
Lecture 35

Sommerfeld Integral, Weyl
Identity

35.1 Spectral Representations of Sources

A plane wave is a mathematical idealization that does not exist in the real world. In practice,
waves are nonplanar in nature as they are generated by finite sources, such as antennas
and scatterers. For example, a point source generates a spherical wave which is nonplanar.
Fortunately, these waves can be expanded in terms of sum of plane waves. Once this is done,
then the study of non-plane-wave reflections from a layered medium becomes routine. In the
following, we shall show how waves resulting from a point source can be expanded in terms of
plane waves summation. This topic is found in many textbooks [1,31,34,87,88,154,177,189].

35.1.1 A Point Source

From this point onward, we will adopt the exp(−iωt) time convention to be commensurate
with the optics and physics literatures.

There are a number of ways to derive the plane wave expansion of a point source. We will
illustrate one of the ways. The spectral decomposition or the plane-wave expansion of the
field due to a point source could be derived using Fourier transform technique. First, notice
that the scalar wave equation with a point source is[

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
+ k2

0

]
φ(x, y, z) = −δ(x) δ(y) δ(z). (35.1.1)

The above equation could then be solved in the spherical coordinates, yielding the solution

φ(r) =
eik0r

4πr
. (35.1.2)
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Next, assuming that the Fourier transform of φ(x, y, z) exists, we can write

φ(x, y, z) =
1

(2π)3

∞�

−∞

dkxdkydkz φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz. (35.1.3)

Then we substitute the above into (35.1.1), after exchanging the order of differentiation and
integration, one can convert

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
= −k2

x − k2
y − k2

z

Then, together with the Fourier representation of the delta function, which is

δ(x) δ(y) δ(z) =
1

(2π)3

∞�

−∞

dkxdkydkz e
ikxx+ikyy+ikzz (35.1.4)

we convert (35.1.1) into

∞�

−∞

dkxdkydkz [k2
0 − k2

x − k2
y − k2

z ]φ̃(kx, ky, kz)e
ikxx+ikyy+ikzz (35.1.5)

= −
∞�

−∞

dkxdkydkz e
ikxx+ikyy+ikzz. (35.1.6)

Since the above is equal for all x, y, and z, we can Fourier inverse transform the above to get

φ̃(kx, ky, kz) =
−1

k2
0 − k2

x − k2
y − k2

z

. (35.1.7)

Consequently, we have

φ(x, y, z) =
−1

(2π)3

∞�

−∞

dk
eikxx+ikyy+ikzz

k2
0 − k2

x − k2
y − k2

z

. (35.1.8)
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Figure 35.1: The integration along the real axis is equal to the integration along C plus the
residue of the pole at (k2

0 − k2
x − k2

y)1/2, by invoking Jordan’s lemma.

In the above, if we examine the kz integral first, then the integrand has poles at kz =
±(k2

0 − k2
x − k2

y)1/2.1 Moreover, for real k0, and real values of kx and ky, these two poles
lie on the real axis, rendering the integral in (35.1.8) undefined. However, if a small loss is
assumed in k0 such that k0 = k′0 + ik′′0 , then the poles are off the real axis (see Figure 35.1),
and the integrals in (35.1.8) are well-defined. As we shall see, this is intimately related to
the uniqueness principle we have studied before. First, the reason is that φ(x, y, z) is not
strictly absolutely integrable for a lossless medium, and hence, its Fourier transform may not
exist [45]. Second, the introduction of a small loss also guarantees the radiation condition
and the uniqueness of the solution to (35.1.1), and therefore, the equality of (35.1.2) and
(35.1.8) [34].

Observe that in (35.1.8), when z > 0, the integrand is exponentially small when =m[kz]→
∞. Therefore, by Jordan’s lemma, the integration for kz over the contour C as shown in Figure
35.1 vanishes. Then, by Cauchy’s theorem, the integration over the Fourier inversion contour
on the real axis is the same as integrating over the pole singularity located at (k2

0−k2
x−k2

y)1/2,
yielding the residue of the pole (see Figure 35.1). Consequently, after doing the residue
evaluation, we have

φ(x, y, z) =
i

2(2π)2

∞�

−∞

dkxdky
eikxx+ikyy+ik′zz

k′z
, z > 0, (35.1.9)

where k′z = (k2
0 − k2

x − k2
y)1/2.

