
Lecture 39

Quantum Coherent State of
Light

39.1 Quantum Coherent State of Light

We have seen that a photon number states1 of a quantum pendulum do not have a classical
correspondence as the average or expectation values of the position and momentum of the
pendulum are always zero for all time for this state. Therefore, we have to seek a time-
dependent quantum state that has the classical equivalence of a pendulum. This is the
coherent state, which is the contribution of many researchers, most notably, George Sudarshan
(1931–2018) [237] and Roy Glauber (1925–2018) [238] in 1963. Glauber was awarded the
Nobel prize in 2005.

We like to emphasize again that the modes of an electromagnetic cavity oscillation are
homomorphic to the oscillation of classical pendulum. Hence, we first connect the oscillation
of a quantum pendulum to a classical pendulum. Then we can connect the oscillation of
a quantum electromagnetic mode to the classical electromagnetic mode and then to the
quantum pendulum.

39.1.1 Quantum Harmonic Oscillator Revisited

To this end, we revisit the quantum harmonic oscillator or the quantum pendulum with more
mathematical depth. Rewriting Schrödinger equation as the eigenequation for the photon
number state for the quantum harmonic oscillator, we have

Ĥψn(x) =

[
− ~2

2m

d2

dx2
+

1

2
mω2

0x
2

]
ψn(x) = Enψn(x). (39.1.1)

where ψn(x) is the eigenfunction, and En is the eigenvalue. The above can be changed into
a dimensionless form first by dividing ~ω0, and then let ξ =

√
mω0

~ x be a dimensionless

1In quantum theory, a “state” is synonymous with a state vector or a function.
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402 Electromagnetic Field Theory

variable. The above then becomes

1

2

(
− d2

dξ2
+ ξ2

)
ψ(ξ) =

E

~ω0
ψ(ξ) (39.1.2)

We can define π̂ = −i ddξ and ξ̂ = Îξ to rewrite the Hamiltonian as

Ĥ =
1

2
~ω0(π̂2 + ξ̂2) (39.1.3)

Furthermore, the Hamiltonian in (39.1.2) looks almost like A2−B2, and hence motivates
its factorization. To this end, we first show that

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
=

1

2

(
− d2

dξ2
+ ξ2

)
− 1

2

(
d

dξ
ξ − ξ d

dξ

)
(39.1.4)

It can be shown easily that as operators (meaning that they will act on a function to their
right), the last term on the right-hand side is an identity operator, namely that(

d

dξ
ξ − ξ d

dξ

)
= Î (39.1.5)

Therefore

1

2

(
− d2

dξ2
+ ξ2

)
=

1√
2

(
− d

dξ
+ ξ

)
1√
2

(
d

dξ
+ ξ

)
+

1

2
(39.1.6)

We define the operator

â† =
1√
2

(
− d

dξ
+ ξ

)
(39.1.7)

The above is the creations, or raising operator and the reason for its name is obviated later.
Moreover, we define

â =
1√
2

(
d

dξ
+ ξ

)
(39.1.8)

which represents the annihilation or lowering operator. With the above definitions of the
raising and lowering operators, it is easy to show that by straightforward substitution that[

â, â†
]

= ââ† − â†â = Î (39.1.9)

Therefore, Schrödinger equation (39.1.2) for quantum harmonic oscillator can be rewritten
more concisely as

1

2

(
â†â+ ââ†

)
ψ =

(
â†â+

1

2

)
ψ =

E

~ω0
ψ (39.1.10)
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In mathematics, a function is analogous to a vector. So ψ is the implicit representation of a
vector. The operator (

â†â+
1

2

)
is an implicit2 representation of an operator, and in this case, a differential operator. So in
the above, (39.1.10), is analogous to the matrix eigenvalue equation A · x = λx.

