Lecture 27

Array Antennas

27.1 Linear Array of Dipole Antennas

Antenna array can be designed so that the constructive and destructive interference in the far field can be used to steer the direction of radiation of the antenna, or the far-field radiation pattern of an antenna array. The relative phases of the array elements can be changed in time so that the beam of an array antenna can be steered in real time. This has important applications in, for example, air-traffic control. A simple linear dipole array is shown in Figure 27.1.

Figure 27.1: Schematics of a dipole array. To simplify the math, the far-field approximation can be used to find its far field.

First, without loss of generality, we assume that this is a linear array of Hertzian dipoles aligned on the x axis. The current can then be described mathematically as follows:

$$\mathbf{J}(\mathbf{r}') = \hat{z}Il[A_0\delta(x') + A_1\delta(x' - d_1) + A_2\delta(x' - d_2) + \cdots + A_{N-1}\delta(x' - d_{N-1})]\delta(y')\delta(z')$$
(27.1.1)

27.1.1 Far-Field Approximation

The vector potential on the xy-plane in the far field, using the sifting property of delta function, yield the following equation, to be

$$\mathbf{A}(\mathbf{r}) \cong \hat{z} \frac{\mu I l}{4\pi r} e^{-j\beta r} \iiint d\mathbf{r}' [A_0 \delta(x') + A_1 \delta(x' - d_1) + \cdots] \delta(y') \delta(z') e^{j\beta \mathbf{r}' \cdot \hat{r}} \\ = \hat{z} \frac{\mu I l}{4\pi r} e^{-j\beta r} [A_0 + A_1 e^{j\beta d_1 \cos \phi} + A_2 e^{j\beta d_2 \cos \phi} + \cdots + A_{N-1} e^{j\beta d_{N-1} \cos \phi}] \quad (27.1.2)$$

In the above, we have assumed that the observation point is on the xy plane, or that $\mathbf{r} = \boldsymbol{\rho} = \hat{x}x + \hat{y}y$. Thus, $\hat{r} = \hat{x}\cos\phi + \hat{y}\sin\phi$. Also, since the sources are aligned on the x axis, then $\mathbf{r}' = \hat{x}x'$, and $\mathbf{r}' \cdot \hat{r} = x'\cos\phi$. Consequently, $e^{j\beta\mathbf{r}'\cdot\hat{r}} = e^{j\beta x'\cos\phi}$.

If $d_n = nd$, and $A_n = e^{jn\psi}$, then the antenna array, which assumes a progressively increasing phase shift between different elements, is called a linear phase array. Thus, (27.1.2) in the above becomes

$$\mathbf{A}(\mathbf{r}) \cong \hat{z} \frac{\mu I l}{4\pi r} e^{-j\beta r} [1 + e^{j(\beta d\cos\phi + \psi)} + e^{j2(\beta d\cos\phi + \psi)} + \cdots + e^{j(N-1)(\beta d\cos\phi + \psi)}]$$
(27.1.3)

27.1.2 Radiation Pattern of an Array

The above (27.1.3) can be summed in closed form using

$$\sum_{n=0}^{N-1} x^n = \frac{1-x^N}{1-x} \tag{27.1.4}$$

Then in the far field,

$$\mathbf{A}(\mathbf{r}) \cong \hat{z} \frac{\mu I l}{4\pi r} e^{-j\beta r} \frac{1 - e^{jN(\beta d\cos\phi + \psi)}}{1 - e^{j(\beta d\cos\phi + \psi)}}$$
(27.1.5)

Ordinarily, as shown previously, $\mathbf{E} \approx -j\omega(\hat{\theta}A_{\theta} + \hat{\phi}A_{\phi})$. But since **A** is \hat{z} directed, $A_{\phi} = 0$. Furthermore, on the xy plane, $E_{\theta} \approx -j\omega A_{\theta} = j\omega A_z$. Therefore,

$$|E_{\theta}| = |E_{0}| \left| \frac{1 - e^{jN(\beta d\cos\phi + \psi)}}{1 - e^{j(\beta d\cos\phi + \psi)}} \right|, \quad \mathbf{r} \to \infty$$
$$= |E_{0}| \left| \frac{\sin\frac{N}{2}(\beta d\cos\phi + \psi)}{\sin\frac{1}{2}(\beta d\cos\phi + \psi)} \right|, \quad \mathbf{r} \to \infty$$
(27.1.6)

The factor multiplying $|E_0|$ above is also called the array factor. The above can be used to plot the far-field pattern of an antenna array.

Equation (27.1.6) has an array factor that is of the form $\frac{|\sin Nx|}{|\sin x|}$. This function appears in digital signal processing frequently, and is known as the digital sinc function. The reason why this is so is because the far field is proportional to the Fourier transform of the current. The

Array Antennas

current in this case a finite array of Hertzian dipole, which is a product of a box function and infinite array of Hertzian dipole. The Fourier transform of such a current, as is well known in digital signal processing, is the digital sinc.

