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In this lecture, we will cover the following topics:

• Quantum Theory of Light

– Historical Background

– Connecting Electromagnetic Oscillation to Simple Pendulum

– Hamiltonian Mechanics

– Schrodinger Equation

– Some Quantum Interpretation–A Preview
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• M. Fox, Quantum Optics: An Introduction.
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1 Quantum Theory of Light

1.1 Historical Background

Quantum theory is a major intellectual achievement of the twentieth century,
even though we are still discovering new knowledge in it. Several major experi-
mental findings led to the revelation of quantum theory or quantum mechanics
of nature. In nature, we know that many things are not infinitely divisible.
Matter is not infinitely divisible as vindicated by the atomic theory of John
Dalton (1766-1844). So fluid is not infinitely divisible: as when water is divided
into smaller pieces, we will eventually arrive at water molecule, H2O, which is
the fundamental building block of water.

In turns out that electromagnetic energy is not infinitely divisible either.
The electromagnetic radiation out of a heated cavity would obey a very dif-
ferent spectrum if electromagnetic energy is infinitely divisible. In order to
fit experimental observation of radiation from a heated electromagnetic cavity,
Max Planck (1900s) proposed that electromagnetic energy comes in packets or
is quantized. Each packet of energy or a quantum of energy E is associated
with the frequency of electromagnetic wave, namely

E = ~ω = ~2πf = hf (1.1)

where ~ is now known as the Planck constant ~ = h/2π = 6.626 × 10−34 J·s
(Joule-second). Since ~ is very small, this packet of energy is very small unless
ω is large. So it is no surprise that the quantization of electromagnetic field is
first associated with light, a very high frequency electromagnetic radiation.

The second experimental evidence that light is quantized is the photo-electric
effect. It was found that matter emitted electron when light shined on it. First,
the light frequency has to correspond to the “resonant” frequency of the atom.
Second, the number of electrons emitted is proportional to the number of packets
of energy ~ω that the light carries. This was a clear indication that light energy
traveled in packets or quanta.

That light is a wave has been demonstrated by Newton’s ring effect in the
eighteenth century (1717) (see Figure 1). In 1801, Thomas Young demonstrated
the double slit experiment that further confirmed the wave nature of light.

Then one has to accept that light is both a particle, called a photon, carrying
a quantum of energy with momentum, as well as a particle endowed with wave-
like behavior. This is called wave-particle duality.
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Figure 1: Courtesy of http://www.iiserpune.ac.in/∼bhasbapat/phy221 files

Figure 2: Courtesy of Shmoop.
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This concept was not new to quantum theory as electrons were known to
behave both like a particle and a wave. The particle nature of an electron
was confirmed by the measurement of its charge by Millikan in 1913 in his oil-
drop experiment. The double slit experiment for electron was done in 1927 by
Davison and Germer, indicating that an electron is both a particle and a wave.
In 1924, De Broglie (Louis Victor Pierre Raymond de Broglie), suggested that
there is a wave associated with an electron with momentum p such that

p = ~k (1.2)

where k = 2π/λ, the wavenumber. All this knowledge gave hint to the quantum
theorists of that era to come up with a new way to describe nature.

Classically, particles like an electron moves through space obeying Newton’s
law of motion first established in 1687. Old ways of describing particle mo-
tion were known as classical mechanics, and the new way of describing particle
motion is known as quantum mechanics. Quantum mechanics is very much mo-
tivated by a branch of classical mechanics called Hamiltonian mechanics. We
will first use Hamiltonian mechanics to study a simple pendulum and connect
it with electromagnetic oscillations.

1.2 Connecting Electromagnetic Oscillation to Simple Pen-
dulum

The quantization of electromagnetic field theory was started by Dirac in 1927.
In the beginning, it was called quantum electrodynamics important for under-
standing particle physics phenomena. Later on, it became important in quan-
tum optics where quantum effects in electromagnetic technologies first emerged.
Now, microwave photons are measurable and are important in quantum com-
puters. Hence, quantum effects are important in the microwave regime as well.