Consequently, the Hamiltonian operator can be expressed concisely as

Ĥ = ~ω0

(
â†â+

1

2

)
(39.1.11)

Equation (39.1.10) above is in implicit math notation. In implicit Dirac notation, it is(
â†â+

1

2

)
|ψ〉 =

E

~ω0
|ψ〉 (39.1.12)

In the above, ψ(ξ) is a function which is a vector in a functional space. It is denoted as ψ
in math notation and |ψ〉 in Dirac notation. This is also known as the “ket”. The conjugate
transpose of a vector in Dirac notation is called a “bra” which is denoted as 〈ψ|. Hence, the
inner product between two vectors is denoted as 〈ψ1|ψ2〉 in Dirac notation.3

If we denote a photon number state by ψn(x) in explicit notation, ψn in math notation
or |ψn〉 in Dirac notation, then we have(

â†â+
1

2

)
|ψn〉 =

En
~ω0
|ψn〉 =

(
n+

1

2

)
|ψn〉 (39.1.13)

where we have used the fact that En = (n+ 1/2)~ω0. Therefore, by comparing terms in the
above, we have

â†â|ψn〉 = n|ψn〉 (39.1.14)

and the operator â†â is also known as the number operator because of the above. It is often
denoted as

n̂ = â†â (39.1.15)

and |ψn〉 is an eigenvector of n̂ = â†â operator with eigenvalue n. It can be further shown by
direct substitution that

â|ψn〉 =
√
n|ψn−1〉 ⇔ â|n〉 =

√
n|n− 1〉 (39.1.16)

â†|ψn〉 =
√
n+ 1|ψn+1〉 ⇔ â†|n〉 =

√
n+ 1|n+ 1〉 (39.1.17)

hence their names as lowering and raising operator.4

2A notation like A · x, we will call implicit, while a notation
∑
i,j Aijxj , we will call explicit.

3There is a one-to-one correspondence of Dirac notation to matrix algebra notation. Â|x〉 ↔ A ·x, 〈x| ↔
x† 〈x1|x2〉 ↔ x†1 · x2.

4The above notation for a vector could appear cryptic or too terse to the uninitiated. To parse it, one can
always down-convert from an abstract notation to a more explicit notation. Namely, |n〉 → |ψn〉 → ψn(ξ).
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39.2 Some Words on Quantum Randomness and Quan-
tum Observables

We saw previously that in classical mechanics, the conjugate variables p and x are determin-
istic variables. But in the quantum world, they become random variables with means and
variance. It was quite easy to see that x is a random variable in the quantum world. But the
momentum p is elevated to become a differential operator p̂, and it is not clear that it is a
random variable anymore.

Quantum theory is a lot richer in content than classical theory. Hence, in quantum theory,
conjugate variables like p and x are observables endowed with the properties of mean and
variance. For them to be endowed with these properties, they are elevated to become quantum
operators, which are the representations of these observables. To be meaningful, a quantum
state |ψ〉 has to be defined for a quantum system, and these operators represent observables
act on the quantum state.

Henceforth, we have to extend the concept of the average of a random variable to the
“average” of a quantum operator. Now that we know Dirac notation, we can write the
expectation value of the operator p̂ with respect to a quantum state ψ as

〈p̂〉 = 〈ψ|p̂|ψ〉 = p̄ (39.2.1)

The above is the elevated way of taking the “average” of an operator which is related to the
mean of the random variable p.

As mentioned before, Dirac notation is homomorphic to matrix algebra notation. The
above is similar to ψ† ·P ·ψ = p̄. This quantity p̄ is always real if P is a Hermitian matrix.
Hence, in (39.2.1), the expectation value p̄ is always real if p̂ is Hermitian. In fact, it can be
proved that p̂ is Hermitian in the function space that it is defined.

Furthermore, the variance of the random variable p can be derived from the quantum
operator p̂ with respect to to a quantum state |ψ〉. It is defined as

σ2
p = 〈p̂2〉 − 〈p̂〉2 (39.2.2)

where σp is the standard deviation of the random variable p and σ2
p is its variance.