1In (35.1.8), the pole is located at k2
x + k2

y + k2
z = k2

0 . This equation describes a sphere in k space, known
as the Ewald’s sphere [190].
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Similarly, for z < 0, we can add a contour C in the lower-half plane that contributes to
zero to the integral, one can deform the contour to pick up the pole contribution. Hence, the
integral is equal to the pole contribution at k′z = −(k2

0 − k2
x − k2

y)1/2 (see Figure 35.1). As
such, the result for all z can be written as

φ(x, y, z) =
i

2(2π)2

∞�

−∞

dkxdky
eikxx+ikyy+ik′z|z|

k′z
, all z. (35.1.10)

By the uniqueness of the solution to the partial differential equation (35.1.1) satisfying
radiation condition at infinity, we can equate (35.1.2) and (35.1.10), yielding the identity

eik0r

r
=

i

2π

∞�

−∞

dkxdky
eikxx+ikyy+ikz|z|

kz
, (35.1.11)

where k2
x+k2

y+k2
z = k2

0, or kz = (k2
0−k2

x−k2
y)1/2. The above is known as the Weyl identity

(Weyl 1919). To ensure the radiation condition, we require that =m[kz] > 0 and <e[kz] > 0
over all values of kx and ky in the integration. Furthermore, Equation (35.1.11) could be
interpreted as an integral summation of plane waves propagating in all directions, including
evanescent waves. It is the plane-wave expansion of a spherical wave.

Figure 35.2: The wave is propagating for kρ vectors inside the disk, while the wave is evanes-
cent for kρ outside the disk.

One can also interpret the above as a 2D surface integral in the Fourier space over the kx
and ky variables. When k2

x+k2
y < k2

0, or inside a disk of radius k0, the waves are propagating



Sommerfeld Integral, Weyl Identity 353

waves. But for contributions outside this disk, the waves are evanescent (see Figure 35.2).
And the high Fourier (or spectral) components of the Fourier spectrum correspond to evanes-
cent waves. Since high spectral components, which are related to the evanescent waves, are
important for reconstructing the singularity of the Green’s function.

y
kρ

a
φ x

ρ

Figure 35.3: The kρ and the ρ vector on the xy plane.

In (35.1.11), we can write kρ = x̂kρ cosα + ŷkρ sinα, ρ = x̂ρ cosφ + ŷρ sinφ (see Figure
35.3), and dkxdky = kρdkρ dα. Then, kxx+ kyy = kρ · ρ = kρ cos(α− φ), and we have

eik0r

r
=

i

2π

∞�

0

kρdkρ

� 2π

0

dα
eikρρ cos(α−φ)+ikz|z|

kz
, (35.1.12)

where kz = (k2
0−k2

x−k2
y)1/2 = (k2

0−k2
ρ)1/2, where in cylindrical coordinates, in the kρ-space,

or the Fourier space, k2
ρ = k2

x + k2
y. Then, using the integral identity for Bessel functions

given by2

J0(kρρ) =
1

2π

2π�

0

dα eikρρ cos(α−φ), (35.1.13)

(35.1.12) becomes

eik0r

r
= i

∞�

0

dkρ
kρ
kz
J0(kρρ)eikz|z|. (35.1.14)

The above is also known as the Sommerfeld identity (Sommerfeld 1909 [192]; [177][p. 242]).
Its physical interpretation is that a spherical wave can be expanded as an integral summation
of conical waves or cylindrical waves in the ρ direction, times a plane wave in the z direction
over all wave numbers kρ. This wave is evanescent in the ±z direction when kρ > k0.

2See Chew [34], or Whitaker and Watson(1927) [191].
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By using the fact that J0(kρρ) = 1/2[H
(1)
0 (kρρ) + H

(2)
0 (kρρ)], and the reflection formula

that H
(1)
0 (eiπx) = −H(2)

0 (x), a variation of the above identity can be derived as

eik0r

r
=
i

2

∞�

−∞

dkρ
kρ
kz
H

(1)
0 (kρρ)eikz|z|. (35.1.15)

–k0
•

Im [kρ]

• +k0

Sommerfeld
Integration Path

Re [kρ]

Figure 35.4: Sommerfeld integration path.

Since H
(1)
0 (x) has a logarithmic branch-point singularity at x = 0,3 and kz = (k2

0 − k2
ρ)1/2

has algebraic branch-point singularities at kρ = ±k0, the integral in Equation (35.1.15) is
undefined unless we stipulate also the path of integration. Hence, a path of integration
adopted by Sommerfeld, which is even good for a lossless medium, is shown in Figure 35.4.
Because of the manner in which we have selected the reflection formula for Hankel functions,

i.e., H
(1)
0 (eiπx) = −H(2)

0 (x), the path of integration should be above the logarithmic branch-
point singularity at the origin.