The cavity modes in electromagnetics are similar to the oscillation of a pen-
dulum. To understand the quantization of electromagnetic field, we start by
connecting these cavity modes to a simple pendulum. It is to be noted that
fundamentally, electromagnetic oscillation exists because of displacement cur-
rent. Displacement current exists even in vacuum because vacuum is polarizable,
namely that D = εE. Furthermore, displacement current exists because of the
∂D/∂t term in the generalized Ampere’s law added by Maxwell, namely,

∇×H =
∂D

∂t
+ J (1.3)

Together with Faraday’s law that

∇×E = −∂B
∂t

(1.4)

(1.3) and (1.4) together allow for the existence of wave. The coupling between
the two equations gives rise to the “springiness” of electromagnetic fields.
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Wave exists due to the existence of coupled harmonic oscillators, and at a
fundamental level, these harmonic oscillators are electron-positron (e-p) pairs.
The fact that they are coupled allow waves to propagate through space, and
even in vacuum.

Figure 3:

We can start by looking at a one dimensional cavity formed by two PEC
plates as shown in Figure 3. Assume source-free Maxwell’s equations in between
the plate and letting E = x̂Ex, H = ŷHy, then (1.3) and (1.4) become

∂

∂z
Hy = −ε ∂

∂t
Ex (1.5)

∂

∂z
Ex = −µ ∂

∂t
Hy (1.6)

The above are similar to the telegrapher’s equations. We can combine them to
arrive at

∂2

∂z2
Ex = µε

∂2

∂t2
Ex (1.7)

We look for a cavity mode solution, which should be a standing wave in this
case. We let

Ex(z, t) = E0(t) sin(klz) (1.8)

In order to satisfy the boundary conditions at z = 0 and z = L, one deduces
that

kl =
lπ

L
, l = 1, 2, 3, . . . (1.9)
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Then,

∂2Ex

∂z2
= −k2l Ex (1.10)

Using this back in (1.7), one arrives at

−k2l Ex = µε
∂2Ex

∂t2
(1.11)

Now using (1.8) in the above, and removing the space dependence, one gets

−k2l E0(t) = µε
∂2E0(t)

∂t2
(1.12)

The general solution for the above equation is that

E0(t) = E0 cos(ωlt+ ψ) (1.13)

Since kl = ωl/c, the above solution can only exist for discrete frequencies or
that

ωl =
lπ

L
c, l = 1, 2, 3, . . . (1.14)

These are resonant modes of the 1D cavity with discrete resonant frequencies
ωl.

They can be thought of as the collective oscillations of coupled harmonic
oscillators. At the fundamental level, these oscillations are oscillators made by
electron-positron pairs. But macroscopically, their collective resonances mani-
fest themselves as giving rise to infinitely many electromagnetic cavity modes.

Figure 4:

The resonance between two parallel PEC plates is similar to the resonance
of a transmission line of length L shorted at both ends. One can see that the
resonance of a shorted transmission line is similar to the coupling of infnitely
many LC tank circuits. To see this, as shown in Figure 4, we start with a
single LC tank circuit as a simple harmonic oscillator with only one resonant
frequency. When two LC tank circuits are coupled to each other, they will have
two resonant frequencies. For N of them, they will have N resonant frequencies.
For a continuum of them, they will be infinitely many resonant frequencies or
modes as indicated by (1.9).
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For a rectangular cavity in 3D of dimensiont a×b×L, we will have infinitely
many modes such that(mπ

a

)2
+
(nπ
b

)2
+

(
lπ

L

)2

= ω2
mnl/c

2 (1.15)

where ωmnl is the resonant frequency of the mnl mode. These modes can
be thought of as the collective resonant frequencies of the coupled harmonic
oscillators formed by electron-positron pairs at the fundamental level.

What is more important is that the resonance of each of these modes is
similar to the resonance of a simple pendulum or a simple harmonic oscillator.
For a fixed point in space, the field due to this oscillation is similar to the
oscillation of a simple pendulum.

