reflected accordingly, depending on
its wave type. Consequently, we have

E1z =
iI`

4πωε1
cosφ

∞�

0

dkρ k
2
ρJ1(kρρ)

[
±eik1z|z| − R̃TM12 eik1z(z+2d1)

]
, (35.2.12)

H1z =
iI`

4π
sinφ

∞�

0

dkρ
k2
ρ

k1z
J1(kρρ)

[
eik1z|z| + R̃TE12 e

ik1z(z+2d1)
]
. (35.2.13)

Notice that the negative sign in front of R̃TM12 in (35.2.12) follows because the downgoing
wave in the primary field has a negative sign as shown in (35.2.10).

35.3 Stationary Phase Method—Fermat’s Principle

Sommerfeld integrals are rather complex, and by themselves, they do not offer much physical
insight into the physics of the field. To elucidate the physics, we can apply the stationary
phase method to find approximations of these integrals when the frequency is high, or kr is
large, or the observation point is many wavelengths away from the source point. It turns out
that this method is initmately related to Fermat’s principle.

In order to avoid having to work with special functions like Bessel functions, we convert
the Sommerfeld integrals back to spectral integrals in the cartesian coordinates. We could
have obtained the aforementioned integrals in cartesian coordinates were we to start with the
Weyl identity instead of the Sommerfeld identity. To do the back conversion, we make use of
the identity,

eik0r

r
=

i

2π

∞�

−∞

dkxdky
eikxx+ikyy+ikz|z|

kz
= i

∞�

0

dkρ
kρ
kz
J0(kρρ)eikz|z|. (35.3.1)
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We can just focus our attention on the reflected wave term in (35.2.6) and rewrite it in
cartesian coordinates to get

ER1z =
−I`

8π2ωε1

∞�

−∞

dkxdky
k2
x + k2

y

k1z
RTM12 eikxx+ikyy+ik1z(z+2d1)

=

∞�

−∞

dkxdky
1

k1z
F (kx, ky)eikxx+ikyy+ik1z(z+2d1) (35.3.2)

where

F (kx, ky) =
−I`

8π2ωε1
(k2
x + k2

y)RTM12

In the above, k2
x+k2

y+k2
1z = k2

1 is the dispersion relation satisfied by the plane wave in region

1. Also, RTM12 is dependent on kiz =
√
k2
i − k2

x − k2
y in cartesian coordinates, where i = 1, 2.

Now the problem reduces to finding the approximation of the following integral:

ER1z =

∞�

−∞

dkxdky
1

k1z
F (kx, ky)eirh(kx,ky) (35.3.3)

where

rh(kx, ky) = r
(
kx
x

r
+ ky

y

r
+ k1z

z

r

)
, (35.3.4)

We want to approximate the above integral when kr is large. For simplicity, we have set
d1 = 0 to begin with.
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Figure 35.6: In this figure, t can represent kx or ky when one of them is varying. Around
the stationary phase point, the function h(t) is slowly varying. In this figure, λ = r, and
g(kx, ky, λ) = eiλh(kx,ky) = eirh(kx,ky). When λ = r is large, the function g(λ, kx, ky) is
rapidly varying with respect to either kx or ky. Hence, most of the contributions to the
integral comes from around the stationary phase point.

In the above, eirh(kx,ky) is a rapidly varying function of kx and ky when x, y, and z are
large, or r is large compared to wavelength.12 In other words, a small change in kx or ky
will cause a large change in the phase of the integrand, or the integrand will be a rapidly
varying function of kx and ky. Due to the cancellation of the integral when one integrates
a rapidly varying function, most of the contributions to the integral will come from around
the stationary point of h(kx, ky) or where the function is least slowly varying. Otherwise,
the integrand is rapidly varying away from this point, and the integration will destructively
cancel with each other, while around the stationary point, they will add constructively.

The stationary point in the kx and ky plane is found by setting the derivatives of h(kx, ky)
with respect to to kx and ky to zero. By so doing

∂h

∂kx
=
x

r
− kx
k1z

z

r
= 0,

∂h

∂ky
=
y

r
− ky
k1z

z

r
= 0 (35.3.5)

The above represents two equations from which the two unknowns, kxs and kys, at the
stationary phase point can be solved for. By expressing the above in spherical coordinates,
x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ, the values of (kxs, kys), that satisfy the above
equations are

kxs = k1 sin θ cosφ, kys = k1 sin θ sinφ (35.3.6)

with the corresponding k1zs = k1 cos θ.

12The yardstick in wave physics is always wavelength. Large distance is also synonymous to increasing the
frequency or reducing the wavelength.
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When one integrates on the kx and ky plane, the dominant contribution to the integral will
come from the point in the vicinity of (kxs, kys). Assuming that F (kx, ky) is slowly varying,
we can equate F (kx, ky) to a constant equal to its value at the stationary phase point, and
say that

ER1z ' F (kxs, kys)

∞�

−∞

1

k1z
eikxx+ikyy+ik1zzdkxdky = 2πF (kxs, kys)

eik1r

ir
(35.3.7)

In the above, the integral can be performed in closed form using the Weyl identity. The above
expression has two important physical interpretations.

