
Lecture 15

More on Interesting Physical
Phenomena, Homomorphism,
Plane Waves, and Transmission
Lines

Though simple that it looks, embedded in the TM Fresnel reflection coefficient are a few more
interesting physical phenomena. We have looked at the physics of total internal reflection,
which has inspired many interesting technologies such as waveguides, the most important of
which is the optical fiber. In this lecture, we will look at other physical phenomena. These
are the phenomena of Brewster’s angle [103, 104] and that of surface plasmon resonance, or
polariton [105,106].

Even though transmission line theory and the theory of plane wave reflection and trans-
mission look quite different, they are very similar in their underlying mathematical structures.
For lack of a better name, we call this mathematical homomorphism (math analogy).1 Later,
to simplify the mathematics of waves in layered media, we will draw upon this mathemati-
cal homomorphism between multi-section transmission line theory and plane-wave theory in
layered media.

15.1 Brewster’s Angle

We will continue with understanding some interesting phenomena associated with the single-
interface problem starting with the Brewster’s angle.

1The use of this term could be to the chagrin of a math person, but it has also being used in a subject
called homomorphic encryption or computing [107].
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Figure 15.1: A figure showing a plane wave being reflected and transmitted at the Brewster’s
angle. In Region t, the polarization current or dipoles are all pointing in the βr direction,
and hence, there is no radiation in that direction.

Brewster angle was discovered in 1815 [103, 104]. Furthermore, most materials at optical
frequencies have ε2 6= ε1, but µ2 ≈ µ1. In other words, it is hard to obtain magnetic materials
at optical frequencies. Therefore, the TM polarization for light behaves differently from TE
polarization. Hence, we shall focus on the reflection and transmission of the TM polarization
of light, and we reproduce the previously derived TM reflection coefficient here:

RTM =

(
β1z

ε1
− β2z

ε2

)/(
β1z

ε1
+
β2z

ε2

)
(15.1.1)

The transmission coefficient is easily gotten by the formula TTM = 1 + RTM . Observe that
for RTM , it is possible that RTM = 0 if

ε2β1z = ε1β2z (15.1.2)

Squaring the above, making the note that βiz =
√
β2
i − β2

x, one gets

ε2
2(β1

2 − βx2) = ε1
2(β2

2 − βx2) (15.1.3)

Solving the above, assuming µ1 = µ2 = µ, gives

βx = ω
√
µ

√
ε1ε2

ε1 + ε2
= β1 sin θ1 = β2 sin θ2 (15.1.4)
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The latter two equalities come from phase matching at the interface or Snell’s law. Therefore,

sin θ1 =

√
ε2

ε1 + ε2
, sin θ2 =

√
ε1

ε1 + ε2
(15.1.5)

or squaring the above and adding them,

sin2 θ1 + sin2 θ2 = 1, (15.1.6)

Then, assuming that θ1 and θ2 are less than π/2, and using the identity that cos2 θ1+sin2 θ1 =
1, we infer that cos2 θ1 = sin2 θ2. Then it follows that

sin θ2 = cos θ1 (15.1.7)

In other words,

θ1 + θ2 = π/2 (15.1.8)

The above formula can be used to explain why at Brewster angle, no light is reflected back
to Region 1. Figure 15.1 shows that the induced polarization dipoles in Region 2 always
have their axes aligned in the direction of reflected wave. A dipole does not radiate along its
axis, which can be verified heuristically by field sketch and looking at the Poynting vector.
Therefore, these induced dipoles in Region 2 do not radiate in the direction of the reflected
wave. Notice that when the contrast is very weak meaning that ε1

∼= ε2, then θ1
∼= θ2

∼= π/4,
and (15.1.8) is satisfied.

Because of the Brewster angle effect for TM polarization when ε2 6= ε1, |RTM | has to go
through a null when θi = θb. Therefore, |RTM | ≤ |RTE | as shown in the plots in Figure 15.2.
Then when a randomly (or arbitrarily) polarized light is incident on a surface, the polarization
where the electric field is parallel to the surface (TE polarization) is reflected more than the
polarization where the magnetic field is parallel to the surface (TM polarization). This
phenomenon is used to design sun glasses to reduce road surface glare for drivers. For light
reflected off a road surface, they are predominantly horizontally polarized with respect to the
surface of the road. When sun glasses are made with vertical polarizers,2 they will filter out
and mitigate the reflected rays from the road surface to reduce road glare. This phenomenon
can also be used to improve the quality of photography by using a polarizer filter as shown
in Figure 15.3.

2Defined as one that will allow vertical polarization to pass through.
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Figure 15.2: Because |RTM | has to through a null when θi = θb, therefore, plots of |RTM | ≤
|RTE | for all θi as shown above.