Plots of $|\sin 3x|$ and $|\sin x|$ are shown as an example and the resulting $\frac{|\sin 3x|}{|\sin x|}$ is also shown in Figure 27.2. The function peaks when both the numerator and the denominator of the digital sinc vanish. This happens when $x = n\pi$ for integer n.

Figure 27.2: Plot of the digital sinc, $\frac{|\sin 3x|}{|\sin x|}$.

In equation (27.1.6), $x = \frac{1}{2}(\beta d \cos \phi + \psi)$. We notice that the **maximum** in (27.1.6) would occur if $x = n\pi$, or if

$$\beta d \cos \phi + \psi = 2n\pi, \qquad n = 0, \pm 1, \pm 2, \pm 3, \cdots$$
 (27.1.7)

The **zeros** or **nulls** will occur at $Nx = n\pi$, or

$$\beta d\cos\phi + \psi = \frac{2n\pi}{N}, \qquad n = \pm 1, \pm 2, \pm 3, \cdots, \quad n \neq mN$$
 (27.1.8)

For example,

Case I. $\psi = 0, \beta d = \pi$, principal maximum is at $\phi = \pm \frac{\pi}{2}$. If N = 5, nulls are at $\phi = \pm \cos^{-1}\left(\frac{2n}{5}\right)$, or $\phi = \pm 66.4^{\circ}, \pm 36.9^{\circ}, \pm 113.6^{\circ}, \pm 143.1^{\circ}$. The radiation pattern is seen to form lopes. Since $\psi = 0$, the radiated fields in the *y* direction are in phase and the peak of the radiation lope is in the *y* direction or the broadside direction. Hence, this is called a broadside array.

Figure 27.3: The radiation pattern of a three-element array. The broadside and endfire directions of the array is also labeled

Case II. $\psi = \pi, \beta d = \pi$, principal maximum is at $\phi = 0, \pi$. If N = 4, nulls are at $\phi = \pm \cos^{-1}(\frac{n}{2} - 1)$, or $\phi = \pm 120^{\circ}, \pm 90^{\circ}, \pm 60^{\circ}$. Since the sources are out of phase by 180°, and N = 4 is even, the radiation fields cancel each other in the broadside, but add in the x direction or the end-fire direction.

Array Antennas

Figure 27.4: By changing the phase of the linear array, the radiation pattern of the antenna array can be changed.

From the above examples, it is seen that the interference effects between the different antenna elements of a linear array focus the power in a given direction. We can use linear array to increase the directivity of antennas. Moreover, it is shown that the radiation patterns can be changed by adjusting the spacings of the elements as well as the phase shift between them. The idea of antenna array design is to make the main lobe of the pattern to be much higher than the side lobes so that the radiated power of the antenna is directed along the main lobe or lobes rather than the side lobes. So side-lobe level suppression is an important goal of designing a highly directive antenna design. Also, by changing the phase of the antenna elements in real time, the beam of the antenna can be steered in real time with no moving parts.

27.2 When is Far-Field Approximation Valid?

In making the far-field approximation in (27.1.2), it will be interesting to ponder when the far-field approximation is valid? That is, when we can approximate

$$e^{-j\beta|\mathbf{r}-\mathbf{r}'|} \approx e^{-j\beta r+j\beta \mathbf{r}'\cdot\hat{r}} \tag{27.2.1}$$

to arrive at (27.1.2). This is especially important because when we integrate over \mathbf{r}' , it can range over large values especially for a large array. In this case, \mathbf{r}' can be as large as (N-1)d.

To answer this question, we need to study the approximation in (27.2.1) more carefully. First, we have

$$|\mathbf{r} - \mathbf{r}'|^2 = (\mathbf{r} - \mathbf{r}') \cdot (\mathbf{r} - \mathbf{r}') = r^2 - 2\mathbf{r} \cdot \mathbf{r}' + {r'}^2$$
(27.2.2)

We can take the square root of the above to get

$$|\mathbf{r} - \mathbf{r}'| = r \left(1 - \frac{2\mathbf{r} \cdot \mathbf{r}'}{r^2} + \frac{{r'}^2}{r^2} \right)^{1/2}$$
(27.2.3)

Next, we use the Taylor series expansion to get, for small x, that

$$(1+x)^n \approx 1 + nx + \frac{n(n-1)}{2!}x^2 + \cdots$$
 (27.2.4)

or that

$$(1+x)^{1/2} \approx 1 + \frac{1}{2}x - \frac{1}{8}x^2 + \cdots$$
 (27.2.5)

We can apply this approximation by letting

$$x \doteq -\frac{2\mathbf{r} \cdot \mathbf{r}'}{r^2} + \frac{{r'}^2}{r^2}$$

To this end, we arrive at

$$|\mathbf{r} - \mathbf{r}'| \approx r \left[1 - \frac{\mathbf{r} \cdot \mathbf{r}'}{r^2} + \frac{1}{2} \frac{{r'}^2}{r^2} - \frac{1}{2} \left(\frac{\mathbf{r} \cdot \mathbf{r}'}{r^2} \right)^2 + \cdots \right]$$
(27.2.6)

In the above, we have not kept every terms of the x^2 term by assuming that $r'^2 \ll \mathbf{r}' \cdot \mathbf{r}$, and terms much smaller than the last term in (27.2.6) can be neglected.

