
Lecture 17

Dielectric Waveguides

As mentioned before, the dielectric waveguide shares many salient features with the optical
fiber waveguide, one of the most important waveguides of this century. Before we embark
on the study of dielectric waveguides, we will revisit the transverse resonance again. The
transverse resonance condition allows one to derive the guidance conditions for a dielectric
waveguide easily without having to match the boundary conditions at the interface again: The
boundary conditions are already used when deriving the Fresnel reflection coefficients, and
hence they are embedded in these reflection coefficients and generalized reflection coefficients.
Much of the materials in this lecture can be found in [32,44,83].

17.1 Generalized Transverse Resonance Condition

The guidance conditions, the transverse resonance condition given previously, can also be
derived for the more general case. The generalized transverse resonance condition is a powerful
condition that can be used to derive the guidance condition of a mode in a layered medium.

To derive this condition, we first have to realize that a guided mode in a waveguide is due
to the coherent or constructive interference of the waves. This implies that if a plane wave
starts at position 1 (see Figure 17.1)1 and is multiply reflected as shown, it will regain its
original phase in the x direction at position 5. Since this mode progresses in the z direction,
all these waves (also known as partial waves) are in phase in the z direction by the phase
matching condition. Otherwise, the boundary conditions cannot be satisfied. That is, waves
at 1 and 5 will gain the same phase in the z direction. But, for them to add coherently or
interfere coherently in the x direction, the transverse phase at 5 must be the same as 1.

Assuming that the wave starts with amplitude 1 at position 1, it will gain a transverse
phase of e−jβ0xt when it reaches position 2. Upon reflection at x = x2, at position 3, the wave
becomes R̃+e

−jβ0xt where R̃+ is the generalized reflection coefficient at the right interface
of Region 0. Finally, at position 5, it becomes R̃−R̃+e

−2jβ0xt where R̃− is the generalized

1The waveguide convention is to assume the direction of propagation to be z. Since we are analyzing a
guided mode in a layered medium, z axis is as shown in this figure, which is parallel to the interfaces. This
is different from before.
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Figure 17.1: The transverse resonance condition for a layered medium. The phase of the wave
at position 5 should be equal to the transverse phase at position 1 for constructive interference
to occur.

reflection coefficient at the left interface of Region 0. For constructive interference to occur
or for the mode to exist, we require that

R̃−R̃+e
−2jβ0xt = 1 (17.1.1)

The above is the generalized transverse resonance condition for the guidance condition for a
plane wave mode traveling in a layered medium.

In (17.1.1), a metallic wall has a reflection coefficient of 1 for a TM wave; hence if R̃+ is
1, Equation (17.1.1) becomes

1− R̃−e−2jβ0xt = 0. (17.1.2)

On the other hand, in (17.1.1), a metallic wall has a reflection coefficient of −1, for TE wave,
and Equation (17.1.1) becomes

1 + R̃−e
−2jβ0xt = 0. (17.1.3)

17.2 Dielectric Waveguide

The most important dielectric waveguide of the modern world is the optical fiber, whose
invention was credited to Charles Kao [98]. He was awarded the Nobel prize in 2009 [112].
However, the analysis of the optical fiber requires the use of cylindrical coordinates and special
functions such as Bessel functions. In order to capture the essence of dielectric waveguides,
one can study the slab dielectric waveguide, which shares many salient features with the
optical fiber. This waveguide is also used as thin-film optical waveguides (see Figure 17.2).
We start with analyzing the TE modes in this waveguide.
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Figure 17.2: An optical thin-film waveguide is made by coating a thin dielectric film or sheet
on a metallic surface. The wave is guided by total internal reflection at the top interface, and
by metallic reflection at the bottom interface.

17.2.1 TE Case

Figure 17.3: Schematic for the analysis of a guided mode in the dielectric waveguide. Total
internal reflections occur at the top and bottom interfaces. If the waves add coherently, the
wave is guided along the dielectric slab.

We shall look at the application of the transverse resonance condition to a TE wave guided
in a dielectric waveguide. Again, we assume the direction of propagation of the guided mode
to be in the z direciton in accordance with convention. Specializing the above equation to
the dielectric waveguide shown in Figure 17.3, we have the guidance condition as

1 = R10R12e
−2jβ1xd (17.2.1)

where d is the thickness of the dielectric slab. Guidance of a mode is due to total internal
reflection, and hence, we expect Region 1 to be optically more dense (in terms of optical
refractive indices)2 than region 0 and 2.

