ECE 604 Electromagnetic Field Theory

Instructor: Professor W.C. Chew, x4-4502, Wang 3053, (wcchew), (m) 217-390-9653

Office Hours: Tue: 3:00-4:00 pm, Wed: 8:00-9:00 pm, Thu: 3:00-4:00 pm.

(Unofficial) TA: Boyuan ZHANG (zhan3241) and Jie ZHU (zhu797), Assist. Instructor: Dr. Dongyeop NA (na32). Secretary: Lori Carte, Wang 2080 (lcarte)

Recommended Textbook: Fields and Waves in Communication Electronics, S. Ramo, J.R. Whinnery, and T. Van Duzer, 3rd Ed. (The course will be taught from lecture notes at https://engineering.purdue.edu/wcchew/) Supplementary Texts: Electromagnetic Wave Theory, J.A. Kong. ECE 350X notes. Theory of Optical and Microwave Guides notes. Waves and Fields in Inhomogeneous Media, Chap. 1. Classical Electrodynamics, J.D. Jackson. Electromagnetic Noise and Quantum Optical Measurements, H.A. Haus. Fall 2020, Online Tue Thu 1:30 – 2:45 pm

Very Tentative Course Outline (Revised Sep 9, 2020)

	Tue		Thu
Week 1, Aug 25-27	1. Introduction, Maxwell's	2. Maxwell's equations in	3. Wave equation.
	equations.	differential operator form.	Electrostatics. Static Green's
		1	function.
Week 2, Sep 1-3	4. Magnetostatics. Vector	5. Biot-Savart law.	6. Time-harmonic fields,
-	potential. Boundary	Conductive media interface.	phasors. Complex power.
	conditions. Jump	Instantaneous Poynting's	(delivered by Dr. NA)
	conditions.	theorem.	
Week 3, Sep 8-10	7. More on constitutive	8. Anisotropic media,	9. Waves in gyrotropic
	relation.	uniaxial media.	media.
	Uniform plane wave.	Lorentz force law. Drude-	
	Polarization.	Lorentz-Sommerfeld model	
Week 4, Sep 15-17	10. Complex Poynting's	11. Transmission lines.	EXAM 1
	theorem. Lossless condition.		12. Transmission lines—
			impedance matching.
Week 5, Sep 22-24	13. Multi-section	14. Single interface reflection	15. Brewster angle, surface
	transmission line. Duality	and transmission. TIR.	plasmon polariton.
	principle.		Homomorphism with TL.
Week 6, Sep 29-Oct 1	16. Waves in layered media.	17. Gen. transverse	18. Hollow waveguides.
	Phase and group velocity.	resonance. Dielectric WG.	Rectangular WG.
	Transverse resonance.		
Week 7, Oct 6-8	19. Rect. WG. Circular WG.	20. Homomorphism of	21. Multi-junction
	Quasi TEM and hybrid	waveguides and TM lines.	waveguides.
	modes.		Cavity resonators.
Week 8, Oct 13-15	Fall Break		EXAM 2
			22. Q of cavity resonators.
Week 9, Oct 20-22	23. Scalar and vector	24. Circuit theory revisited.	25. Hertzian dipole, radiation
	potential formulation.		by antennas and sources.
Week 10, Oct 27-29	26. Radiation and far field	27. Radiation by dipole array.	28. Types of antennas.
	approx.		
Week 11, Nov 3-5	29. Uniqueness principle.	30. Reciprocity theorem.	31. Equivalence theorem,
			Huygens' principle.
Week 12, Nov 10-12	32. Shielding, image	33. Paraxial wave equation.	EXAM 3
	theory.	High frequency scattering.	34. Rayleigh scattering. Mie
			scattering.
Week 13, Nov 17-19	35. Plane wave expansion of	36. Comptational EM,	37. FDTD, Yee algorithm.
	point source field.	numerical methods.	
Thanksgiving Nov			
24-20		20. Calument states of 1' 1'	
week 14, Dec 1-3	38. Quantum theory of light.	39. Coherent state of light.	review
week 15, Dec /	FINAL EXAM TBD		

HW=100 pts, EXAMS 1, 2, 3=300 pts, FINAL EXAM=200 pts, TOTAL=600 pts