The above implies that the definition of the quantum operators and the quantum states

is not unique. One can define a unitary matrix or operator U such that U
† ·U = I. Then

the new quantum state is now given by the unitary transform ψ′ = U ·ψ. With this, we can
easily show that

p̄ = ψ† ·P ·ψ = ψ† ·U† ·U ·P ·U† ·U ·ψ

= ψ′† ·P′ ·ψ′ (39.2.3)

where P
′

= U·P·U† via unitary transform. Now, P
′
is the new quantum operator representing

the observable p and ψ′ is the new quantum state vector.
In the previous section, we have elevated the position variable ξ to become an operator

ξ̂ = ξÎ. This operator is clearly Hermitian, and hence, the expectation value of this position
operator is always real. Here, ξ̂ is diagonal in the coordinate representation, but it need not
be in other representations.
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39.3 Derivation of the Coherent States

As one cannot see the characteristics of a classical pendulum emerging from the photon
number states, one needs another way of bridging the quantum world with the classical
world. This is the role of the coherent state: It will show the correspondence principle, with a
classical pendulum emerging from a quantum pendulum when the energy of the pendulum is
large. Hence, it will be interesting to see how the coherent state is derived. The derivation of
the coherent state is more math than physics. Nevertheless, the derivation is interesting. We
are going to present it according to the simplest way presented in the literature. There are
deeper mathematical methods to derive this coherent state like Bogoliubov transform which
is outside the scope of this course.

Now, endowed with the needed mathematical tools, we can derive the coherent state. To
say succinctly, the coherent state is the eigenstate of the annihilation operator, namely that

â|α〉 = α|α〉 (39.3.1)

Here, we use α as an eigenvalue as well as an index or identifier of the state |α〉.5 Since the
number state |n〉 is complete, the coherent state |α〉 can be expanded in terms of the number
state |n〉. Or that

|α〉 =
∞∑
n=0

Cn|n〉 (39.3.2)

When the annihilation operator is applied to the above, we have

â|α〉 =

∞∑
n=0

Cnâ|n〉 =

∞∑
n=1

Cnâ|n〉 =

∞∑
n=1

Cn
√
n|n− 1〉

=
∞∑
n=0

Cn+1

√
n+ 1|n〉 (39.3.3)

Equating the above with α|α〉, then

∞∑
n=0

Cn+1

√
n+ 1|n〉 = α

∞∑
n=0

Cn|n〉 (39.3.4)

By the orthonormality of the number states |n〉, then we can take the inner product of the
above with 〈n| and making use of the orthonormal relation that 〈n′|n〉 = δn′n to remove the
summation sign. Then we arrive at

Cn+1 = αCn/
√
n+ 1 (39.3.5)

Or recursively

Cn = Cn−1α/
√
n = Cn−2α

2/
√
n(n− 1) = . . . = C0α

n/
√
n! (39.3.6)

5This notation is cryptic and terse, but one can always down-convert it as |α〉 → |fα〉 → fα(ξ) to get a
more explicit notation.
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Consequently, the coherent state |α〉 is

|α〉 = C0

∞∑
n=0

αn√
n!
|n〉 (39.3.7)

But due to the probabilistic interpretation of quantum mechanics, the state vector |α〉 is
normalized to one, or that6

〈α|α〉 = 1 (39.3.8)

Then

〈α|α〉 = C∗0C0

∞∑
n,n′

αn√
n!

αn
′

√
n′!
〈n′|n〉

= |C0|2
∞∑
n=0

|α|2n

n!
= |C0|2e|α|

2

= 1 (39.3.9)

Therefore, C0 = e−|α|
2/2, or that

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉 (39.3.10)

In the above, to reduce the double summations into a single summation, we have make use
of 〈n′|n〉 = δn′n, or that the photon-number states are orthonormal. Also since â is not a
Hermitian operator, its eigenvalue α can be a complex number.

Since the coherent state is a linear superposition of the photon number states, an average
number of photons can be associated with the coherent state. If the average number of
photons embedded in a coherent is N , then it can be shown that N = |α|2. As shall be
shown, α is related to the amplitude of the quantum oscillation: The more photons there are,
the larger is |α|.

