
Lecture 12

More on Transmission Lines

As mentioned before, transmission line theory is indispensable in microwave engineering these
days. The theory is the necessary augmentation of circuit theory for higher frequency analysis,
and it is also indispensable to integrated circuit designers as computer clock rate becomes
faster. Over the years, engineers have developed some very useful tools and measurement
techniques to expand the design space of circuit designers. We will learn some of these tools
in this lecture.1

As seen in the previous lecture, the telegrapher’s equations are similar to the one-dimensional
form of Maxwell’s equations, and can be thought of as Maxwell’s equations in their simplest
form. Therefore, they entail a subset of the physics seen in the full Maxwell’s equations.

12.1 Terminated Transmission Lines

Figure 12.1: A schematic for a transmission line terminated with an impedance load ZL at
z = 0.

For an infinitely long transmission line, the solution consists of the linear superposition of a
wave traveling to the right plus a wave traveling to the left. If transmission line is terminated

1Some of you may have studied this topic in your undergraduate electromagnetics course. However, this
topic is important, and you will have to muster your energy to master this knowledge again:)
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122 Electromagnetic Field Theory

by a load as shown in Figure 12.1, a right-traveling wave will be reflected by the load, and
in general, the wave on the transmission line will be a linear superposition of the left and
right traveling waves. To simplify the analysis, we will assume that the line is lossless. The
generalization to the lossy case is quite straightforward. Thus, we assume that

V (z) = a+e
−jβz + a−e

jβz = V+(z) + V−(z) (12.1.1)

where β = ω
√
LC. In the above, in general, a+ 6= a−. Besides, this is a linear system; hence,

we can define the right-going wave V+(z) to be the input, and that the left-going wave V−(z)
to be the output as due to the reflection of the right-going wave V+(z). Or we can define the
amplitude of the left-going reflected wave a− to be linearly related to the amplitude of the
right-going or incident wave a+. In other words, at z = 0, we can let

V−(z = 0) = ΓLV+(z = 0) (12.1.2)

thus, using the definition of V+(z) and V−(z) as implied in (12.1.1), we have

a− = ΓLa+ (12.1.3)

where ΓL is the termed the reflection coefficient. Hence, (12.1.1) becomes

V (z) = a+e
−jβz + ΓLa+e

jβz = a+

(
e−jβz + ΓLe

jβz
)

(12.1.4)

The corresponding current I(z) on the transmission line is given by using the telegrapher’s
equations as previously defined. By recalling that

dV

dz
= −jωLI

then for the general case,

I(z) =
a+

Z0

(
e−jβz − ΓLe

jβz
)

(12.1.5)

Notice the sign change in the second term of the above expression.
Similar to ΓL, a general reflection coefficient can be defined (which is a function of z)

relating the left-traveling and right-traveling wave at location z such that

Γ(z) =
V−(z) = a−e

jβz

V+(z) = a+e−jβz
=

a−e
jβz

a+e−jβz
= ΓLe

2jβz (12.1.6)

Of course, Γ(z = 0) = ΓL. Furthermore, due to the V-I relation at an impedance load, we
must have2

V (z = 0)

I(z = 0)
= ZL (12.1.7)

2One can also look at this from a differential equation viewpoint that this is a boundary condition.
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or that using (12.1.4) and (12.1.5) with z = 0, the left-hand side of the above can be rewritten,
and we have

1 + ΓL
1− ΓL

Z0 = ZL, or
1 + ΓL
1− ΓL

=
ZL
Z0

= ZnL (12.1.8)

From the above, we can solve for ΓL in terms of ZnL to get

ΓL =
ZnL − 1

ZnL + 1
=
ZL − Z0

ZL + Z0
(12.1.9)

Thus, given the termination load ZL and the characteristic impednace Z0, the reflection
coefficient ΓL can be found, or vice versa. Or given ΓL, the normalized load impedance,
ZnL = ZL/Z0, can be found. It is seen that ΓL = 0 if ZL = Z0. Thus a right-traveling wave
will not be reflected and the left-traveling is absent. This is the case of a matched load.
When there is no reflection, all energy of the right-traveling wave will be totally absorbed by
the load.