35.1.2 Riemann Sheets and Branch Cuts

The function kz = (k2
0 − k2

ρ)1/2 in (35.1.14) and (35.1.15) are double-value functions because,
in taking the square root of a number, two values are possible. In particular, kz is a double-
value function of kρ. Consequently, for every point on a complex kρ plane in Figure 35.4,
there are two possible values of kz. Therefore, the integral (35.1.10) is undefined unless we
stipulate which of the two values of kz is adopted in performing the integration.

A multivalue function is denoted on a complex plane with the help of Riemann sheets
[34, 81]. For instance, a double-value function such as kz is assigned two Riemann sheets to
a single complex plane. On one of these Riemann sheets, kz assumes a value just opposite in
sign to the value on the other Riemann sheet. The correct sign for kz is to pick the square
root solution so that =m(kz) > 0. This will ensure a decaying wave from the source.

35.2 A Source on Top of a Layered Medium

It can be shown that plane waves reflecting from a layered medium can be decomposed into
TE-type plane waves, where Ez = 0, Hz 6= 0, and TM-type plane waves, where Hz = 0,

3H
(1)
0 (x) ∼ 2i

π
ln(x), see Chew [34][p. 14], or Abromawitz or Stegun [106].
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Ez 6= 0.4 One also sees how the field due to a point source can be expanded into plane waves
in Section 35.1.

In view of the above observations, when a point source is on top of a layered medium,
it is then best to decompose its field in terms of waves of TE-type and TM-type. Then,
the nonzero component of Ez characterizes TM waves, while the nonzero component of Hz

characterizes TE waves. Hence, given a field, its TM and TE components can be extracted
readily. Furthermore, if these TM and TE components are expanded in terms of plane waves,
their propagations in a layered medium can be studied easily.

The problem of a vertical electric dipole on top of a half space was first solved by Som-
merfeld (1909) [192] using Hertzian potentials, which are related to the z components of the
electromagnetic field. The work is later generalized to layered media, as discussed in the liter-
ature. Later, Kong (1972) [193] suggested the use of the z components of the electromagnetic
field instead of the Hertzian potentials.

35.2.1 Electric Dipole Fields

The E field in a homogeneous medium due to a point current source or a Hertzian dipole
directed in the α̂ direction, J = α̂I` δ(r), is derivable via the vector potential method or the
dyadic Green’s function approach. Then, using the dyadic Green’s function approach, or the
vector/scalar potential approach, the field due to a Hertzian dipole is given by

E(r) = iωµ

(
I +
∇∇
k2

)
· α̂I` e

ikr

4πr
, (35.2.1)

where I` is the current moment and k = ω
√
µε , the wave number of the homogeneous

medium. Furthermore, from ∇ × E = iωµH, the magnetic field due to a Hertzian dipole is
given by

H(r) = ∇× α̂I` e
ikr

4πr
. (35.2.2)

With the above fields, their TM and TE components can be extracted easily.

4Chew, Waves and Fields in Inhomogeneous Media [34]; Kong, Electromagnetic Wave Theory [31].
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(a) Vertical Electric Dipole (VED)

Region 1

Region i
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Figure 35.5: A vertical electric dipole over a layered medium.

A vertical electric dipole shown in Figure 35.5 has α̂ = ẑ; hence, the TM component of the
field is characterized by

Ez =
iωµI`

4πk2

(
k2 +

∂2

∂z2

)
eikr

r
, (35.2.3)

and the TE component of the field is characterized by

Hz = 0, (35.2.4)

implying the absence of the TE field.

Next, using the Sommerfeld identity (35.1.15) in the above, and after exchanging the order
of integration and differentiation, we have5

Ez =
−I`
8πωε

∞�

−∞

dkρ
k3
ρ

kz
H

(1)
0 (kρρ)eikz|z|, (35.2.5)

after noting that k2
ρ + k2

z = k2. Notice that now Equation (35.2.5) expands the z component
of the electric field in terms of cylindrical waves in the ρ direction and a plane wave in the z
direction. Since cylindrical waves actually are linear superpositions of plane waves, because
we can work backward from (35.1.15) to (35.1.11) to see this. As such, the integrand in
(35.2.5) in fact consists of a linear superposition of TM-type plane waves. The above is also
the primary field generated by the source.