39.3.1 Time Evolution of a Quantum State

The Schrodinger equation can be written concisely as

Ĥ|ψ〉 = i~∂t|ψ〉 (39.3.11)

The above not only entails the form of Schrodinger equation, it is the form of the general
quantum state equation. Since Ĥ is time independent, the formal solution to the above is

|ψ(t)〉 = e−iĤt/~|ψ(0)〉 (39.3.12)

Applying this to the photon number state with Ĥ being that of the quantum pendulum,
then

e−iĤt/~|n〉 = e−iωnt|n〉 (39.3.13)

6The expression can be written more explicitly as 〈α|α〉 = 〈fα|fα〉 =
�∞
∞ dξf∗α(ξ)fα(ξ) = 1.
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where ωn =
(
n+ 1

2

)
ω0. The above simplification follows because |n〉 an eigenstate of the

Hamiltonian Ĥ for the quantum pendulum. The above follows because

Ĥ|n〉 = ~ωn|n〉 = ~ω0

(
n+

1

2

)
|n〉 (39.3.14)

In other words, |n〉 is an eigenvector of Ĥ.

Time Evolution of the Coherent State

Using the above time-evolution operator, then the time dependent coherent state evolves in
time as7

|α, t〉 = e−iĤt/~|α〉 = e−|α|
2/2

∞∑
n=0

αne−iωnt√
n!

|n〉 (39.3.15)

By letting ωn = ω0

(
n+ 1

2

)
, the above can be written as

|α, t〉 = e−iω0t/2e−|α|
2/2

∞∑
n=0

(
αe−iω0t

)n
√
n!

|n〉 (39.3.16)

= e−iω0t/2|αe−iω0t〉 = e−iω0t/2|α̃〉 (39.3.17)

where α̃ = αe−iω0t. Now we see that the last factor in (39.3.16) is similar to the expression
for a coherent state in (39.3.10). Therefore, we can express the above more succinctly by
replacing α in (39.3.10) with α̃ = αe−iω0t as

â|α, t〉 = e−iω0t/2
(
αe−iω0t

)
|αe−iω0t〉 = α̃|α, t〉 (39.3.18)

Therefore, |α, t〉 is the eigenfunction of the â operator. But now, the eigenvalue of the
annihilation operator â is a complex number which is a function of time t.

39.4 More on the Creation and Annihilation Operator

In order to connect the quantum pendulum to a classical pendulum via the coherent state,
we will introduce some new operators. Since

â† =
1√
2

(
− d

dξ
+ ξ

)
(39.4.1)

â =
1√
2

(
d

dξ
+ ξ

)
(39.4.2)

7Note that |α, t〉 is a shorthand for fα(ξ, t).
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We can relate â† and â, which are non-hermitian, to the momentum operator π̂ and position
operator ξ̂ previously defined which are hermitian. Then

â† =
1√
2

(
−iπ̂ + ξ̂

)
(39.4.3)

â =
1√
2

(
iπ̂ + ξ̂

)
(39.4.4)

We also notice that

ξ̂ =
1√
2

(
â† + â

)
= ξÎ (39.4.5)

π̂ =
i√
2

(
â† − â

)
= −i d

dξ
(39.4.6)

Notice that both ξ̂ and π̂ are Hermitian operators in the above, with real expectation values.
With this, the average or expectation value of the position of the pendulum in normalized
coordinate, ξ, can be found by taking expectation with respect to the coherent state, or

〈α|ξ̂|α〉 =
1√
2
〈α|â† + â|α〉 (39.4.7)

Since by taking the complex conjugation transpose of (39.3.1)8

〈α|â† = 〈α|α∗ (39.4.8)

and (39.4.7) becomes

ξ̄ = 〈ξ̂〉 = 〈α|ξ̂|α〉 =
1√
2

(α∗ + α) 〈α|α〉 =
√

2<e[α] 6= 0 (39.4.9)