To simplify the analysis further, we assume Region 2 to be the same as Region 0 so that
R12 = R10. The new guidance condition is then

1 = R2
10e
−2jβ1xd (17.2.2)

2Optically more dense means higher optical refractive index, or higher dielectric constant.
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By phase-matching, βz is the same in all the three regions of Figure 17.3. By expressing all
the βix in terms of the variable βz, the above is an implicit equation for βz. Also, we assume
that ε1 > ε0 so that total internal reflection occurs at both interfaces as the wave bounces
around so that β0x = −jα0x. Therefore, for TE polarization, the local, single-interface, or
Fresnel reflection coefficient is

R10 =
µ0β1x − µ1β0x

µ0β1x + µ1β0x
=
µ0β1x + jµ1α0x

µ0β1x − jµ1α0x
= ejθTE (17.2.3)

where θTE is the Goos-Hanschen shift for total internal reflection. It is given by

θTE = 2 tan−1

(
µ1α0x

µ0β1x

)
(17.2.4)

The guidance condition for constructive interference according to (17.2.1) is such that

2θTE − 2β1xd = 2nπ (17.2.5)

From the above, dividing it by four, and taking its tangent, we get

tan

(
θTE

2

)
= tan

(
nπ

2
+
β1xd

2

)
(17.2.6)

or using (17.2.4) for the left-hand side,

µ1α0x

µ0β1x
= tan

(
nπ

2
+
β1xd

2

)
(17.2.7)

The above gives rise to

µ1α0x = µ0β1x tan

(
β1xd

2

)
, n even (17.2.8)

−µ1α0x = µ0β1x cot

(
β1xd

2

)
, n odd (17.2.9)

It can be shown that when n is even, the mode profile is even, whereas when n is odd, the
mode profile is odd. The above can also be rewritten as

µ0

µ1

β1xd

2
tan

(
β1xd

2

)
=
α0xd

2
, even modes (17.2.10)

−µ0

µ1

β1xd

2
cot

(
β1xd

2

)
=
α0xd

2
, odd modes (17.2.11)

Again, the above equations can be expressed in the βz variable, but they do not have closed
form solutions, save for graphical solutions (or numerical solutions). We shall discuss their
graphical solutions.3

3This technique has been put together by the community of scholars in the optical waveguide area.
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To solve the above graphically, it is best to plot them in terms of one common variable.
It turns out the β1x is the simplest common variable to use for graphical solutions. To this
end, using the fact that −α2

0x = β2
0 − β2

z , and that β2
1x = β2

1 − β2
z , eliminating βz from these

two equations, one can show that

α0x = [ω2(µ1ε1 − µ0ε0)− β2
1x]

1
2 (17.2.12)

Thus (17.2.10) and (17.2.11) become

µ0

µ1

β1xd

2
tan

(
β1xd

2

)
=
α0xd

2

=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1xd

2

)2

, even modes (17.2.13)

−µ0

µ1

β1xd

2
cot

(
β1xd

2

)
=
α0xd

2

=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1xd

2

)2

, odd modes (17.2.14)

We can solve the above graphically by plotting

y1 =
µ0

µ1

β1xd

2
tan

(
β1xd

2

)
even modes (17.2.15)

y2 = −µ0

µ1

β1xd

2
cot

(
β1x

d

2

)
odd modes (17.2.16)

y3 =

[
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1xd

2

)2
] 1

2

=
α0xd

2
(17.2.17)
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Figure 17.4: A way to solve (17.2.13) and (17.2.14) is via a graphical method. In this method,
both the right-hand side and the left-hand side of the equations are plotted on the same plot.
The solutions are at the intersection points of these plots.

In the above, y3 is the equation of a circle; the radius of the circle is given by

ω(µ1ε1 − µ0ε0)
1
2
d

2
. (17.2.18)

The solutions to (17.2.13) and (17.2.14) are given by the intersections of y3 with y1 and
y2. We note from (17.2.1) that the radius of the circle can be increased in three ways: (i)
by increasing the frequency, (ii) by increasing the contrast µ1ε1

µ0ε0
, and (iii) by increasing the

thickness d of the slab.4 The mode profiles of the first two modes are shown in Figure 17.5.

4These area important salient features of a dielectric waveguide. These features are also shared by the
optical fiber.
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Figure 17.5: Mode profiles of the TE0 and TE1 modes of a dielectric slab waveguide (courtesy
of J.A. Kong [32]).

When β0x = −jα0x, the reflection coefficient for total internal reflection is

RTE10 =
µ0β1x + jµ1α0x

µ0β1x − jµ1α0x
= exp

[
+2j tan−1

(
µ1α0x

µ0β1x

)]
(17.2.19)

and
∣∣RTE10

∣∣ = 1. Hence, the wave is guided by total internal reflections.

