
Lecture 2

Maxwell’s Equations in
Differential Operator Form

2.1 Gauss’s Divergence Theorem

The divergence theorem is one of the most important theorems in vector calculus [29,31–33]
First, we will need to prove Gauss’s divergence theorem, namely, that:

˚
V

dV∇ ·D =

‹
S

D · dS (2.1.1)

In the above, ∇ ·D is defined as

∇ ·D = lim
∆V→0

‹
∆S

D · dS

∆V
(2.1.2)

and eventually, we will find an expression for it. We know that if ∆V ≈ 0 or small, then the
above,

∆V∇ ·D ≈
‹

∆S

D · dS (2.1.3)

First, we assume that a volume V has been discretized1 into a sum of small cuboids, where
the i-th cuboid has a volume of ∆Vi as shown in Figure 2.1. Then

V ≈
N∑
i=1

∆Vi (2.1.4)

1Other terms are “tesselated”, “meshed”, or “gridded”.
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16 Electromagnetic Field Theory

Figure 2.1: The discretization of a volume V into sum of small volumes ∆Vi each of which is
a small cuboid. Stair-casing error occurs near the boundary of the volume V but the error
diminishes as ∆Vi → 0.

Figure 2.2: Fluxes from adjacent cuboids cancel each other leaving only the fluxes at the
boundary that remain uncancelled. Please imagine that there is a third dimension of the
cuboids in this picture where it comes out of the paper.

Then from (2.1.2),

∆Vi∇ ·Di ≈
‹

∆Si

Di · dSi (2.1.5)
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By summing the above over all the cuboids, or over i, one gets∑
i

∆Vi∇ ·Di ≈
∑
i

‹
∆Si

Di · dSi ≈
‹
S

D · dS (2.1.6)

It is easily seen the the fluxes out of the inner surfaces of the cuboids cancel each other,
leaving only the fluxes flowing out of the cuboids at the edge of the volume V as explained
in Figure 2.2. The right-hand side of the above equation (2.1.6) becomes a surface integral
over the surface S except for the stair-casing approximation (see Figure 2.1). Moreover, this
approximation becomes increasingly good as ∆Vi → 0, or that the left-hand side becomes a
volume integral, and we have ˚

V

dV∇ ·D =

‹
S

D · dS (2.1.7)

The above is Gauss’s divergence theorem.
Next, we will derive the details of the definition embodied in (2.1.2). To this end, we

evaluate the numerator of the right-hand side carefully, in accordance to Figure 2.3.

Figure 2.3: Figure to illustrate the calculation of fluxes from a small cuboid where a corner
of the cuboid is located at (x0, y0, z0). There is a third z dimension of the cuboid not shown,
and coming out of the paper. Hence, this cuboid, unlike as shown in the figure, has six faces.

Accounting for the fluxes going through all the six faces, assigning the appropriate signs
in accordance with the fluxes leaving and entering the cuboid, one arrives at‹

∆S

D · dS ≈ −Dx(x0, y0, z0)∆y∆z + Dx(x0 + ∆x, y0, z0)∆y∆z

−Dy(x0, y0, z0)∆x∆z + Dy(x0, y0 + ∆y, z0)∆x∆z

−Dz(x0, y0, z0)∆x∆y + Dz(x0, y0, z0 + ∆z)∆x∆y (2.1.8)
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Factoring out the volume of the cuboid ∆V = ∆x∆y∆z in the above, one gets

‹
∆S

D · dS ≈ ∆V {[Dx(x0 + ∆x, . . .)−Dx(x0, . . .)] /∆x

+ [Dy(. . . , y0 + ∆y, . . .)−Dy(. . . , y0, . . .)] /∆y

+ [Dz(. . . , z0 + ∆z)−Dz(. . . , z0)] /∆z} (2.1.9)

Or that

‚
D · dS
∆V

≈ ∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
(2.1.10)

In the limit when ∆V → 0, then

lim
∆V→0

‚
D · dS
∆V

=
∂Dx

∂x
+
∂Dy

∂y
+
∂Dz

∂z
= ∇ ·D (2.1.11)

where

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(2.1.12)

D = x̂Dx + ŷDy + ẑDz (2.1.13)

The divergence operator ∇· has its complicated representations in cylindrical and spherical
coordinates, a subject that we would not delve into in this course. But they are best looked
up at the back of some textbooks on electromagnetics.