In general, we can define a generalized impedance at z 6= 0 to be

Z(z) =
V (z)

I(z)
=

a+(e−jβz + ΓLe
jβz)

1
Z0
a+(e−jβz − ΓLejβz)

= Z0
1 + ΓLe

2jβz

1− ΓLe2jβz
= Z0

1 + Γ(z)

1− Γ(z)
(12.1.10)

where Γ(z) defined in (12.1.6) is used. The above can also be written as

Zn(z) = Z(z)/Z0 =
1 + Γ(z)

1− Γ(z)
(12.1.11)

where Zn(z) is the normalized generalized impedance. Conversely, one can write the above
as

Γ(z) =
Zn(z)− 1

Zn(z) + 1
=
Z(z)− Z0

Z(z) + Z0
(12.1.12)

From (12.1.10) above, one gets

Z(z) = Z0
1 + ΓLe

2jβz

1− ΓLe2jβz
(12.1.13)

One can show that by setting z = −l, using (12.1.9), and after some algebra,

Z(−l) = Z0
ZL + jZ0 tanβl

Z0 + jZL tanβl
(12.1.14)



124 Electromagnetic Field Theory

12.1.1 Shorted Terminations

Figure 12.2: The input reactance (X) of a shorted transmission line as a function of its length
l.

From (12.1.14) above, when we have a short such that ZL = 0, then

Z(−l) = jZ0 tan(βl) = jX (12.1.15)

When βl� 1, then tanβl ≈ βl, and (12.1.15) becomes

Z(−l) ∼= jZ0βl (12.1.16)

After using that Z0 =
√
L/C and that β = ω

√
LC, (12.1.16) becomes

Z(−l) ∼= jωLl (12.1.17)

The above implies that a short length of transmission line connected to a short as a
load looks like an inductor with Leff = Ll, since much current will pass through this short
producing a strong magnetic field with stored magnetic energy. Remember here that L is the
line inductance, or inductance per unit length.

On the other hand, when the length of the shorted line increases, due to the standing wave
on the transmission line, certainly parts of the line will have charge accumulation giving rise
to strong electric field, while other parts have current flow giving rise to strong magnetic field.
Depending on this standing wave pattern, the line can become either capacitive or inductive.
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12.1.2 Open Terminations

Figure 12.3: The input reactance (X) of an open transmission line as a function of its length
l.

When we have an open circuit such that ZL =∞, then from (12.1.14) above

Z(−l) = −jZ0 cot(βl) = jX (12.1.18)

Then, when βl� 1, cot(βl) ≈ 1/βl

Z(−l) ≈ −j Z0

βl
(12.1.19)

And then, again using β = ω
√
LC, Z0 =

√
L/C

Z(−l) ≈ 1

jωCl
(12.1.20)

Hence, an open-circuited terminated short length of transmission line appears like an effective
capacitor with Ceff = Cl. Again, remember here that C is line capacitance or capacitance
per unit length.

Again, as shown in Figure 12.3, the impedance at z = −l is purely reactive, and goes
through positive and negative values due to the standing wave set up on the transmission
line. Therefore, by changing the length of l, one can make a shorted or an open terminated
line look like an inductor or a capacitor depending on its length l. This effect is shown in
Figures 12.2 and 12.3. Moreover, the reactance X becomes infinite or zero with the proper
choice of the length l. These are resonances or anti-resonances of the transmission line, very
much like an LC tank circuit. An LC circuit can look like an open or a short circuit at
resonances and depending on if they are connected in parallel or in series.
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12.2 Smith Chart

In general, from (12.1.13) and (12.1.14), a length of transmission line can transform a load ZL
to a range of possible complex values Z(−l). To understand this range of values better, we
can use the Smith chart (invented by P.H. Smith 1939 before the advent of the computer) [88].
The Smith chart is essentially a graphical calculator for solving transmission line problems. It
has been used so much by microwave engineers during the early days that its use has imposed
a strong impression on these engineers: it also has become an indispensable visual aid for
understanding and solving microwave engineering problems.

Equation (12.1.12) indicates that there is a unique map between the normalized impedance
Zn(z) = Z(z)/Z0 and reflection coefficient Γ(z). In the normalized impedance form where
Zn = Z/Z0, from (12.1.10) and (12.1.12)

Γ =
Zn − 1

Zn + 1
, Zn =

1 + Γ

1− Γ
(12.2.1)

Equations in (12.2.1) are related to a bilinear transform in complex variables [89]. It is a
conformal map that maps circles to circles. Such a map is shown in Figure 12.4, where lines
on the right-half of the complex Zn plane are mapped to the circles on the complex Γ plane.
Since straight lines on the complex Zn plane are circles with infinite radii, they are mapped
to circles on the complex Γ plane. The Smith chart shown on Figure 12.5 allows one to obtain
the corresponding Γ given Zn and vice versa as indicated in (12.2.1), but using a graphical
calculator or the Smith chart.