Cut-off occurs when the total internal reflection ceases to occur, i.e. when the frequency
decreases such that α0x = 0. From Figure 17.4, we see that α0x = 0 when

ω(µ1ε1 − µ0ε0)
1
2
d

2
=
mπ

2
, m = 0, 1, 2, 3, . . . (17.2.20)

or

ωmc =
mπ

d(µ1ε1 − µ0ε0)
1
2

, m = 0, 1, 2, 3, . . . (17.2.21)

The mode that corresponds to the m-th cut-off frequency above is labeled the TEm mode.
Thus TE0 mode is the mode that has no cut-off or propagates at all frequencies. This is
shown in Figure 17.6 where the TE mode profiles are similar since they are dual to each
other. The boundary conditions at the dielectric interface is that the field and its normal
derivative have to be continuous. The TE0 or TM0 mode can satisfy this boundary condition
at all frequencies, but not the TE1 or TM1 mode. At the cut-off frequency, the field outside
the slab has to become flat implying the α0x = 0 implying no guidance.
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Figure 17.6: Mode profiles of the TM modes of a dielectric slab. The TE modes are dual to
the TM modes and have similar mode profiles.

Next, we will elucidate more physics of the dielectric slab guided mode. At cut-off, α0x = 0,
and from the dispersion relation that α2

0x = β2
z − β2

0 ,

βz = ω
√
µ0ε0,

for all the modes. Hence, the phase velocity, ω/βz, and the group velocity, dω/dβz are that
of the outer region. This is because when α0x = 0, the wave is not evanescent outside, and
the energy of the mode is predominantly carried by the exterior field.

When ω → ∞, the radius of the circle in the plot of y3 becomes increasingly larger. As
seen from Figure 17.4, the solution for β1x → nπ

d for all the modes. From the dispersion
relation for Region 1,

βz =
√
ω2µ1ε1 − β2

1x ≈ ω
√
µ1ε1, ω →∞ (17.2.22)

since ω2µ1ε1 � β2
1x = (nπ/d)2. Hence the group and phase velocities approach that of the

dielectric slab. This is because when ω → ∞, α0x → ∞, implying the rapid exponential
decay of the fields outside the waveguide. Therefore, the fields are trapped or confined in the
slab and propagating within it. Because of this, the dispersion diagram of the different modes
appear as shown in Figure 17.7. In this figure,5 kc1, kc2, and kc3 are the cut-off wave number
or frequency of the first three modes. Close to cut-off, the field is traveling mostly outside the
waveguide, and kz ≈ ω

√
µ0ε0. Hence, both the phase and group velocities approach that of

5Please note again that in this course, we will use β and k interchangeably for wavenumbers.
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the outer medium as shown in the figure. When the frequency increases, the mode is tightly
confined in the dielectric slab, and hence, kz ≈ ω

√
µ1ε1. Both the phase and group velocities

approach that of Region 1 as shown.

Figure 17.7: Here, we have kz versus k1 plots for dielectric slab waveguide. Near its cut-off,
the energy of the mode is in the outer region, and hence, its group velocity is close to that of
the outer region. At high frequencies, the mode is tightly bound to the slab, and its group
velocity approaches that of the dielectric slab (courtesy of J.A. Kong [32]).

17.2.2 TM Case

For the TM case, a similar guidance condition analogous to (17.2.1) can be derived but with
the understanding that the reflection coefficients in (17.2.1) are now TM reflection coefficients.
Similar derivations show that the above guidance conditions, for ε2 = ε0, µ2 = µ0, reduce to

ε0
ε1
β1x

d

2
tanβ1x

d

2
=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1x

d

2

)2

, even modes (17.2.23)

−ε0
ε1
β1x

d

2
cotβ1x

d

2
=

√
ω2(µ1ε1 − µ0ε0)

d2

4
−
(
β1x

d

2

)2

, odd modes (17.2.24)
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Note that for equation (17.2.1), when we have two parallel metallic plates, RTM = 1, and
RTE = −1, and the guidance condition becomes

1 = e−2jβ1xd ⇒ β1x =
mπ

d
, m = 0, 1, 2, . . . , (17.2.25)

These are just the guidance conditions for parallel plate waveguides.

17.2.3 A Note on Cut-Off of Dielectric Waveguides

The concept of cut-off in dielectric waveguides is quite different from that of hollow waveguides
that we shall learn next. A mode is guided in a dielectric waveguide if the wave is trapped
inside, in this case, the dielectric slab. The trapping is due to the total internal reflections at
the top and the bottom interfaces of the waveguide. When total internal reflection ceases to
occur at any of the two interfaces, the wave is not guided or trapped inside the dielectric slab
anymore. This happens when αix = 0 where i can indicate the top-most or the bottom-most
region. In other words, the wave ceases to be evanescent in one of the Region i’s.