Consequently, one gets Gauss’s divergence theorem given by

˚
V

dV∇ ·D =

‹
S

D · dS (2.1.14)

2.1.1 Gauss’s Law in Differential Operator Form

By further using Gauss’s or Coulomb’s law implies that

‹
S

D · dS = Q =

˚
dV % (2.1.15)

which is equivalent to

˚
V

dV∇ ·D =

˚
V

dV % (2.1.16)

When V → 0, we arrive at the pointwise relationship, a relationship at a point in space:

∇ ·D = % (2.1.17)
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2.1.2 Physical Meaning of Divergence Operator

The physical meaning of divergence is that if∇·D 6= 0 at a point in space, it implies that there
are fluxes oozing or exuding from that point in space [34]. On the other hand, if ∇ ·D = 0,
if implies no flux oozing out from that point in space. In other words, whatever flux that
goes into the point must come out of it. The flux is termed divergence free. Thus, ∇ ·D is a
measure of how much sources or sinks exists for the flux at a point. The sum of these sources
or sinks gives the amount of flux leaving or entering the surface that surrounds the sources
or sinks.

Moreover, if one were to integrate a divergence-free flux over a volume V , and invoking
Gauss’s divergence theorem, one gets ‹

S

D · dS = 0 (2.1.18)

In such a scenerio, whatever flux that enters the surface S must leave it. In other words, what
comes in must go out of the volume V , or that flux is conserved. This is true of incompressible
fluid flow, electric flux flow in a source free region, as well as magnetic flux flow, where the
flux is conserved.

Figure 2.4: In an incompressible flux flow, flux is conserved: whatever flux that enters a
volume V must leave the volume V .

2.1.3 Example

If D = (2y2 + z)x̂+ 4xyŷ + xẑ, find:

1. Volume charge density ρv at (−1, 0, 3).

2. Electric flux through the cube defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

3. Total charge enclosed by the cube.
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2.2 Stokes’s Theorem

The mathematical description of fluid flow was well established before the establishment of
electromagnetic theory [35]. Hence, much mathematical description of electromagnetic theory
uses the language of fluid. In mathematical notations, Stokes’s theorem is

˛
C

E · dl =

¨
S

∇×E · dS (2.2.1)

In the above, the contour C is a closed contour, whereas the surface S is not closed.2

First, applying Stokes’s theorem to a small surface ∆S, we define a curl operator 3 ∇×
at a point to be

∇×E · n̂ = lim
∆S→0

˛
∆C

E · dl

∆S
(2.2.2)

Figure 2.5: In proving Stokes’s theorem, a closed contour C is assumed to enclose an open
surface S. Then the surface S is tessellated into sum of small rects as shown. Stair-casing
error vanishes in the limit when the rects are made vanishingly small.

First, the surface S enclosed by C is tessellated into sum of small rects (rectangles).
Stokes’s theorem is then applied to one of these small rects to arrive at

˛
∆Ci

Ei · dli = (∇×Ei) ·∆Si (2.2.3)

2In other words, C has no boundary whereas S has boundary. A closed surface S has no boundary like
when we were proving Gauss’s divergence theorem previously.