Consequently, for a VED on top of a stratified medium as shown, the downgoing plane
wave from the point source will be reflected like TM waves with the generalized reflection

5By using (35.1.15) in (35.2.3), the ∂2/∂z2 operating on eikz |z| produces a Dirac delta function singularity.
Detail discussion on this can be found in the chapter on dyadic Green’s function in Chew, Waves and Fields
in Inhomogeneous Media [34].
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coefficient R̃TM12 . Hence, over a stratified medium, the field in region 1 can be written as

E1z =
−I`

8πωε1

∞�

−∞

dkρ
k3
ρ

k1z
H

(1)
0 (kρρ)

[
eik1z|z| + R̃TM12 eik1zz+2ik1zd1

]
, (35.2.6)

where k1z = (k2
1 − k2

ρ)
1
2 , and k2

1 = ω2µ1ε1, the wave number in region 1.
The phase-matching condition dictates that the transverse variation of the field in all the

regions must be the same. Consequently, in the i-th region, the solution becomes

εiEiz =
−I`
8πω

∞�

−∞

dkρ
k3
ρ

k1z
H

(1)
0 (kρρ)Ai

[
e−ikizz + R̃TMi,i+1e

ikizz+2ikizdi
]
. (35.2.7)

Notice that Equation (35.2.7) is now expressed in terms of εiEiz because εiEiz reflects and
transmits like Hiy, the transverse component of the magnetic field or TM waves.6 Therefore,

R̃TMi,i+1 and Ai could be obtained using the methods discussed in Chew, Waves and Fields in
Inhomogeneous Media.

This completes the derivation of the integral representation of the electric field everywhere
in the stratified medium. These integrals are known as Sommerfeld integrals. The case
when the source is embedded in a layered medium can be derived similarly

(b) Horizontal Electric Dipole (HED)

For a horizontal electric dipole pointing in the x direction, α̂ = x̂; hence, (35.2.1) and (35.2.2)
give the TM and the TE components as

Ez =
iI`

4πωε

∂2

∂z∂x

eikr

r
, (35.2.8)

Hz = − I`
4π

∂

∂y

eikr

r
. (35.2.9)

Then, with the Sommerfeld identity (35.1.15), we can expand the above as

Ez = ± iI`

8πωε
cosφ

∞�

−∞

dkρ k
2
ρH

(1)
1 (kρρ)eikz|z| (35.2.10)

Hz = i
I`

8π
sinφ

∞�

−∞

dkρ
k2
ρ

kz
H

(1)
1 (kρρ)eikz|z|. (35.2.11)

Now, Equation (35.2.10) represents the wave expansion of the TM field, while (35.2.11) rep-
resents the wave expansion of the TE field. Observe that because Ez is odd about z = 0 in
(35.2.10), the downgoing wave has an opposite sign from the upgoing wave. At this point,
the above are just the primary field generated by the source.

6See Chew, Waves and Fields in Inhomogeneous Media [34], p. 46, (2.1.6) and (2.1.7)
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On top of a stratified medium, the downgoing wave is reflected accordingly, depending on
its wave type. Consequently, we have

E1z =
iI`

8πωε1
cosφ

∞�

−∞

dkρ k
2
ρH

(1)
1 (kρρ)

[
±eik1z|z| − R̃TM12 eik1z(z+2d1)

]
, (35.2.12)

H1z =
iI`

8π
sinφ

∞�

−∞

dkρ
k2
ρ

k1z
H

(1)
1 (kρρ)

[
eik1z|z| + R̃TE12 e

ik1z(z+2d1)
]
. (35.2.13)

Notice that the negative sign in front of R̃TM12 in (35.2.12) follows because the downgoing
wave in the primary field has a negative sign.

35.2.2 Some Remarks

Even though we have arrived at the solutions of a point source on top of a layered medium
by heuristic arguments of plane waves propagating through layered media, they can also
be derived more rigorously. For example, Equation (35.2.6) can be arrived at by matching
boundary conditions at every interface. The reason why a more heuristic argument is still
valid is due to the completeness of Fourier transforms. It is best explained by putting a source
over a half space and a scalar problem.

We can expand the scalar field in the upper region as

Φ1(x, y, z) =

∞�

−∞

dkxdkyΦ̃1(kx, ky, z)e
ikxx+ikyy (35.2.14)

and the scalar field in the lower region as

Φ2(x, y, z) =

∞�

−∞

dkxdkyΦ̃2(kx, ky, z)e
ikxx+ikyy (35.2.15)

If we require that the two fields be equal to each other at z = 0, then we have

∞�

−∞

dkxdkyΦ̃1(kx, ky, z = 0)eikxx+ikyy =

∞�

−∞

dkxdkyΦ̃2(kx, ky, z = 0)eikxx+ikyy (35.2.16)

In order to remove the integral, and replace it with a simple scalar problem, one has to impose
the above equation for all x and y. Then the completeness of Fourier transform implies that7

Φ̃1(kx, ky, z = 0) = Φ̃2(kx, ky, z = 0) (35.2.17)

The above equation is much simpler than that in (35.2.16). In other words, due to the
completeness of Fourier transform, one can match a boundary condition spectral-component
by spectral-component. If the boundary condition is matched for all spectral components,
than (35.2.16) is also true.

7Or that we can perform a Fourier inversion on the above integrals.
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