Repeating the exercise for time-dependent case, when we let α → α̃(t) = αe−iω0t, then,
letting α = |α|e−iψ, then

〈ξ̂(t)〉 =
√

2|α| cos(ω0t+ ψ) (39.4.10)

By the same token,

π̄ = 〈π̂〉 = 〈α|π̂|α〉 =
i√
2

(α∗ − α) 〈α|α〉 =
√

2=m[α] 6= 0 (39.4.11)

For the time-dependent case, we let α→ α̃(t) = αe−iω0t,

〈π̂(t)〉 = −
√

2|α| sin(ω0t+ ψ) (39.4.12)

Hence, we see that the expectation values of the normalized coordinate and momentum just
behave like a classical pendulum. There is however a marked difference: These values have

8Dirac notation is homomorphic with matrix algebra notation. (a · x)† = x† · (a)†.
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standard deviations or variances that are non-zero. Thus, they have quantum fluctuation or
quantum noise associated with them. Since the quantum pendulum is homomorphic with the
oscillation of a quantum electromagnetic mode, the amplitude of a quantum electromagnetic
mode will have a mean and a fluctuation as well.

Figure 39.1: The time evolution of the coherent state. It follows the motion of a classical
pendulum or harmonic oscillator (courtesy of Gerry and Knight [239]).

.

Figure 39.2: The time evolution of the coherent state for different α’s. The left figure is for
α = 5 while the right figure is for α = 10. Recall that N = |α|2.

.
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39.4.1 Connecting Quantum Pendulum to Electromagnetic Oscilla-
tor

We see that the electromagnetic oscillator in a cavity is similar or homomorphic to a pen-
dulum. To make the connection, we next have to elevate a classical pendulum to become a
quantum pendulum. The classical Hamiltonian is

H = T + V =
p2

2m
+

1

2
mω2

0x
2 =

1

2

[
P 2(t) +Q2(t)

]
= E (39.4.13)

In the above, P is a normalized momentum and Q is a normalized coordinate, and their
squares have the unit of energy. We have also shown that when the classical pendulum is
elevated to be a quantum pendulum, then Schrödinger equation becomes

~ωl
(
â†â+

1

2

)
|ψ, t〉 = i~∂t|ψ, t〉 (39.4.14)

Our next task is to connect the electromagnetic oscillator to this pendulum. In general,
the total energy or the Hamiltonian of an electromagnetic system is

H =
1

2

�

V

dr

[
εE2(r, t) +

1

µ
B2(r, t)

]
. (39.4.15)

It is customary to write this Hamiltonian in terms of scalar and vector potentials. For
simplicity, we use a 1D cavity, and let A = x̂Ax, ∇ ·A = 0 so that ∂xAx = 0, and letting

Φ = 0. Then B = ∇ ×A and E = −
.

A, and the classical Hamiltonian from (39.4.15) for a
Maxwellian system becomes

H =
1

2

�

V

dr

[
ε
.

A2(r, t) +
1

µ
(∇×A(r, t))

2

]
. (39.4.16)

For the 1D case, the above implies that By = ∂zAx, and Ex = −∂tAx = −
.

Ax. Hence, we
let

Ax = A0(t) sin(klz) (39.4.17)

Ex = −
.

A0(t) sin(klz) = E0(t) sin(klz) (39.4.18)

By = klA0(t) cos(klz). (39.4.19)

where E0(t) = −
.

A0(t). After integrating over the volume such that
�
V
dr = A

� L
0
dz, the

Hamiltonian (39.4.16) then becomes

H =
V0ε

4

( .
A0(t)

)2

+
V0

4µ
k2
l A

2
0(t). (39.4.20)

where V0 = AL, is the mode volume. The form of (39.4.20) now resembles the pendulum
Hamiltonian. We can think of A0(t) as being related to the displacement of the pendulum.