3Sometimes called a rotation operator.
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Next, we sum the above equation over i or over all the small rects to arrive at∑
i

˛
∆Ci

Ei · dli =
∑
i

∇×Ei ·∆Si (2.2.4)

Again, on the left-hand side of the above, all the contour integrals over the small rects cancel
each other internal to S save for those on the boundary. In the limit when ∆Si → 0, the
left-hand side becomes a contour integral over the larger contour C, and the right-hand side
becomes a surface integral over S. One arrives at Stokes’s theorem, which is

˛
C

E · dl =

¨
S

(∇×E) · dS (2.2.5)

Figure 2.6: We approximate the integration over a small rect using this figure. There are four
edges to this small rect.

Next, we need to prove the details of definition (2.2.2). Performing the integral over the
small rect, one gets

˛
∆C

E · dl = Ex(x0, y0, z0)∆x+ Ey(x0 + ∆x, y0, z0)∆y

− Ex(x0, y0 + ∆y, z0)∆x− Ey(x0, y0, z0)∆y

= ∆x∆y

(
Ex(x0, y0, z0)

∆y
− Ex(x0, y0 + ∆y, z0)

∆y

−Ey(x0, y0, z0)

∆x
+
Ey(x0, y0 + ∆y, z0)

∆x

)
(2.2.6)
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We have picked the normal to the incremental surface ∆S to be ẑ in the above example,
and hence, the above gives rise to the identity that

lim
∆S→0

¸
∆S

E · dl
∆S

=
∂

∂x
Ey −

∂

∂y
Ex = ẑ · ∇ ×E (2.2.7)

Picking different ∆S with different orientations and normals n̂, one gets

∂

∂y
Ez −

∂

∂z
Ey = x̂ · ∇ ×E (2.2.8)

∂

∂z
Ex −

∂

∂x
Ez = ŷ · ∇ ×E (2.2.9)

Consequently, one gets

∇×E = x̂

(
∂

∂y
Ez −

∂

∂z
Ey

)
+ ŷ

(
∂

∂z
Ex −

∂

∂x
Ez

)
+ẑ

(
∂

∂x
Ey −

∂

∂y
Ex

)
(2.2.10)

where

∇ = x̂
∂

∂x
+ ŷ

∂

∂y
+ ẑ

∂

∂z
(2.2.11)

2.2.1 Faraday’s Law in Differential Operator Form

Faraday’s law is experimentally motivated. Michael Faraday (1791-1867) was an extraordi-
nary experimentalist who documented this law with meticulous care. It was only decades
later that a mathematical description of this law was arrived at.

Faraday’s law in integral form is given by4

˛
C

E · dl = − d

dt

¨
S

B · dS (2.2.12)

Assuming that the surface S is not time varying, one can take the time derivative into the
integrand and write the above as

˛
C

E · dl = −
¨
S

∂

∂t
B · dS (2.2.13)

One can replace the left-hand side with the use of Stokes’ theorem to arrive at

¨
S

∇×E · dS = −
¨
S

∂

∂t
B · dS (2.2.14)

4Faraday’s law is experimentally motivated. Michael Faraday (1791-1867) was an extraordinary exper-
imentalist who documented this law with meticulous care. It was only decades later that a mathematical
description of this law was arrived at.
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The normal of the surface element dS can be pointing in an arbitrary direction, and the
surface S can be very small. Then the integral can be removed, and one has

∇×E = − ∂

∂t
B (2.2.15)

The above is Faraday’s law in differential operator form.

In the static limit is

∇×E = 0 (2.2.16)

2.2.2 Physical Meaning of Curl Operator

The curl operator ∇× is a measure of the rotation or the circulation of a field at a point in
space. On the other hand,

¸
∆C

E · dl is a measure of the circulation of the field E around
the loop formed by C. Again, the curl operator has its complicated representations in other
coordinate systems, a subject that will not be discussed in detail here.

It is to be noted that our proof of the Stokes’s theorem is for a flat open surface S, and not
for a general curved open surface. Since all curved surfaces can be tessellated into a union of
flat triangular surfaces according to the tiling theorem, the generalization of the above proof
to curved surface is straightforward. An example of such a triangulation of a curved surface
into a union of triangular surfaces is shown in Figure 2.7.