We can multiply out the right-hand side of the above to further arrive at

$$|\mathbf{r} - \mathbf{r}'| \approx r - \frac{\mathbf{r} \cdot \mathbf{r}'}{r} + \frac{1}{2} \frac{{r'}^2}{r} - \frac{1}{2} \frac{(\mathbf{r} \cdot \mathbf{r}')^2}{r^3} + \cdots$$
$$= r - \hat{r} \cdot \mathbf{r}' + \frac{1}{2} \frac{{r'}^2}{r} - \frac{1}{2r} (\hat{r} \cdot \mathbf{r}')^2 + \cdots$$
(27.2.7)

The last two terms in the last line of (27.2.3) are of the same order. Moreover, their sum is bounded by $r'^2/(2r)$ since $\hat{r} \cdot \mathbf{r'}$ is always less than r'. Hence, the far field approximation is valid if

$$\beta \frac{r'^2}{2r} \ll 1 \tag{27.2.8}$$

In the above, β is involved because the approximation has to be valid in the exponent, namely $\exp(-j\beta |\mathbf{r} - \mathbf{r}'|)$. If (27.2.7) is valid, then

$$e^{j\beta \frac{r'^2}{2r}} \approx 1$$

and then, the first two terms on the right-hand side of (27.2.7) suffice to approximate the left-hand side.

Array Antennas

27.2.1 Rayleigh Distance

Figure 27.5: The right half of a Gaussian beam [74] displays the physics of the near field, the Fresnel zone, and the far zone. In the far zone, the field behaves like a spherical wave.

When a wave field leaves an aperture antenna, it can be approximately described by a Gaussian beam [74] (see Figure 27.5). Near to the antenna aperture, or the near zone, it is approximately a plane wave with wave fronts parallel to the aperture surface. Far from the antenna aperture, or in the far zone, the field behaves like a spherical wave, with its typical wave front. In between is the Fresnel zone.

Consequently, after using that $\beta = 2\pi/\lambda$, for the far-field approximation to be valid, we need (27.2.8), or that

$$r \gg \frac{\pi}{\lambda} {r'}^2 \tag{27.2.9}$$

If the aperture of the antenna is of radius W, then $r' < r_{\max}' \cong W$ and the far field approximation is valid if

$$r \gg \frac{\pi}{\lambda} W^2 = r_R \tag{27.2.10}$$

If r is larger than this distance, then an antenna beam behaves like a spherical wave and starts to diverge. This distance r_R is also known as the Rayleigh distance. After this distance, the wave from a finite size source resembles a spherical wave which is diverging in all directions. Also, notice that the shorter the wavelength λ , the larger is this distance. This also explains why a laser pointer works. A laser pointer light can be thought of radiation from a finite size source located at the aperture of the laser pointer. The laser pointer beam remains collimated for quite a distance, before it becomes a divergent beam or a beam with a spherical wave front. In some textbooks [31], it is common to define acceptable phase error to be $\pi/8$. The Rayleigh distance is the distance beyond which the phase error is below this value. When the phase error of $\pi/8$ is put on the right-hand side of (27.2.8), one gets

$$\beta \frac{{r'}^2}{2r} \approx \frac{\pi}{8} \tag{27.2.11}$$

Using the approximation, the Rayleigh distance is defined to be

$$r_R = \frac{2D^2}{\lambda} \tag{27.2.12}$$

where D = 2W is the diameter of the antenna aperture.

27.2.2 Near Zone, Fresnel Zone, and Far Zone

Therefore, when a source radiates, the radiation field is divided into the near zone, the Fresnel zone, and the far zone (also known as the radiation zone, or the Fraunhofer zone in optics). The Rayleigh distance is the demarcation boundary between the Fresnel zone and the far zone. The larger the aperture of an antenna array is, the further one has to be to reach the far zone of an antenna. This distance becomes larger too when the wavelength is short. In the far zone, the far field behaves like a spherical wave, and its radiation pattern is proportional to the Fourier transform of the current.

In some sources, like the Hertzian dipole, in the near zone, much reactive energy is stored in the electric field or the magnetic field near to the source. This near zone receives reactive power from the source, which corresponds to instantaneous power that flows from the source, but is return to the source after one time harmonic cycle. Hence, a Hertzian dipole has input impedance that looks like that of a capacitor, because much of the near field of this dipole is in the electric field.

The field in the far zone carries power that radiates to infinity. As a result, the field in the near zone decays rapidly, but the field in the far zone decays as 1/r for energy conservation.

