
Lecture 19

More on Hollow Waveguides

We have seen that the hollow waveguide is the simplest of waveguides. Closed form solutions
exist for such waveguides as seen in the rectangular waveguide case. The solution is elegantly
simple and beautiful requiring only trigonometric functions. So we will continue with the
study of the rectangular waveguide, and then address another waveguide, the circular waveg-
uide where closed form solutions exist also. However, the solution has to be expressed in
terms of “Bessel functions”, called special functions. As the name implies, these functions are
seldom used outside the context of studying wave phenomena. Bessel functions in cylindrical
coordinates are the close cousin of the sinusoidal functions in cartesian coordinates. Whether
Bessel functions are more complex or esoteric compared to sinusoidal functions is in the eye
of the beholder. Once one is familiarized with them, they are simple. They are also the
function that describes the concentric ripple wave that you see in your tea cup every morning
(see Figure 19.1)!

Figure 19.1: The ripple wave in your tea cup is describable by a Bessel function (courtesy of
dreamstime.com).
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194 Electromagnetic Field Theory

19.1 Rectangular Waveguides, Contd.

We have seen the mathematics for the TE modes of a rectangular waveguide. We shall study
the TM modes and the modes of a circular waveguide in this lecture.

19.1.1 TM Modes (Ez 6= 0, E Modes or TMz Modes)

These modes are not the exact dual of the TE modes because of the boundary conditions.
The dual of a PEC (perfect electric conducting) wall is a PMC (perfect magnetic conducting)
wall. However, the previous exercise for TE modes can be repeated for the TM modes with
caution on the boundary conditions. The scalar wave function (or eigenfunction/eigenmode)
for the TM modes, satisfying the homogeneous Dirichlet (instead of Neumann)1 boundary
condition with (Ψes(rs) = 0) on the entire waveguide wall is

Ψes(x, y) = A sin
(mπ
a
x
)

sin
(nπ
b
y
)

(19.1.1)

Here, sine functions are chosen for the standing waves, and the chosen values of βx and βy
ensure that the boundary condition is satisfied on the x = a and y = b walls. Neither of the
m and n can be zero, lest Ψes(x, y) = 0, or the field is zero. Hence, both m > 0, and n > 0
are needed. Thus, the lowest TM mode is the TM11 mode. Thinking of this as an eigenvalue
problem, then the eigenvalue is

β2
s = β2

x + β2
y =

(mπ
a

)2

+
(nπ
b

)2

(19.1.2)

which is the same as the TE case. Therefore, the corresponding cutoff frequencies and cutoff
wavelengths for the TMmn modes are the same as the TEmn modes. Also, these TE and TM
modes are degenerate when they share the same eigevalues. Furthermore, the lowest modes,
TE11 and TM11 modes have the same cutoff frequency. Figure 19.2 shows the dispersion
curves for different modes of a rectangular waveguide. Notice that the group velocities of all
the modes are zero at cutoff, and then the group velocities approach that of the waveguide
medium as frequency becomes large. These observations can be explained physically.

1Again, “homogeneous” here means “zero”.
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Figure 19.2: Dispersion curves for a rectangular waveguide (courtesy of J.A. Kong [32]).
Notice that the lowest TM mode is the TM11 mode, and k is equivalent to β in this course.
At cutoff, the guided mode does not propagate in the z direction, and here, the group velocity
is zero. But when ω → ∞, the mode propagates in direction almost parallel to the axis of
the waveguide, and hence, the group velocity approaches that of the waveguide medium.

19.1.2 Bouncing Wave Picture

We have seen that the transverse variation of a mode in a rectangular waveguide can be
expanded in terms of sine and cosine functions which represent standing waves which are
superposition of two traveling waves, or that they are

[exp(−jβxx)± exp(jβxx)] [exp(−jβyy)± exp(jβyy)]

When the above is expanded and together with the exp(−jβzz) the mode propagating in the
z direction in addition to the standing waves in the tranverse direction. Or we see four waves
bouncing around in the xy directions and propagating in the z direction. The picture of this
bouncing wave can be depicted in Figure 19.3.
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Figure 19.3: The waves in a rectangular waveguide can be thought of as bouncing waves off
the four walls as they propagate in the z direction.

19.1.3 Field Plots

Given the knowledge of the scalar piloting potential of a waveguide, one can derive all the
field components. For example, for the TE modes, if we know Ψh(r), then

E = ∇× ẑΨh(r), H = −∇×E/(jωµ) (19.1.3)

Then all the electromagnetic field of a waveguide mode can be found, and similarly for TM
modes.

Plots of the fields of different rectangular waveguide modes are shown in Figure 19.4.
Notice that for higher m’s and n’s, with βx = mπ/a and βy = nπ/b, the corresponding βx
and βy are larger with higher spatial frequencies. Thus, the transverse spatial wavelengths

are getting shorter. Also, since βz =
√
β2 − β2

x − β2
y , higher frequencies are needed to make

βz real in order to propagate the higher order modes or the high m and n modes.