Figure 15.3: Because that TM and TE lights will be reflected differently, polarizer filter can
produce remarkable effects on the quality of the photograph by reducing glare [104].

15.1.1 Surface Plasmon Polariton

Surface plasmon polariton occurs for the same mathematical reason for the Brewster angle
effect but the physical mechanism is quite different. Many papers and textbooks will introduce
this phenomenon from a different angle. But here, we will see it from the Fresnel reflection
coefficient for the TM waves. When the denominator of the reflection coefficient RTM is zero,
it can become infinite. This is possible if ε2 < 0, which is possible if medium 2 is a plasma
medium. In this case, the criterion for the denominator to be zero is

−ε2β1z = ε1β2z (15.1.9)

When RTM becomes infinite, it implies that a reflected wave exists when there is no incident
wave. Or when Href = HincR

TM , and RTM =∞, Hinc can be zero, and then Href can assume
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any value.3 Hence, there is a plasmonic resonance or guided mode existing at the interface
without the presence of an incident wave. It is a self-sustaining wave propagating in the x
direction, and hence, is a guided mode propagating in the x direction.

Solving (15.1.9) after squaring it, as in the Brewster angle case, yields

βx = ω
√
µ

√
ε1ε2

ε1 + ε2
(15.1.10)

This is the same equation for the Brewster angle except now that ε2 is negative. Even if
ε2 < 0, but ε1 + ε2 < 0 is still possible so that the expression under the square root sign
(15.1.10) is positive. Thus, βx can be pure real. The corresponding β1z and β2z in (15.1.9)
can be pure imaginary as explained below, and (15.1.9) can still be satisfied.

This corresponds to a guided wave propagating in the x direction. When this happens,

β1z =

√
β1

2 − βx2 = ω
√
µ

[
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(
1− ε2

ε1 + ε2

)]1/2
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√
µ

[
ε2

1
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(15.1.11)

Since ε2 < 0, ε2/(ε1+ε2) > 1, then β1z becomes pure imaginary. Moreover, β2z =
√
β2

2 − βx2

and β2
2 < 0 making β2z becomes even a larger imaginary number. This corresponds to a

trapped wave (or a bound state) at the interface. The wave decays exponentially in both
directions away from the interface and they are evanescent waves. This mode is shown in
Figure 15.4, and is the only case in electromagnetics where a single interface can guide a
surface wave, while such phenomenon abounds for elastic waves.

When one operates close to the resonance of the mode so that the denominator in (15.1.10)
is almost zero, then βx can be very large. The wavelength in the x direction becomes very
short in this case, and since βiz =

√
β2
i − β2

x, then β1z and β2z become even larger imaginary
numbers. Hence, the mode becomes tightly confined or bound to the interface, making the
confinement of the mode very tight. This evanescent wave is much more rapidly decaying
than that offered by the total internal reflection, which is βz =

√
β2
t − β2

x where βx is no
larger than β1. It portends use in tightly packed optical components, and has caused some
excitement in the optics community.

3In other words, infinity times zero is undefined. This is often encountered in a resonance system like an
LC tank circuit. Current flows in the tank circuit despite the absence of an exciting or driving voltage. In
an ordinary differential equation or partial differential equation without a driving term (source term), such
solutions are known as homogeneous solutions (to clarify the potpouri of math terms, homogeneous solutions
here refer to a solution with zero source term). In a matrix equation A · x = b without a right-hand side or
that b = 0, it is known as a null-space solution.
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Figure 15.4: Figure showing a surface plasmonic mode propagating at an air-plasma interface.
As in all resonant systems, a resonant mode entails the exchange of energies. In the case
of surface plasmonic resonance, the energy is exchanged between the kinetic energy of the
electrons and the energy store in the electic field (courtesy of Wikipedia [108]).

15.2 Homomorphism of Uniform Plane Waves and Trans-
mission Lines Equations

Transmission line theory is very simple due to its one-dimensional nature. But the problem
of reflection and transmission of plane waves at a planar interface is actually homormophic
to that of the transmission line problem. Therefore, the plane waves through layered medium
can be mapped into the multi-section transmission line problem due to mathematical homo-
morphism between the two problems. Hence, we can kill two birds with one stone: apply all
the transmission line techniques and equations that we have learnt to solve for the solutions
of waves through layered medium problems.4

For uniform plane waves, since they are proportional to exp(−jβ · r), we know that with
∇ → −jβ, Maxwell’s equations become

β ×E = ωµH (15.2.1)

β ×H = −ωεE (15.2.2)

for a general isotropic homogeneous medium. We will specialize these equations for different
polarizations.