Bibliography

- [1] J. A. Kong, *Theory of electromagnetic waves*. New York, Wiley-Interscience, 1975.
- [2] A. Einstein *et al.*, "On the electrodynamics of moving bodies," Annalen der Physik, vol. 17, no. 891, p. 50, 1905.
- [3] P. A. M. Dirac, "The quantum theory of the emission and absorption of radiation," Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.
- [4] R. J. Glauber, "Coherent and incoherent states of the radiation field," *Physical Review*, vol. 131, no. 6, p. 2766, 1963.
- [5] C.-N. Yang and R. L. Mills, "Conservation of isotopic spin and isotopic gauge invariance," *Physical review*, vol. 96, no. 1, p. 191, 1954.
- [6] G. t'Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.
- [7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation*. Princeton University Press, 2017.
- [8] F. Teixeira and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," *Journal of Electromagnetic Waves and Applications*, vol. 13, no. 5, pp. 665–686, 1999.
- [9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in computational electromagnetics. Artech House, Inc., 2001.
- [10] A. Volta, "On the electricity excited by the mere contact of conducting substances of different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S," *Philosophical transactions of the Royal Society of London*, no. 90, pp. 403–431, 1800.
- [11] A.-M. Ampère, Exposé méthodique des phénomènes électro-dynamiques, et des lois de ces phénomènes. Bachelier, 1823.
- [12] —, Mémoire sur la théorie mathématique des phénomènes électro-dynamiques uniquement déduite de l'expérience: dans lequel se trouvent réunis les Mémoires que M. Ampère a communiqués à l'Académie royale des Sciences, dans les séances des 4 et

26 décembre 1820, 10 juin 1822, 22 décembre 1823, 12 septembre et 21 novembre 1825. Bachelier, 1825.

- [13] B. Jones and M. Faraday, *The life and letters of Faraday*. Cambridge University Press, 2010, vol. 2.
- [14] G. Kirchhoff, "Ueber die auflösung der gleichungen, auf welche man bei der untersuchung der linearen vertheilung galvanischer ströme geführt wird," Annalen der Physik, vol. 148, no. 12, pp. 497–508, 1847.
- [15] L. Weinberg, "Kirchhoff's' third and fourth laws'," IRE Transactions on Circuit Theory, vol. 5, no. 1, pp. 8–30, 1958.
- [16] T. Standage, The Victorian Internet: The remarkable story of the telegraph and the nineteenth century's online pioneers. Phoenix, 1998.
- [17] J. C. Maxwell, "A dynamical theory of the electromagnetic field," *Philosophical trans*actions of the Royal Society of London, no. 155, pp. 459–512, 1865.
- [18] H. Hertz, "On the finite velocity of propagation of electromagnetic actions," *Electric Waves*, vol. 110, 1888.
- [19] M. Romer and I. B. Cohen, "Roemer and the first determination of the velocity of light (1676)," Isis, vol. 31, no. 2, pp. 327–379, 1940.
- [20] A. Arons and M. Peppard, "Einstein's proposal of the photon concept-a translation of the Annalen der Physik paper of 1905," *American Journal of Physics*, vol. 33, no. 5, pp. 367–374, 1965.
- [21] A. Pais, "Einstein and the quantum theory," *Reviews of Modern Physics*, vol. 51, no. 4, p. 863, 1979.
- [22] M. Planck, "On the law of distribution of energy in the normal spectrum," Annalen der physik, vol. 4, no. 553, p. 1, 1901.
- [23] Z. Peng, S. De Graaf, J. Tsai, and O. Astafiev, "Tuneable on-demand single-photon source in the microwave range," *Nature communications*, vol. 7, p. 12588, 2016.
- [24] B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson, and G. M. Whitesides, "New approaches to nanofabrication: molding, printing, and other techniques," *Chemical reviews*, vol. 105, no. 4, pp. 1171–1196, 2005.
- [25] J. S. Bell, "The debate on the significance of his contributions to the foundations of quantum mechanics, Bell's Theorem and the Foundations of Modern Physics (A. van der Merwe, F. Selleri, and G. Tarozzi, eds.)," 1992.
- [26] D. J. Griffiths and D. F. Schroeter, Introduction to quantum mechanics. Cambridge University Press, 2018.
- [27] C. Pickover, Archimedes to Hawking: Laws of science and the great minds behind them. Oxford University Press, 2008.