Figure 2.7: An arbitrary curved surface can be triangulated with flat triangular patches. The
triangulation can be made arbitrarily accurate by making the patches arbitrarily small.

2.2.3 Example

Suppose E = x̂3y + ŷx, calculate

ˆ
E · dl along a straight line in the x-y plane joining (0,0)

to (3,1).
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2.3 Maxwell’s Equations in Differential Operator Form

With the use of Gauss’ divergence theorem and Stokes’ theorem, Maxwell’s equations can be
written more elegantly in differential operator forms. They are:

∇×E = −∂B

∂t
(2.3.1)

∇×H =
∂D

∂t
+ J (2.3.2)

∇ ·D = % (2.3.3)

∇ ·B = 0 (2.3.4)

These equations are point-wise relations as they relate field values at a given point in space.
Moreover, they are not independent of each other. For instance, one can take the divergence
of the first equation (2.3.1), making use of the vector identity that ∇ · ∇ ×E = 0, one gets

−∂∇ ·B
∂t

= 0→ ∇ ·B = constant (2.3.5)

This constant corresponds to magnetic charges, and since they have not been experimentally
observed, one can set the constant to zero. Thus the fourth of Maxwell’s equations, (2.3.4),
follows from the first (2.3.1).

Similarly, by taking the divergence of the second equation (2.3.2), and making use of the
current continuity equation that

∇ · J +
∂%

∂t
= 0 (2.3.6)

one can obtain the second last equation (2.3.3). Notice that in (2.3.3), the charge density %
can be time-varying, whereas in the previous lecture, we have “derived” this equation from
Coulomb’s law using electrostatic theory.

The above logic follows if ∂/∂t 6= 0, and is not valid for static case. In other words, for
statics, the third and the fourth equations are not derivable from the first two. Hence all
four Maxwell’s equations are needed for static problems. For electrodynamic problems, only
solving the first two suffices.

Something is amiss in the above. If J is known, then solving the first two equations implies
solving for four vector unknowns, E,H,B,D, which has 12 scalar unknowns. But there are
only two vector equations or 6 scalar equations in the first two equations. Thus we need more
equations. These are provide by the constitutive relations that we shall discuss next.



Bibliography

[1] J. A. Kong, “Theory of electromagnetic waves,” New York, Wiley-Interscience, 1975.
348 p., 1975.

[2] A. Einstein et al., “On the electrodynamics of moving bodies,” Annalen der Physik,
vol. 17, no. 891, p. 50, 1905.

[3] P. A. M. Dirac, “The quantum theory of the emission and absorption of radiation,” Pro-
ceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical
and Physical Character, vol. 114, no. 767, pp. 243–265, 1927.

[4] R. J. Glauber, “Coherent and incoherent states of the radiation field,” Physical Review,
vol. 131, no. 6, p. 2766, 1963.

[5] C.-N. Yang and R. L. Mills, “Conservation of isotopic spin and isotopic gauge invariance,”
Physical review, vol. 96, no. 1, p. 191, 1954.

[6] G. t’Hooft, 50 years of Yang-Mills theory. World Scientific, 2005.

[7] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation. Princeton University
Press, 2017.

[8] F. Teixeira and W. C. Chew, “Differential forms, metrics, and the reflectionless ab-
sorption of electromagnetic waves,” Journal of Electromagnetic Waves and Applications,
vol. 13, no. 5, pp. 665–686, 1999.

[9] W. C. Chew, E. Michielssen, J.-M. Jin, and J. Song, Fast and efficient algorithms in
computational electromagnetics. Artech House, Inc., 2001.

[10] A. Volta, “On the electricity excited by the mere contact of conducting substances of
different kinds. in a letter from Mr. Alexander Volta, FRS Professor of Natural Philos-
ophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. KBPR S,”
Philosophical transactions of the Royal Society of London, no. 90, pp. 403–431, 1800.
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