As we have seen in the Drude-Lorentz-Sommerfeld mode, for a particle of
mass m attached to a spring connected to a wall, where the restoring force is
like Hooke’s law, the equation of motion by Newton’s law is

m
d2x

dt2
+ κx = 0 (1.16)

where κ is the spring constant, and we assume that the oscillator is not driven
by an external force, but is in natural or free oscillation. By letting1

x = x0e
−iωt (1.17)

the above becomes

−mω2x0 + κx0 = 0 (1.18)

Again, a non-trivial solution is possible only at the resonant frequency of the
oscillator or that when ω = ω0 where

ω0 =

√
κ

m
(1.19)

2 Hamiltonian Mechanics

Equation (1.16) can be derived by Newton’s law but it can also be derived
via Hamiltonian mechanics. Since Hamiltonian mechanics motivates quantum
mechanics, we will look at the Hamiltonian mechanics view of the equation of
motion (EOM) of a simple pendulum given by (1.16).

Hamiltonian mechanics, developed by Hamilton (1805-1895), is motivated
by energy conservation. The Hamiltonian H of a system is given by its total
energy, namely that

H = T + V (2.1)

1For this part of the lecture, we will switch to using exp(−iωt) time convention as is
commonly used in optics and physics literatures.
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where T is the kinetic energy and V is the potential energy of the system.
For a simple pendulum, the kinetic energy is given by

T =
1

2
mv2 =

1

2m
m2v2 =

p2

2m
(2.2)

where p = mv is the momentum of the particle. The potential energy, assuming
that the particle is attached to a spring with spring constant κ, is given by

V =
1

2
κx2 =

1

2
mω2

0x
2 (2.3)

Hence, the Hamiltonian is given by

H = T + V =
p2

2m
+

1

2
mω2

0x
2 (2.4)

At any instant of time t, we assume that p(t) = mv(t) = m d
dtx(t) is independent

of x(t).2 In other words, they can vary independently of each other. But p(t)
and x(t) have to time evolve to conserve energy to keep H, the total energy,
constant or independent of time. In other words,

d

dt
H [p(t), x(t)] = 0 =

dp

dt

∂H

∂p
+
dx

dt

∂H

∂x
(2.5)

Therefore, the Hamilton equations of motion are derived to be3

dp

dt
= −∂H

∂x
,

dx

dt
=
∂H

∂p
(2.6)

From (2.4) we gather that

∂H

∂x
= mω2

0x,
∂H

∂p
=

p

m
(2.7)

Applying (2.6), we have4

dx

dt
=

p

m
,

dp

dt
= −mω2

0x (2.8)

Combining the two equations in (2.8) above, we have

m
d2x

dt2
= −mω2

0x = −κx (2.9)

which is also derivable by Newton’s law.

2p(t) ane x(t) are termed conjugate variables in many textbooks.
3Note that the Hamilton equations are determined to within a multiplicative constant, be-

cause one has not stipulated the connection between space and time, or we have not calibrated
our clock.

4We can also calibrate our clock here so that it agrees with our definition of momentum in
the ensuing equation.
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A typical harmonic oscillator solution to (2.9) is

x(t) = x0 sin(ω0t+ ψ) (2.10)

Hence

H =
1

2
ω2
0x

2
0 cos2(ω0t+ ψ) +

1

2
mω2

0x
2
0 sin2(ω0t+ ψ)

=
1

2
mω2

0x
2
0 = E (2.11)

And the total energy E very much depends on the amplitude x0 of the oscilla-
tion.

3 Schrodinger Equation (1925)

Having seen the Hamiltonian mechanics for describing a pendulum, we shall next
see the quantum mechanics description of the same pendulum: In other words,
we will look at a quantum pendulum. To this end, we will invoke Schrodinger
equation.

Figure 5: Schematic representation of the randomness of measured electric field
(Courtesy of Kira and Koch).