- [28] R. Resnick, J. Walker, and D. Halliday, Fundamentals of physics. John Wiley, 1988.
- [29] S. Ramo, J. R. Whinnery, and T. Duzer van, Fields and waves in communication electronics, Third Edition. John Wiley & Sons, Inc., 1995, also 1965, 1984.
- [30] J. L. De Lagrange, "Recherches d'arithmétique," Nouveaux Mémoires de l'Académie de Berlin, 1773.
- [31] J. A. Kong, *Electromagnetic Wave Theory*. EMW Publishing, 2008.
- [32] H. M. Schey, Div, grad, curl, and all that: an informal text on vector calculus. WW Norton New York, 2005.
- [33] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on physics, Vols. I, II, & III: The new millennium edition. Basic books, 2011, vol. 1,2,3.
- [34] W. C. Chew, Waves and fields in inhomogeneous media. IEEE Press, 1995, also 1990.
- [35] V. J. Katz, "The history of Stokes' theorem," Mathematics Magazine, vol. 52, no. 3, pp. 146–156, 1979.
- [36] W. K. Panofsky and M. Phillips, *Classical electricity and magnetism*. Courier Corporation, 2005.
- [37] T. Lancaster and S. J. Blundell, Quantum field theory for the gifted amateur. OUP Oxford, 2014.
- [38] W. C. Chew, "Fields and waves: Lecture notes for ECE 350 at UIUC," https://engineering.purdue.edu/wcchew/ece350.html, 1990.
- [39] C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I: Asymptotic methods and perturbation theory. Springer Science & Business Media, 2013.
- [40] J. M. Crowley, Fundamentals of applied electrostatics. Krieger Publishing Company, 1986.
- [41] C. Balanis, Advanced Engineering Electromagnetics. Hoboken, NJ, USA: Wiley, 2012.
- [42] J. D. Jackson, *Classical electrodynamics*. John Wiley & Sons, 1999.
- [43] R. Courant and D. Hilbert, Methods of Mathematical Physics: Partial Differential Equations. John Wiley & Sons, 2008.
- [44] L. Esaki and R. Tsu, "Superlattice and negative differential conductivity in semiconductors," *IBM Journal of Research and Development*, vol. 14, no. 1, pp. 61–65, 1970.
- [45] E. Kudeki and D. C. Munson, Analog Signals and Systems. Upper Saddle River, NJ, USA: Pearson Prentice Hall, 2009.
- [46] A. V. Oppenheim and R. W. Schafer, Discrete-time signal processing. Pearson Education, 2014.

- [47] R. F. Harrington, Time-harmonic electromagnetic fields. McGraw-Hill, 1961.
- [48] E. C. Jordan and K. G. Balmain, *Electromagnetic waves and radiating systems*. Prentice-Hall, 1968.
- [49] G. Agarwal, D. Pattanayak, and E. Wolf, "Electromagnetic fields in spatially dispersive media," *Physical Review B*, vol. 10, no. 4, p. 1447, 1974.
- [50] S. L. Chuang, *Physics of photonic devices*. John Wiley & Sons, 2012, vol. 80.
- [51] B. E. Saleh and M. C. Teich, Fundamentals of photonics. John Wiley & Sons, 2019.
- [52] M. Born and E. Wolf, *Principles of optics: electromagnetic theory of propagation, in*terference and diffraction of light. Elsevier, 2013.
- [53] R. W. Boyd, Nonlinear optics. Elsevier, 2003.
- [54] Y.-R. Shen, The principles of nonlinear optics. New York, Wiley-Interscience, 1984.
- [55] N. Bloembergen, Nonlinear optics. World Scientific, 1996.
- [56] P. C. Krause, O. Wasynczuk, and S. D. Sudhoff, Analysis of electric machinery. McGraw-Hill New York, 1986.
- [57] A. E. Fitzgerald, C. Kingsley, S. D. Umans, and B. James, *Electric machinery*. McGraw-Hill New York, 2003, vol. 5.
- [58] M. A. Brown and R. C. Semelka, MRI.: Basic Principles and Applications. John Wiley & Sons, 2011.
- [59] C. A. Balanis, Advanced engineering electromagnetics. John Wiley & Sons, 1999, also 1989.
- [60] Wikipedia, "Lorentz force," https://en.wikipedia.org/wiki/Lorentz_force/, accessed: 2019-09-06.
- [61] R. O. Dendy, Plasma physics: an introductory course. Cambridge University Press, 1995.
- [62] P. Sen and W. C. Chew, "The frequency dependent dielectric and conductivity response of sedimentary rocks," *Journal of microwave power*, vol. 18, no. 1, pp. 95–105, 1983.
- [63] D. A. Miller, Quantum Mechanics for Scientists and Engineers. Cambridge, UK: Cambridge University Press, 2008.
- [64] W. C. Chew, "Quantum mechanics made simple: Lecture notes for ECE 487 at UIUC," http://wcchew.ece.illinois.edu/chew/course/QMAll20161206.pdf, 2016.
- [65] B. G. Streetman and S. Banerjee, Solid state electronic devices. Prentice hall Englewood Cliffs, NJ, 1995.