Quantum Coherent State of Light 411

Hence, the second term resembles the potential energy. The first term has the time derivative
of A0(t), and hence, can be connected to the kinetic energy of the system. Therefore, we can
rewrite the Hamiltonian as

H =
1

2

[
P 2(t) +Q2(t)

]
(39.4.21)

where

P (t) =

√
V0ε

2

.

A0(t) = −
√
V0ε

2
E0(t), Q(t) =

√
V0

2µ
klA0(t) (39.4.22)

By elevating P and Q to be quantum operators,

P (t)→ P̂ =
√
~ωlπ̂(t), Q(t)→ Q̂ =

√
~ωlξ̂(t) (39.4.23)

so that the quantum Hamiltonian now is

Ĥ =
1

2

[
P̂ 2 + Q̂2

]
=

1

2
~ωl

(
π̂2 + ξ̂2

)
(39.4.24)

similar to (39.1.3) as before except now that the resonant frequency of this mode is ωl instead
of ω0 because these are the cavity modes, each of which is homomorphic to a quantum
pendulum. An equation of motion for the state of the quantum system can be associated
with the quantum Hamiltonian just as in the quantum pendulum case.

We have shown previously that

â† + â =
√

2ξ̂ (39.4.25)

â† − â = −
√

2iπ̂ (39.4.26)

Then we can let

P̂ = −
√
V0ε

2
Ê0 =

√
~ωlπ̂ (39.4.27)

Finally, we arrive at

Ê0 = −
√

2~ωl
εV0

π̂ =
1

i

√
~ωl
εV0

(
â† − â

)
(39.4.28)

Now that E0 has been elevated to be a quantum operator Ê0, from (39.4.18), we can put in
the space dependence to get

Êx(z) = Ê0 sin(klz) (39.4.29)

Consequently,

Êx(z) =
1

i

√
~ωl
εV0

(
â† − â

)
sin(klz) (39.4.30)

Notice that in the above, Ê0, and Êx(z) are all Hermitian operators and they correspond
to quantum observables that have randomness associated with them. Also, the operators
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are independent of time because they are in the Schrodinger picture. The derivation in the
Heisenberg picture can be repeated.

In the Schrodinger picture, to get time dependence fields, one has to take the expectation
value of the operators with respect to time-varying quantum state vector like the time-varying
coherent state.

To let Êx have any meaning, it should act on a quantum state. For example,

|ψE〉 = Êx|ψ〉 (39.4.31)

Notice that thus far, all the operators derived are independent of time. To derive time
dependence of these operators, one needs to find their expectation value with respect to
time-dependent state vectors.9

To illustrate this, we can take expectation value of the quantum operator Êx(z) with
respect to a time dependent state vector, like the time-dependent coherent state, Thus

〈Ex(z, t)〉 = 〈α, t|Êx(z)|α, t〉 =
1

i

√
~ωl
εV0
〈α, t|â† − â|α, t〉

=
1

i

√
~ωl
εV0

(α̃∗(t)− α̃(t)) 〈α, t|α, t〉 = −2

√
~ωl
εV0
=m(α̃) (39.4.32)

Using the time-dependent α̃(t) = αe−iωlt = |α|e−i(ωlt+ψ) in the above, we have

〈Ex(z, t)〉 = 2

√
~ωl
εV0
|α| sin(ωlt+ ψ) (39.4.33)

where α̃(t) = αe−iωlt. The expectation value of the operator with respect to a time-varying
quantum state in fact gives rise to a time-varying quantity. The above, which is the average
of a random field, resembles a classical field. But since it is rooted in a random variable, it
has a standard deviation in addition to having a mean.

We can also show that

B̂y(z) = klÂ0 cos(klz) =

√
2µ~ωl
V0

ξ̂ =

√
µ~ωl
V0

(â† + â) (39.4.34)

Again, these are time-independent operators in the Schrodinger picture. To get time-dependent
quantities, we have to take the expectation value of the above operator with respect to to a
time-varying quantum state.

9This is known as the Schrodinger picture.
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