Notice that the imaginary axis on the complex Zn plane maps to the circle of unit radius on
the complex Γ plane. All points on the right-half plane are mapped to within the unit circle.
The reason being that the right-half plane of the complex Zn plane corresponds to passive
impedances that will absorb energy. Hence, such an impedance load will have reflection
coefficient with amplitude less than one, which are points within the unit circle.

On the other hand, the left-half of the complex Zn plane corresponds to impedances with
negative resistances. These will be active elements that can generate energy, and hence,
yielding |Γ| > 1, and will be outside the unit circle on the complex Γ plane.

Another point to note is that points at infinity on the complex Zn plane map to the point
at Γ = 1 on the complex Γ plane, while the point zero on the complex Zn plane maps to
Γ = −1 on the complex Γ plane. These are the reflection coefficients of an open-circuit load
and a short-circuit load, respectively. For a matched load, Zn = 1, and it maps to the zero
point on the complex Γ plane implying no reflection.
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Figure 12.4: Bilinear map of the formulae Γ = Zn−1
Zn+1 , and Zn = 1+Γ

1−Γ . The chart on the right,
called the Smith chart, allows the values of Zn to be determined quickly given Γ, and vice
versa.

The Smith chart also allows one to quickly evaluate the expression

Γ(−l) = ΓLe
−2jβl (12.2.2)

and its corresponding Zn not by using (12.2.1) via a calculator, but by using a graphical
calculator—the Smith chart. Since β = 2π/λ, it is more convenient to write βl = 2πl/λ, and
measure the length of the transmission line in terms of wavelength. To this end, the above
becomes

Γ(−l) = ΓLe
−4jπl/λ (12.2.3)

For increasing l, one moves away from the load to the generator (or source), l increases,
and the phase is decreasing because of the negative sign. So given a point for ΓL on the Smith
chart, one has negative phase or decreasing phase by rotating the point clockwise. Also, due
to the exp(−4jπl/λ) dependence of the phase, when l = λ/4, the reflection coefficient rotates
a half circle around the chart. And when l = λ/2, the reflection coefficient will rotate a full
circle, or back to the original point. Therefore, on the edge of the Smith chart, there are
indication as to which direction one should rotate if one were to move toward the generator
or toward the load.

Also, for two points diametrically opposite to each other on the Smith chart, Γ changes
sign, and it can be shown easily from (12.2.1) that the normalized impedances are reciprocal
of each other. Hence, the Smith chart can also be used to find the reciprocal of a complex
number quickly. A full blown Smith chart is shown in Figure 12.5.
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Figure 12.5: The Smith chart in its full glory. It was invented in 1939 before the age of digital
computers, but it still allows engineers to do mental estimations and rough calculations with
it, because of its simplicity.

12.3 VSWR (Voltage Standing Wave Ratio)

From the previous section, one sees that the voltage and current are not constant in a trans-
mission line. Therefore, one surmises that measuring the impedance of a device at microwave
frequency is a tricky business. At low frequency, one can use an ohm meter with two wire
probes to do such a measurement. But at microwave frequency, two pieces of wire become
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inductors, and two pieces of metal become capacitors. More sophisticated ways to measure
the impedance need to be designed as described below.

Due to the interference between that forward traveling wave and the backward traveling
wave, V (z) is a function of position z on a terminated transmission line and it is given as

V (z) = V0e
−jβz + V0e

jβzΓL

= V0e
−jβz (1 + ΓLe

2jβz
)

= V0e
−jβz (1 + Γ(z)) (12.3.1)

where we have used (12.1.6) for Γ(z) with γ = jβ. Hence, V (z) is not a constant but
dependent on z, or

|V (z)| = |V0||1 + Γ(z)| (12.3.2)

For lack of a better name, this is called the standing wave, even though it is not truly a
standing wave.

In Figure 12.6, the relationship between variation of 1 + Γ(z) as z varies is shown.

Figure 12.6: The voltage amplitude on a transmission line depends on |V (z)|, which is pro-
portional to |1 + Γ(z)| per equation (12.3.2). This figure shows how |1 + Γ(z)| varies as z
varies on a transmission line.