- [66] Smithsonian, "This 1600-year-old goblet shows that the romans were nanotechnology pioneers," https://www.smithsonianmag.com/history/ this-1600-year-old-goblet-shows-that-the-romans-were-nanotechnology-pioneers-787224/, accessed: 2019-09-06.
- [67] K. G. Budden, Radio waves in the ionosphere. Cambridge University Press, 2009.
- [68] R. Fitzpatrick, *Plasma physics: an introduction*. CRC Press, 2014.
- [69] G. Strang, Introduction to linear algebra. Wellesley-Cambridge Press Wellesley, MA, 1993, vol. 3.
- [70] K. C. Yeh and C.-H. Liu, "Radio wave scintillations in the ionosphere," Proceedings of the IEEE, vol. 70, no. 4, pp. 324–360, 1982.
- [71] J. Kraus, *Electromagnetics*. McGraw-Hill, 1984, also 1953, 1973, 1981.
- [72] Wikipedia, "Circular polarization," https://en.wikipedia.org/wiki/Circular_polarization.
- [73] Q. Zhan, "Cylindrical vector beams: from mathematical concepts to applications," Advances in Optics and Photonics, vol. 1, no. 1, pp. 1–57, 2009.
- [74] H. Haus, Electromagnetic Noise and Quantum Optical Measurements, ser. Advanced Texts in Physics. Springer Berlin Heidelberg, 2000.
- [75] W. C. Chew, "Lectures on theory of microwave and optical waveguides, for ECE 531 at UIUC," https://engineering.purdue.edu/wcchew/course/tgwAll20160215.pdf, 2016.
- [76] L. Brillouin, Wave propagation and group velocity. Academic Press, 1960.
- [77] R. Plonsey and R. E. Collin, Principles and applications of electromagnetic fields. McGraw-Hill, 1961.
- [78] M. N. Sadiku, *Elements of electromagnetics*. Oxford University Press, 2014.
- [79] A. Wadhwa, A. L. Dal, and N. Malhotra, "Transmission media," https://www. slideshare.net/abhishekwadhwa786/transmission-media-9416228.
- [80] P. H. Smith, "Transmission line calculator," *Electronics*, vol. 12, no. 1, pp. 29–31, 1939.
- [81] F. B. Hildebrand, Advanced calculus for applications. Prentice-Hall, 1962.
- [82] J. Schutt-Aine, "Experiment02-coaxial transmission line measurement using slotted line," http://emlab.uiuc.edu/ece451/ECE451Lab02.pdf.
- [83] D. M. Pozar, E. J. K. Knapp, and J. B. Mead, "ECE 584 microwave engineering laboratory notebook," http://www.ecs.umass.edu/ece/ece584/ECE584_lab_manual.pdf, 2004.
- [84] R. E. Collin, Field theory of guided waves. McGraw-Hill, 1960.

- [85] Q. S. Liu, S. Sun, and W. C. Chew, "A potential-based integral equation method for low-frequency electromagnetic problems," *IEEE Transactions on Antennas and Propagation*, vol. 66, no. 3, pp. 1413–1426, 2018.
- [86] M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Pergamon, 1986, first edition 1959.
- [87] Wikipedia, "Snell's law," https://en.wikipedia.org/wiki/Snell's_law.
- [88] G. Tyras, Radiation and propagation of electromagnetic waves. Academic Press, 1969.
- [89] L. Brekhovskikh, Waves in layered media. Academic Press, 1980.
- [90] Scholarpedia, "Goos-hanchen effect," http://www.scholarpedia.org/article/ Goos-Hanchen_effect.
- [91] K. Kao and G. A. Hockham, "Dielectric-fibre surface waveguides for optical frequencies," in *Proceedings of the Institution of Electrical Engineers*, vol. 113, no. 7. IET, 1966, pp. 1151–1158.
- [92] E. Glytsis, "Slab waveguide fundamentals," http://users.ntua.gr/eglytsis/IO/Slab_ Waveguides_p.pdf, 2018.
- [93] Wikipedia, "Optical fiber," https://en.wikipedia.org/wiki/Optical_fiber.
- [94] Atlantic Cable, "1869 indo-european cable," https://atlantic-cable.com/Cables/ 1869IndoEur/index.htm.
- [95] Wikipedia, "Submarine communications cable," https://en.wikipedia.org/wiki/ Submarine_communications_cable.
- [96] D. Brewster, "On the laws which regulate the polarisation of light by reflexion from transparent bodies," *Philosophical Transactions of the Royal Society of London*, vol. 105, pp. 125–159, 1815.
- [97] Wikipedia, "Brewster's angle," https://en.wikipedia.org/wiki/Brewster's_angle.
- [98] H. Raether, "Surface plasmons on smooth surfaces," in Surface plasmons on smooth and rough surfaces and on gratings. Springer, 1988, pp. 4–39.
- [99] E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," *Zeitschrift für Naturforschung A*, vol. 23, no. 12, pp. 2135–2136, 1968.
- [100] Wikipedia, "Surface plasmon," https://en.wikipedia.org/wiki/Surface_plasmon.
- [101] Wikimedia, "Gaussian wave packet," https://commons.wikimedia.org/wiki/File: Gaussian_wave_packet.svg.
- [102] Wikipedia, "Charles K. Kao," https://en.wikipedia.org/wiki/Charles_K._Kao.
- [103] H. B. Callen and T. A. Welton, "Irreversibility and generalized noise," *Physical Review*, vol. 83, no. 1, p. 34, 1951.