Notice also how the electric field and magnetic field curl around each other. Since ∇×H =
jωεE and ∇ × E = −jωµH, they do not curl around each other “immediately” but with a
π/2 phase delay due to the jω factor. Therefore, the E and H fields do not curl around each
other at one location, but at a displaced location due to the π/2 phase difference. This is
shown in Figure 19.5.



More on Hollow Waveguides 197

Figure 19.4: Transverse field plots of different modes in a rectangular waveguide (courtesy
of Andy Greenwood. Original plots published in Lee, Lee, and Chuang, IEEE T-MTT, 33.3
(1985): pp. 271-274. [115]).

Figure 19.5: Field plot of a mode propagating in the z direction of a rectangular waveguide.
Notice that the E and H fields do not exactly curl around each other.
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19.2 Circular Waveguides

Another waveguide where closed-form solutions can be easily obtained is the circular hollow
waveguide as shown in Figure 19.6, but they involve the use of Bessel functions.

Figure 19.6: Schematic of a circular waveguide in cylindrical coordinates. It is one of the
separable coordinate systems.

19.2.1 TE Case

For a circular waveguide, it is best first to express the Laplacian operator, ∇s2 = ∇s · ∇s, in
cylindrical coordinates. The first∇s is a gradient operator while the second∇s· is a divergence
operator: they have different physical meanings. Formulas for grad and div operators are
given in many text books [32,116]. Doing a table lookup,

∇sΨ = ρ̂
∂

∂ρ
Ψ + φ̂

1

ρ

∂

∂φ

∇s ·A =
1

ρ

∂

∂ρ
ρAρ +

1

ρ

∂

∂φ
Aφ

Then (
∇s2 + βs

2
)

Ψhs =

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ βs

2

)
Ψhs(ρ, φ) = 0 (19.2.1)

The above is the partial differential equation for field in a circular waveguide. It is an eigen-
value problem where β2

s is the eigenvalue, and Ψhs(rs) is the eigenfunction (equivalence of an
eigenvector). Using separation of variables, we let

Ψhs(ρ, φ) = Bn(βsρ)e±jnφ (19.2.2)
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Then ∂2

∂φ2 → −n2, and (19.2.1) simplifies to an ordinary differential equation which is(
1

ρ

d

dρ
ρ
d

dρ
− n2

ρ2
+ βs

2

)
Bn(βsρ) = 0 (19.2.3)

Here, dividing the above equation by β2
s , we can let βsρ in (19.2.2) and (19.2.3) be x. Then

the above can be rewritten as(
1

x

d

dx
x
d

dx
− n2

x2
+ 1

)
Bn(x) = 0 (19.2.4)

The above is known as the Bessel equation whose solutions are special functions denoted as
Bn(x).2

These special functions are Jn(x), Nn(x), H
(1)
n (x), and H

(2)
n (x) which are called Bessel,

Neumann, Hankel function of the first kind, and Hankel function of the second kind, respec-
tively, where n is the order, and x is the argument.3 Since this is a second order ordinary
differential equation, it has only two independent solutions. Therefore, two of the four com-
monly encountered solutions of Bessel equation are independent. Thus, they can be expressed
in terms of each other. Their relationships are shown below:4

Bessel, Jn(x) =
1

2
[Hn

(1)(x) +Hn
(2)(x)] (19.2.5)

Neumann, Nn(x) =
1

2j
[Hn

(1)(x)−Hn
(2)(x)] (19.2.6)

Hankel–First kind, Hn
(1)(x) = Jn(x) + jNn(x) (19.2.7)

Hankel–Second kind, Hn
(2)(x) = Jn(x)− jNn(x) (19.2.8)

It can be shown that

Hn
(1)(x) ∼

√
2

πx
ejx−j(n+ 1

2 )π2 , x→∞ (19.2.9)

Hn
(2)(x) ∼

√
2

πx
e−jx+j(n+ 1

2 )π2 , x→∞ (19.2.10)

They correspond to traveling wave solutions when x = βsρ → ∞. Since Jn(x) and Nn(x)
are linear superpositions of these traveling wave solutions, they correspond to standing wave
solutions. Moreover, Nn(x), Hn

(1)(x), and Hn
(2)(x) → ∞ when x → 0. Since the field

has to be regular when ρ → 0 at the center of the waveguide shown in Figure 19.6, the
only viable solution for the hollow waveguide, to be chosen from (19.2.5) to (19.2.9), is that
Bn(βsρ) = AJn(βsρ). Thus for a circular hollow waveguide, the eigenfunction or mode is of
the form

Ψhs(ρ, φ) = AJn(βsρ)e±jnφ (19.2.11)