Using the triangular inequality, one gets the lower and upper bounds or that

|V0|(1− |Γ(z)|) ≤ |V (z)| ≤ |V0|(1 + |Γ(z)|) (12.3.3)

But from (12.1.6) and that β is pure real for a lossless line, then |Γ(z)| = |ΓL|; hence

Vmin = |V0|(1− |ΓL|) ≤ |V (z)| ≤ |V0|(1 + |ΓL|) = Vmax (12.3.4)

The voltage standing wave ratio, VSWR is defined to be

VSWR =
Vmax

Vmin
=

1 + |ΓL|
1− |ΓL|

(12.3.5)
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Conversely, one can invert the above to get

|ΓL| =
VSWR− 1

VSWR + 1
(12.3.6)

Hence, the knowledge of voltage standing wave pattern (VSWP), as shown in Figure 12.7,
yields the knowledge of |ΓL| the amplitude of ΓL. Notice that the relations between VSWR
and |ΓL| are homomorphic to those between Zn and Γ. Therefore, the Smith chart can also
be used to evaluate the above equations.

Figure 12.7: The voltage standing wave pattern (VSWP) as a function of z on a load-
terminated transmission line.

The phase of ΓL can also be determined from the measurement of the voltage standing
wave pattern. The location of ΓL in Figure 12.6 is determined by the phase of ΓL. Hence,
the value of d1 in Figure 12.6 is determined by the phase of ΓL as well. The length of the
transmission line waveguide needed to null the original phase of ΓL to bring the voltage
standing wave pattern to a maximum value at z = −d1 is shown in Figure 12.7. Thus, d1 is
the value where the following equation is satisfied:

|ΓL|ejφLe−4πj(d1/λ) = |ΓL| (12.3.7)

Therefore, by measuring the voltage standing wave pattern, one deduces both the amplitude
and phase of ΓL. From the complex value ΓL, one can determine ZL, the load impedance
from the Smith chart.
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Figure 12.8: A slotted-line equipment which consists of a coaxial waveguide with a slot
opening at the top to allow the measurement of the field strength and hence, the voltage
standing wave pattern in the waveguide (courtesy of Microwave101.com).

In the old days, the voltage standing wave pattern was measured by a slotted-line equip-
ment which consists of a coaxial waveguide with a slot opening as shown in Figure 12.8. A
field probe can be inserted into the slotted line to determine the strength of the electric field
inside the coax waveguide. A typical experimental setup for a slotted line measurement is
shown in Figure 12.9. A generator source, with low frequency modulation, feeds microwave
energy into the coaxial waveguide. The isolator, allowing only the unidirectional propagation
of microwave energy, protects the generator. The attenuator protects the slotted line equip-
ment. The wavemeter is an adjustable resonant cavity. When the wavemeter is tuned to the
frequency of the microwave, it siphons off some energy from the source, giving rise to a dip
in the signal of the SWR meter (a short for voltage-standing-wave-ratio meter). Hence, the
wavemeter measures the frequency of the microwave.

The slotted line probe is usually connected to a square law detector with a rectifier that
converts the microwave signal to a low-frequency signal. In this manner, the amplitude of
the voltage in the slotted line can be measured with some low-frequency equipment, such as
the SWR meter. Low-frequency equipment is a lot cheaper to make and maintain. That is
also the reason why the source is modulated with a low-frequency signal. At low frequencies,
circuit theory prevails, engineering and design are a lot simpler.

The above describes how the impedance of the device-under-test (DUT) can be measured
at microwave frequencies. Nowadays, automated network analyzers make these measurements
a lot simpler in a microwave laboratory. More resource on microwave measurements can be
found on the web, such as in [90].

Notice that the above is based on the interference of the two traveling wave on a ter-
minated transmission line. Such interference experiments are increasingly difficult in optical
frequencies because of the much shorter wavelengths. Hence, many experiments are easier to
perform at microwave frequencies rather than at optical frequencies.

Many technologies are first developed at microwave frequency, and later developed at
optical frequency. Examples are phase imaging, optical coherence tomography, and beam
steering with phase array sources. Another example is that quantum information and quan-
tum computing can be done at optical frequency, but the recent trend is to use artificial atoms
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working at microwave frequencies. Engineering with longer wavelength and larger component
is easier; and hence, microwave engineering.

Another new frontier in the electromagnetic spectrum is in the terahertz range. Due to
the dearth of sources in the terahertz range, and the added difficulty in having to engineer
smaller components, this is an exciting and a largely untapped frontier in electromagnetic
technology.

Figure 12.9: An experimental setup for a slotted line measurement (courtesy of Pozar and
Knapp, U. Mass [91]).