(i) Even though a source is emanating plane waves in all directions in accordance to
(35.1.12), at the observation point r far away from the source point, only one or few
plane waves in the vicinity of the stationary phase point are important. They interfere
with each other constructively to form a spherical wave that represents the ray connect-
ing the source point to the observation point. Plane waves in other directions interfere
with each other destructively, and are not important. That is the reason that the source
point and the observation point is connected only by one ray, or one bundle of plane
waves in the vicinity of the stationary phase point. These bundle of plane waves are
also almost paraxial with respect to each other.

(ii) The function F (kx, ky) could be a very complicated function like the reflection coefficient
RTM , but only its value at the stationary phase point matters. If we were to make d1 6= 0
again in the above analysis, the math remains similar except that now, we replace r
with rI =

√
x2 + y2 + (z + 2d1)2. Due to the reflecting half-space, the source point

has an image point as shown in Figure 35.7 This physical picture is shown in the figure
where rI now is the distance of the observation point to the image point. The stationary
phase method extract a ray that emanates from the source point, bounces off the half-
space, and the reflected ray reaches the observer modulated by the reflection coefficient
RTM . But the value of the reflection coefficient that matters is at the angle at which
the incident ray impinges on the half-space.

(iii) At the stationary point, the ray is formed by the k-vector where k = x̂k1 sin θ cosφ +
ŷk1 sin θ sinφ + ẑk1 cos theta. This ray points in the same direction as the position
vector of the observation point r = x̂r sin θ cosφ+ ŷr sin θ sinφ+ ẑr cos theta. In other
words, the k-vector and the r-vector point in the same direction. This is reminiscent
of Fermat principle, because when this happens, the ray propagates with the minimum
phase between the source point and the observation point. When z → z + 2d1, the
ray for the image source is altered to that shown in Figure 35.7 where it the ray is
minimum phase from the image source to the obervation point. Hence, the stationary
phase method is initimately related to Fermat’s principle.
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Figure 35.7: At high frequencies, the source point and the observation point are connected
by a ray. The ray represents a bundle of plane waves that interfere constructively. This even
true for a bundle of plane waves that reflect off an interface. So ray theory or ray optics
prevails here, and the ray bounces off the interface according to the reflection coefficient of a
plane wave impinging at the interface with θI .

35.4 Riemann Sheets and Branch Cuts13

The Sommerfeld integrals will have integrands that are multi-value or double value. Proper
book keeping is needed so that the evaluation of these integrals can be performed unambigu-
ously. The function kz = (k2

0 − k2
ρ)1/2 in (35.1.15) and (35.1.16) are double-value functions

because, in taking the square root of a number, two values are possible. In particular, kz is
a double-value function of kρ. Consequently, for every point on a complex kρ plane in Figure
35.4, there are two possible values of kz. Therefore, as an example, the integral (35.1.11)
is undefined unless we stipulate which of the two values of kz is adopted in performing the
integration.

A multivalue function is denoted on a complex plane with the help of Riemann sheets
[35, 89]. For instance, a double-value function such as kz is assigned two Riemann sheets to
a single complex plane. On one of these Riemann sheets, kz assumes a value just opposite in
sign to the value on the other Riemann sheet. The correct sign for kz is to pick the square
root solution so that =m(kz) > 0. This will ensure a decaying wave from the source.

35.5 Some Remarks14

Even though we have arrived at the solutions of a point source on top of a layered medium
by heuristic arguments of plane waves propagating through layered media, they can also
be derived more rigorously. For example, Equation (35.2.6) can be arrived at by matching
boundary conditions at every interface. The reason why a more heuristic argument is still
valid is due to the completeness of Fourier transforms. It is best explained by putting a source
over a half space and a scalar problem.

13This may be skipped on first reading.
14This may be skipped on first reading.
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We can expand the scalar field in the upper region as

Φ1(x, y, z) =

∞�

−∞

dkxdkyΦ̃1(kx, ky, z)e
ikxx+ikyy (35.5.1)

and the scalar field in the lower region as

Φ2(x, y, z) =

∞�

−∞

dkxdkyΦ̃2(kx, ky, z)e
ikxx+ikyy (35.5.2)

If we require that the two fields be equal to each other at z = 0, then we have

∞�

−∞

dkxdkyΦ̃1(kx, ky, z = 0)eikxx+ikyy =

∞�

−∞

dkxdkyΦ̃2(kx, ky, z = 0)eikxx+ikyy (35.5.3)

In order to remove the integral, and replace it with a simple scalar problem, one has to impose
the above equation for all x and y. Then by the completeness of Fourier transform implies
that15

Φ̃1(kx, ky, z = 0) = Φ̃2(kx, ky, z = 0) (35.5.4)

The above equation is much simpler than that in (35.5.3). In other words, due to the com-
pleteness of Fourier transform, one can match a boundary condition spectral-component by
spectral-component. If the boundary condition is matched for all spectral components, than
(35.5.3) is also true.

15Or that we can perform a Fourier inversion on the above integrals.
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