- [104] R. Kubo, "The fluctuation-dissipation theorem," *Reports on progress in physics*, vol. 29, no. 1, p. 255, 1966.
- [105] C. Lee, S. Lee, and S. Chuang, "Plot of modal field distribution in rectangular and circular waveguides," *IEEE transactions on microwave theory and techniques*, vol. 33, no. 3, pp. 271–274, 1985.
- [106] W. C. Chew, Waves and Fields in Inhomogeneous Media. IEEE Press, 1996.
- [107] M. Abramowitz and I. A. Stegun, Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Courier Corporation, 1965, vol. 55.
- [108] —, "Handbook of mathematical functions: with formulas, graphs, and mathematical tables," http://people.math.sfu.ca/~cbm/aands/index.htm.
- [109] W. C. Chew, W. Sha, and Q. I. Dai, "Green's dyadic, spectral function, local density of states, and fluctuation dissipation theorem," arXiv preprint arXiv:1505.01586, 2015.
- [110] Wikipedia, "Very Large Array," https://en.wikipedia.org/wiki/Very_Large_Array.
- [111] C. A. Balanis and E. Holzman, "Circular waveguides," Encyclopedia of RF and Microwave Engineering, 2005.
- [112] M. Al-Hakkak and Y. Lo, "Circular waveguides with anisotropic walls," *Electronics Letters*, vol. 6, no. 24, pp. 786–789, 1970.
- [113] Wikipedia, "Horn Antenna," https://en.wikipedia.org/wiki/Horn_antenna.
- [114] P. Silvester and P. Benedek, "Microstrip discontinuity capacitances for right-angle bends, t junctions, and crossings," *IEEE Transactions on Microwave Theory and Techniques*, vol. 21, no. 5, pp. 341–346, 1973.
- [115] R. Garg and I. Bahl, "Microstrip discontinuities," International Journal of Electronics Theoretical and Experimental, vol. 45, no. 1, pp. 81–87, 1978.
- [116] P. Smith and E. Turner, "A bistable fabry-perot resonator," Applied Physics Letters, vol. 30, no. 6, pp. 280–281, 1977.
- [117] A. Yariv, Optical electronics. Saunders College Publ., 1991.
- [118] Wikipedia, "Klystron," https://en.wikipedia.org/wiki/Klystron.
- [119] —, "Magnetron," https://en.wikipedia.org/wiki/Cavity_magnetron.
- [120] —, "Absorption Wavemeter," https://en.wikipedia.org/wiki/Absorption_wavemeter.
- [121] W. C. Chew, M. S. Tong, and B. Hu, "Integral equation methods for electromagnetic and elastic waves," *Synthesis Lectures on Computational Electromagnetics*, vol. 3, no. 1, pp. 1–241, 2008.
- [122] A. D. Yaghjian, "Reflections on Maxwell's treatise," Progress In Electromagnetics Research, vol. 149, pp. 217–249, 2014.

- [123] L. Nagel and D. Pederson, "Simulation program with integrated circuit emphasis," in Midwest Symposium on Circuit Theory, 1973.
- [124] S. A. Schelkunoff and H. T. Friis, Antennas: theory and practice. Wiley New York, 1952, vol. 639.
- [125] H. G. Schantz, "A brief history of uwb antennas," IEEE Aerospace and Electronic Systems Magazine, vol. 19, no. 4, pp. 22–26, 2004.
- [126] E. Kudeki, "Fields and Waves," http://remote2.ece.illinois.edu/~erhan/FieldsWaves/ ECE350lectures.html.
- [127] Wikipedia, "Antenna Aperture," https://en.wikipedia.org/wiki/Antenna_aperture.
- [128] C. A. Balanis, Antenna theory: analysis and design. John Wiley & Sons, 2016.
- [129] R. W. P. King, G. S. Smith, M. Owens, and T. Wu, "Antennas in matter: Fundamentals, theory, and applications," NASA STI/Recon Technical Report A, vol. 81, 1981.
- [130] H. Yagi and S. Uda, "Projector of the sharpest beam of electric waves," Proceedings of the Imperial Academy, vol. 2, no. 2, pp. 49–52, 1926.
- [131] Wikipedia, "Yagi-Uda Antenna," https://en.wikipedia.org/wiki/Yagi-Uda_antenna.
- [132] Antenna-theory.com, "Slot Antenna," http://www.antenna-theory.com/antennas/ aperture/slot.php.
- [133] A. D. Olver and P. J. Clarricoats, Microwave horns and feeds. IET, 1994, vol. 39.
- [134] B. Thomas, "Design of corrugated conical horns," IEEE Transactions on Antennas and Propagation, vol. 26, no. 2, pp. 367–372, 1978.
- [135] P. J. B. Clarricoats and A. D. Olver, Corrugated horns for microwave antennas. IET, 1984, no. 18.
- [136] P. Gibson, "The vivaldi aerial," in 1979 9th European Microwave Conference. IEEE, 1979, pp. 101–105.
- [137] Wikipedia, "Vivaldi Antenna," https://en.wikipedia.org/wiki/Vivaldi_antenna.
- [138] —, "Cassegrain Antenna," https://en.wikipedia.org/wiki/Cassegrain_antenna.
- [139] —, "Cassegrain Reflector," https://en.wikipedia.org/wiki/Cassegrain_reflector.
- [140] W. A. Imbriale, S. S. Gao, and L. Boccia, Space antenna handbook. John Wiley & Sons, 2012.
- [141] J. A. Encinar, "Design of two-layer printed reflectarrays using patches of variable size," IEEE Transactions on Antennas and Propagation, vol. 49, no. 10, pp. 1403–1410, 2001.
- [142] D.-C. Chang and M.-C. Huang, "Microstrip reflectarray antenna with offset feed," *Electronics Letters*, vol. 28, no. 16, pp. 1489–1491, 1992.