4This treatment is not found elsewhere, and is peculiar to these lecture notes.
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15.2.1 TE or TEz Waves

For this, one assumes a TE wave traveling in the z direction with electric field polarized in
the y direction, or E = ŷEy, H = x̂Hx + ẑHz. Then we have from (15.2.1)

βzEy = −ωµHx (15.2.3)

βxEy = ωµHz (15.2.4)

From (15.2.2), we have

βzHx − βxHz = −ωεEy (15.2.5)

The above equations involve three variables, Ey, Hx, and Hz. But there are only two variables
in the telegrapher’s equations which are V and I. To this end, we will eliminate one of the
variables from the above three equations. Then, expressing Hz in terms of Ey from (15.2.4),
we can show from (15.2.5) that

βzHx = −ωεEy + βxHz = −ωεEy +
β2
x

ωµ
Ey

= −ωε(1− β2
x/β

2)Ey = −ωε cos2 θEy (15.2.6)

where βx = β sin θ has been used.
Eqns. (15.2.3) and (15.2.6) can be written to look like the telegrapher’s equations by

letting −jβz → d/dz to get

d

dz
Ey = jωµHx (15.2.7)

d

dz
Hx = jωε cos2 θEy (15.2.8)

If we let Ey → V , Hx → −I, µ → L, ε cos2 θ → C, the above is exactly analogous to the
telegrapher’s equations. The equivalent characteristic impedance of these equations above is
then

Z0 =

√
L

C
=

√
µ

ε

1

cos θ
=

√
µ

ε

β

βz
=
ωµ

βz
(15.2.9)

The above ωµ/βz is the wave impedance for a propagating plane wave with propagation
direction or the β inclined with an angle θ respect to the z axis. It is analogous to the
characteristic impedance Z0 of a transmission line. When θ = 0, the wave impedance becomes
the intrinsic impedance of space.

A two region, single-interface reflection problem can then be mathematically mapped to
a single-junction connecting two-transmission-lines problem discussed in Section 13.1.1. The
equivalent characteristic impedances of these two regions are then

Z01 =
ωµ1

β1z
, Z02 =

ωµ2

β2z
(15.2.10)
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We can use the above to find Γ12 as given by

Γ12 =
Z02 − Z01

Z02 + Z01
=

(µ2/β2z)− (µ1/β1z)

(µ2/β2z) + (µ1/β1z)
(15.2.11)

The above is the same as the Fresnel reflection coefficient found earlier for TE waves or RTE

after some simple re-arrangement.
Assuming that we have a single junction transmission line, one can define a transmission

coefficient given by

T12 = 1 + Γ12 =
2Z02

Z02 + Z01
=

2(µ2/β2z)

(µ2/β2z) + (µ1/β1z)
(15.2.12)

The above is similar to the continuity of the voltage across the junction, which is the same
as the continuity of the tangential electric field across the interface. It is also the same as the
Fresnel transmission coefficient TTE .

15.2.2 TM or TMz Waves

For the TM polarization, by invoking duality principle, the corresponding equations are, from
(15.2.7) and (15.2.8),

d

dz
Hy = −jωεEx (15.2.13)

d

dz
Ex = −jωµ cos2 θHy (15.2.14)

Just for consistency of units, since electric field is in V m−1, and magnetic field is in A m−1

we may chose the following map to convert the above into the telegrapher’s equations, viz;

Ey → V, Hy → I, µ cos2 θ → L, ε→ C (15.2.15)

Then, the equivalent characteristic impedance is now

Z0 =

√
L

C
=

√
µ

ε
cos θ =

√
µ

ε

βz
β

=
βz
ωε

(15.2.16)

The above is also termed the wave impedance of a TM propagating wave making an inclined
angle θ with respect to the z axis. Notice again that this wave impedance becomes the
intrinsic impedance of space when θ = 0.

Now, using the reflection coefficient for a single-junction transmission line, and the appro-
priate characteristic impedances for the two lines as given in (15.2.16), we arrive at

Γ12 =
(β2z/ε2)− (β1z/ε1)

(β2z/ε2) + (β1z/ε1)
(15.2.17)

Notice that (15.2.17) has a sign difference from the definition of RTM derived earlier in the
last lecture. The reason is that RTM is for the reflection coefficient of magnetic field while
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Γ12 above is for the reflection coefficient of the voltage or the electric field. This difference
is also seen in the definition for transmission coefficients.5 A voltage transmission coefficient
can be defined to be

T12 = 1 + Γ12 =
2(β2z/ε2)

(β2z/ε2) + (β1z/ε1)
(15.2.18)

But this will be the transmission coefficient for the voltage, which is not the same as TTM

which is the transmission coefficient for the magnetic field or the current. Different textbooks
may define different transmission coefficients for this polarization.

5This is often the source of confusion for these reflection and transmission coefficients.
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