Schrodinger equation cannot be derived just as in the case Maxwell’s equa-
tions. It is a wonderful result of a postulate and a guessing game based on
experimental observations. Hamiltonian mechanics says that

H =
p2

2m
+

1

2
mω2

0x
2 = E (3.1)
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where E is the total energy of the oscillator, or pendulum. In classical me-
chanics, the position x of the particle associated with the pendulum is known
with great certainty. But in the quantum world, this position x of the quantum
partilce is uncertain and is fuzzy as shown in Figure 5.

To build this uncertainty into a quantum harmonic oscillator, we have to
look at it from the quantum world. The position of the particle is described by
a wave function,5 which makes the location of the particle uncertain. To this
end, Schrodinger proposed his equation. He was very much motivated by the
experimental revelation then. Equation (3.1) can be written more suggestively
as

~2k2

2m
+

1

2
mω2

0x
2 = ~ω (3.2)

To add more depth to the above equation, one lets the above become an operator
equation that operates on a wave function ψ(x, t) so that

− ~2

2m

∂2

∂x2
ψ(x, t) +

1

2
mω2

0x
2ψ(x, t) = i~

∂

∂t
ψ(x, t) (3.3)

If the wave function is of the form

ψ(x, t) ∼ eikx−iωt (3.4)

then upon substituting (3.4) into (3.3), we retrieve (3.2).
Equation (3.3) is Schrodinger equation in one dimension for the quantum

version of the simple harmonic oscillator. In Schrodinger equation, if we assume
the wave function to consist of a slowly varying part modulating a rapidly vary-
ing carrier exp(ikx), the ∂2/∂x2 can be again approximated by −k2 as has been
done in the paraxial wave approximation. Furthermore, if the signal is assumed
to be quasi-monochromatic, so that ψ(x, t) ∼ exp(−iωt), then i~∂/∂t ≈ ~ω, we
again retrieve the classical equation in (3.2). Hence, the classical equation is a
short wave, monochromatic approximation of Schrodinger equation.

For this course, we need only to study the one-dimensional Schrodinger equa-
tion. The above can be converted into eigenvalue problem, just as in waveguide
and cavity problems, by letting6

ψ(x, t) = ψn(x)e−iωnt (3.5)

By so doing, (3.3) becomes[
− ~2

2m

d2

dx2
+

1

2
mω2

0x
2

]
ψn(x) = Enψn(x) (3.6)

where En = ~ωn is the eigenvalue of the problem. The parabolic x2 potential
profile is also known as a potential well as it can provide the restoring force

5Since a function is equivalent to a vector, and this wave function describes the state of
the quantum system, this is also called a state vector.

6Mind you, the following is ωn, not ω0.
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to keep the particle bound to the well classically. The above equation is also
similar to the electromagnetic equation for a dielectric slab waveguide, where
the second term is a dielectric profile (mind you, varying in the x direction)
that can trap a waveguide mode. Therefore, the potential well is a trap for the
particle both in classical mechanics or wave physics.

The above equation (3.6) can be solved in closed form in terms of Hermite-
Gaussian functions (1864), or that

ψn(x) =

√
1

2nn!

√
mω0

π~
e−

mω0
2~ x2

Hn

(√
mω0

~
x

)
(3.7)

where the eigenvalues are

En =

(
n+

1

2

)
~ω0 (3.8)

Here, the eigenfunction or eigenstate ψn is known as the photon number state
of the solution. It corresponds to having n photons in the oscillation. If this
is conceived as the collective oscillation of the e-p pairs in a cavity, there are n
photons corresponding to energy of n~ω0 embedded in the collective oscillation.
The larger En is, the larger the number of photons there is. However, there is a
curious mode at n = 0. This corresponds to no photon, and yet, there is a wave
function ψ0(x). This is the zero-point energy state. This state is there even if
the system is at its lowest energy state.

Figure 6: Courtesy of Wiki.
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Figure 7: In this figure, ξ =
√

mω0

~ x (Courtesy of D.A.B. Miller).