2Studied by Friedrich Wilhelm Bessel, 1784-1846.
3Some textbooks use Yn(x) for Neumann functions.
4Their relations with each other are similar to those between exp(−jx), sin(x), and cos(x).
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To ensure that the eigenfunction and the eigenvalue are unique, boundary condition for the
partial differential equation is needed. The homogeneous Neumann boundary condition,5. or
that ∂nΨhs = 0, on the PEC waveguide wall then translates to

d

dρ
Jn(βsρ) = 0, ρ = a (19.2.12)

Defining Jn
′(x) = d

dxJn(x),6 the above is the same as

Jn
′(βsa) = 0 (19.2.13)

The above are the zeros of the derivative of Bessel function and they are tabulated in many
textbooks and handbooks. The m-th zero of Jn

′(x) is denoted to be βnm in many books.7

Plots of Bessel functions and their derivatives are shown in Figure 19.8, and some zeros of
Bessel function and its derivative are also shown in Figure 19.9. With this knowledge, the
guidance condition for a waveguide mode is then

βs = βnm/a (19.2.14)

for the TEnm mode. From the above, β2
s can be obtained which is the eigenvalue of (19.2.1)

and (19.2.3). It is a constant independent of frequency.
Using the fact that βz =

√
β2 − β2

s , then βz will become pure imaginary if β2 is small
enough (or the frequency low enough) so that β2 < β2

s or β < βs. From this, the corresponding
cutoff frequency (the frequency below which βz becomes pure imaginary) of the TEnm mode
is

ωnm,c =
1
√
µε

βnm
a

(19.2.15)

When ω < ωnm,c, the corresponding mode cannot propagate in the waveguide as βz becomes
pure imaginary. The corresponding cutoff wavelength is

λnm,c =
2π

βnm
a (19.2.16)

By the same token, when λ > λnm,c, the corresponding mode cannot be guided by the
waveguide. It is not exactly precise to say this, but this gives us the heuristic notion that if
wavelength or “size” of the wave or photon is too big, it cannot fit inside the waveguide.

19.2.2 TM Case

The corresponding partial differential equation and boundary value problem for this case is(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2

∂2

∂φ2
+ βs

2

)
Ψes(ρ, φ) = 0 (19.2.17)

5Note that “homogeneous” here means “zero” in math.
6Note that this is a standard math notation, which has a different meaning in some engineering texts.
7Notably, Abramowitz and Stegun, Handbook of Mathematical Functions [117]. An online version is

available at [118].
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with the homogeneous Dirichlet boundary condition, Ψes(a, φ) = 0, on the waveguide wall.
The eigenfunction solution is

Ψes(ρ, φ) = AJn(βsρ)e±jnφ (19.2.18)

with the boundary condition that Jn(βsa) = 0. The zeros of Jn(x) are labeled as αnm is
many textbooks, as well as in Figure 19.9; and hence, the guidance condition is that for the
TMnm mode is that

βs =
αnm
a

(19.2.19)

where the eigenvalue for (19.2.17) is β2
s which is a constant independent of frequency. With

βz =
√
β2 − β2

s , the corresponding cutoff frequency is

ωnm,c =
1
√
µε

αnm
a

(19.2.20)

or when ω < ωnm,c, the mode cannot be guided. The cutoff wavelength is

λnm,c =
2π

αnm
a (19.2.21)

with the notion that when λ > λnm,c, the mode cannot be guided.
It turns out that the lowest mode in a circular waveguide is the TE11 mode. It is actually a

close cousin of the TE10 mode of a rectangular waveguide. This can be gathered by comparing
their field plots: these modes morph into each other as we deform the shape of a rectangular
waveguide into a circular waveguide.

Figure 19.7: Side-by-side comparison of the field plots of the TE10 mode of a rectangular
waveguide versus that of the TE11 mode of a circular waveguide. If one is imaginative enough,
one can see that the field plot of one mode morphs into that of the other mode. Electric fields
are those that have to end on the waveguide walls.

Figure 19.8 shows the plots of Bessel function Jn(x) and its derivative J ′n(x). Tables in
Figure 19.9 show the roots of J ′n(x) and Jn(x) which are important for determining the cutoff
frequencies of the TE and TM modes of circular waveguides.
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Figure 19.8: Plots of the Bessel function, Jn(x), and its derivatives J ′n(x). The zeros of
these functions are used to find the eigenvalue β2

s of the problem, and hence, the guidance
condition. The left figure is for TM modes, while the right figure is for TE modes. Here,
J ′n(x) = dJn(x)/dx.

Figure 19.9: Table 2.3.1 shows the zeros of J ′n(x), which are useful for determining the
guidance conditions of the TEmn mode of a circular waveguide. On the other hand, Table
2.3.2 shows the zeros of Jn(x), which are useful for determining the guidance conditions of
the TMmn mode of a circular waveguide.
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Figure 19.10: Transverse field plots of different modes in a circular waveguide (courtesy of
Andy Greenwood. Original plots published in Lee, Lee, and Chuang [115]). The axially
symmetric TE01 mode has the lowest loss, and finds a number of real-world applications as
in radio astronomy.
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