- [143] G. Minatti, M. Faenzi, E. Martini, F. Caminita, P. De Vita, D. González-Ovejero, M. Sabbadini, and S. Maci, "Modulated metasurface antennas for space: Synthesis, analysis and realizations," *IEEE Transactions on Antennas and Propagation*, vol. 63, no. 4, pp. 1288–1300, 2014.
- [144] X. Gao, X. Han, W.-P. Cao, H. O. Li, H. F. Ma, and T. J. Cui, "Ultrawideband and high-efficiency linear polarization converter based on double v-shaped metasurface," *IEEE Transactions on Antennas and Propagation*, vol. 63, no. 8, pp. 3522–3530, 2015.
- [145] D. De Schweinitz and T. L. Frey Jr, "Artificial dielectric lens antenna," Nov. 13 2001, US Patent 6,317,092.
- [146] K.-L. Wong, "Planar antennas for wireless communications," Microwave Journal, vol. 46, no. 10, pp. 144–145, 2003.
- [147] H. Nakano, M. Yamazaki, and J. Yamauchi, "Electromagnetically coupled curl antenna," *Electronics Letters*, vol. 33, no. 12, pp. 1003–1004, 1997.
- [148] K. Lee, K. Luk, K.-F. Tong, S. Shum, T. Huynh, and R. Lee, "Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna," *IEE Proceedings-Microwaves, Antennas and Propagation*, vol. 144, no. 5, pp. 354–358, 1997.
- [149] K. Luk, C. Mak, Y. Chow, and K. Lee, "Broadband microstrip patch antenna," *Electronics letters*, vol. 34, no. 15, pp. 1442–1443, 1998.
- [150] M. Bolic, D. Simplot-Ryl, and I. Stojmenovic, *RFID systems: research trends and challenges*. John Wiley & Sons, 2010.
- [151] D. M. Dobkin, S. M. Weigand, and N. Iyer, "Segmented magnetic antennas for near-field UHF RFID," *Microwave Journal*, vol. 50, no. 6, p. 96, 2007.
- [152] Z. N. Chen, X. Qing, and H. L. Chung, "A universal UHF RFID reader antenna," *IEEE transactions on microwave theory and techniques*, vol. 57, no. 5, pp. 1275–1282, 2009.
- [153] C.-T. Chen, *Linear system theory and design*. Oxford University Press, Inc., 1998.
- [154] S. H. Schot, "Eighty years of Sommerfeld's radiation condition," *Historia mathematica*, vol. 19, no. 4, pp. 385–401, 1992.
- [155] A. Ishimaru, Electromagnetic wave propagation, radiation, and scattering from fundamentals to applications. Wiley Online Library, 2017, also 1991.
- [156] A. E. H. Love, "I. the integration of the equations of propagation of electric waves," *Philosophical Transactions of the Royal Society of London. Series A, Containing Papers* of a Mathematical or Physical Character, vol. 197, no. 287-299, pp. 1–45, 1901.
- [157] Wikipedia, "Christiaan Huygens," https://en.wikipedia.org/wiki/Christiaan_Huygens.
- [158] —, "George Green (mathematician)," https://en.wikipedia.org/wiki/George_Green_ (mathematician).

- [159] C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory. PA: International Textbook, Scranton, 1971.
- [160] —, Dyadic Green functions in electromagnetic theory. Institute of Electrical & Electronics Engineers (IEEE), 1994.
- [161] W. Franz, "Zur formulierung des huygensschen prinzips," Zeitschrift für Naturforschung A, vol. 3, no. 8-11, pp. 500–506, 1948.
- [162] J. A. Stratton, *Electromagnetic Theory*. McGraw-Hill Book Company, Inc., 1941.
- [163] J. D. Jackson, Classical Electrodynamics. John Wiley & Sons, 1962.
- [164] W. Meissner and R. Ochsenfeld, "Ein neuer effekt bei eintritt der supraleitfähigkeit," *Naturwissenschaften*, vol. 21, no. 44, pp. 787–788, 1933.
- [165] Wikipedia, "Superconductivity," https://en.wikipedia.org/wiki/Superconductivity.
- [166] D. Sievenpiper, L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "Highimpedance electromagnetic surfaces with a forbidden frequency band," *IEEE Transactions on Microwave Theory and techniques*, vol. 47, no. 11, pp. 2059–2074, 1999.