4 Some Quantum Interpretations–A Preview

Schrodinger used this equation with resounding success. He derived a three-
dimensional version of this to study the wave function and eigenvalues of a
hydrogen atom. These eigenvalues En for a hydrogen atom agreed with experi-
mental observations that had eluded scientists for decades. Schrodinger did not
actually understand what this wave function meant. It was Max Born (1926)
who gave a physical interpretation of this wave function.

Given a wave function ψ(x, t), then |ψ(x, t)|2∆x is the probability of finding
the particle in the interval [x, x + ∆x]. Therefore, |ψ(x, t)|2 is a probability
density function (PDF), and it is necessary that

ˆ ∞
−∞

dx|ψ(x, t)|2 = 1 (4.1)

The position x of the particle is uncertain and is now a random variable. The
average value or expectation value of x is given by

ˆ ∞
−∞

dxx|ψ(x, t)|2 = 〈x(t)〉 = x̄(t) (4.2)

This is not the most ideal notation, since although x is not a function of time,
its expectation value with respect to a time-varying function, ψ(x, t), can be
time-varying.

Notice that in going from (3.1) to (3.3), or from a classical picture to a
quantum picture, we have let the momentum become p, original a scalar number
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in the classical world, become a differential operator, namely that

p→ p̂ = −i~ ∂

∂x
(4.3)

The momentum of a particle also becomes uncertain, and its expectation value
is given by
ˆ ∞
∞

dxψ∗(x, t)p̂ψ(x, t) = −i~
ˆ ∞
−∞

dxψ∗(x, t)
∂

∂x
ψ(x, t) = 〈p̂(t)〉 = p̄(t) (4.4)

The expectation values of position x and the momentum operator p̂ are mea-
surable in the laboratory. Hence, they are also called observables.

One more very important aspect of quantum theory is that since p → p̂ =
−i~ ∂

∂x , p̂ and x do not commute. In other words, it can be shown that

[p̂, x] =

[
−i~ ∂

∂x
, x

]
= −i~ (4.5)

In the classical world, [p, x] = 0, but not in the quantum world. In the equation
above, we can elevate x to become an operator by letting x̂ = xÎ, where Î is the
identity operator. Then both p̂ and x̂ are now operators, and are on the same
footing. In this manner, we can rewrite equation (4.5) above as

[p̂, x̂] =

[
−i~ ∂

∂x
, x̂

]
= −i~Î (4.6)

It can be shown easily that when two operators share the same set of eigen-
functions, they commute. When two operators do not commute, it means that
the expectation values of quantities associated with the operators cannot be
determined to arbitrary precision simultaneously. For instance, if p̂ and x̂ do
not commute, then the standard deviation of their measurable values, or their
expectation values, obey the uncertainty principle relationship that7

∆p∆x ≤ ~/2 (4.7)

where ∆p and ∆x are the standard deviation of the random variables p and x.

5 Bizarre Nature of the Photon Number States

The photon number states are successful in predicting that the collective e-
p oscillations are associated with n photons embedded in the energy of the
oscillating modes. However, these number states are bizarre: The expectation
values of the position of the quantum pendulum associated these states are
always zero. To illustrate further, we form the wave function with a photon-
number state

ψ(x, t) = ψn(x)e−iωnt

7The proof of this is quite straightforward but is outside the scope of this course.
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Previously, since the ψn(x) are eigenfunctions, they are mutually orthogonal
and they can be orthonormalized meaning that

ˆ ∞
−∞

dxψ∗n(x)ψn′(x) = δnn′ (5.1)

Then one can easily show that the expectation value of the position of the
quantum pendulum in a photon number state is

〈x(t)〉 = x̄(t) =

ˆ ∞
−∞

dxx|ψ(x, t)|2 =

ˆ ∞
−∞

dxx|ψn(x)|2 = 0 (5.2)

because the integrand is always odd symmetric. In other words, he expectation
value of the position x of the pendulum is always zero. There are no classical
oscillations that resemble them. Therefore, one has to form new wave functions
by linear superposing these photon number states into a coherent state. This
will be the discussion of the next lecture.
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