
ECE 604, Lecture 22

November 27, 2018

In this lecture, we will cover the following topics:

• Reciprocity Theorem

– Conditions for Reciprocity

– Appplication to a Two-Port Network

– Epilogue

• Paraxial Wave Equation

Additional Reading:

• Prof. Dan Jiao’s Lecture 16.

• Sections 11.3 of Ramo, Whinnery, and Van Duzer.

• Topic 6.2, J.A. Kong, Electromagnetic Wave Theory.

• Section 1.6, Lecture on Theory of Optical and Microwave Waveguide.

• Section 1.3.2 Waves and Fields in Inhomogeneous Media.

• Section 3.1, Haus, Electromagnetic Noise and Quantum Optical Measure-
ments.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on December 5, 2018 at 15 : 44: W.C. Chew and D. Jiao.
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1 Reciprocity Theorem

Figure 1:

Reciprocity theorem is like “tit-for-tat” relationship in humans: good-will is
reciprocated with good will while ill-will is reciprocated with ill-will. Not exactly
as in electromagnetics, this relationship can be expressed exactly and succinctly
using mathematics. We shall see how this is done.

Consider a general anisotropic homogeneous medium where both µ and ε
are described by permeability tensor and permittivity tensor over a finite part
of space as shown in Figure 1. When only J1 and M1 are turned on, they
generate fields E1 and H1 in this medium.1 On the other hand, when only J2

and M2 are turned on, they generate E2 and H2 in this medium. Therefore,
the pertinent equations for these two cases are2

∇×E1 = −jωµ ·H1 −M1 (1.1)

∇×H1 = jωε ·E1 + J1 (1.2)

∇×E2 = −jωµ ·H2 −M2 (1.3)

∇×H2 = jωε ·E2 + J2 (1.4)

From the above, we can show that

H2 · ∇ ×E1 = −jωH2 · µ ·H1 −H2 ·M1 (1.5)

E1 · ∇ ×H2 = jωE1 · ε ·E2 + E1 · J2 (1.6)

1This medium can be a highly complex one involving PEC and anisotropic materials of
any shape. Hence, it can be a highly complex electronic circuit or antenna structure.

2The current sources are impressed currents so that they are immutable, and not changed
by the environment they are immersed in.

2



Then,

∇ · (E1 ×H2) = H2 · ∇ ×E1 −E1 · ∇ ·H2

= −jωH2 · µ ·H1 − jωE1 · ε ·E2 −H2 ·M1 −E1 · J2 (1.7)

By the same token,

∇ · (E2 ×H1) = −jωH1 · µ ·H2 − jωE2 · ε ·E1 −H1 ·M2 −E2 · J1 (1.8)

Subtracting (1.7) and (1.8), and using the fact that H1 ·µ ·H2 = H2 ·µt ·H1,
then3

∇ · (E1 ×H2 −E2 ×H1) = −jωH1 · (µ− µt) ·H2 − jωE1 · (ε− εt) ·E2

−H2 ·M1 −E1 · J2 + H1 ·M2 + E2 · J1

(1.9)

If

µ = µt, ε = εt (1.10)

or when the tensors are symmetric, then the right-hand side of (1.8) simplifies as
the terms involving the permeability tensors and permeability tensors disappear.

Now, integrating (1.9) over a volume V bounded by a surface S, and invoking
Gauss’ divergence theorem, we have the reciprocity theorem that
‹
S

dS · (E1 ×H2 −E2 ×H1)

= −
˚

V

dV [H2 ·M1 + E1 · J2 −H1 ·M2 −E2 · J1] (1.11)

When the volume V contains no sources, the reciprocity theorem reduces to
‹
S

dS · (E1 ×H2 −E2 ×H1) = 0 (1.12)

The above is also called Lorentz reciprocity theorem by some authors.4

On the other hand, when the surface S →∞, E1 and H2 becomes spherical
waves sharing the same β vector. Moreover ωµ0H2 = β×E2, ωµ0H1 = β×E1,
then

E1 ×H2 ∼ E1 × (β ×E2) = E1(β ·E2)− β(E1 ·E2) (1.13)

E2 ×H1 ∼ E2 × (β ×E1) = E2(β ·E1)− β(E2 ·E1) (1.14)

But β ·E2 = β ·E1 = 0 in the far field because the spherical waves emanated by
the sources resemble a plane wave, and the β vectors are parallel to each other.

3It is to be noted that in matrix algebra, the dot product between two vectors are often
written as at · b, but in the physics literature, the transpose on a is implied. Therefore, the
dot product between two vectors is just written as a · b.

4Harrington, Time-Harmonic Electric Field.
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Therefore, the two terms on the left-hand side of (1.11) cancel each other, and
it vanishes when S →∞, and (1.11) can be rewritten asˆ

V

dV [E2 · J1 −H2 ·M1] =

ˆ
V

dV [E1 · J2 −H1 ·M2] (1.15)

The inner product symbol is often used to rewrite the above as

〈E2,J1〉 − 〈H2,M1〉 = 〈E1,J2〉 − 〈H1,M2〉 (1.16)

The above inner product is also called reaction, a concept introduced by Rumsey.
The above is rewritten as

〈2, 1〉 = 〈1, 2〉 (1.17)

where

〈2, 1〉 = 〈E2,J1〉 − 〈H2,M1〉 (1.18)

1.1 Conditions for Reciprocity

It is seen that the above proof hinges on (1.10). In other words, the anisotropic
medium has to be described by a symmetric tensor. Moreover, our starting
equations (1.1) to (1.4) assume that the medium and the equations are linear
time invariant so that Maxwell’s equations can be written down in the frequency
domain easily.

1.2 Application to a Two-Port Network

Figure 2:

Focusing on a two-port network as shown in Figure 2, we have[
V1

V2

]
=

[
Z11 Z12

Z21 Z22

] [
I1
I2

]
Then

〈E2,J1〉 = I1

ˆ
Port 1

E2 · dl = −I1V oc1 (1.19)
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〈E1,J2〉 = I2

ˆ
Port 2

E1 · dl = −I2V oc2 (1.20)

But V oc1 = Z12I2, V oc2 = Z21I1. Since I1V
oc
1 = I2V

oc
2 by the reaction concept

or by reciprocity, then Z12 = Z21. In the above, we assume that J1 is constant
in the input port 1 when it is turned on, so is J2 when it is in the input port 2.
When the currents are constant of space when they are on, then the currents
J1 and J2 can be factored out of the spatial integrals in (1.19) and (1.20),
and the evaluation of the spatial integrals can be easily performed to yield the
open-circuit voltages. The above analysis can be easily generalized to N -port
network.

The simplicity of the above belies its importance. In the above derivation, J1

and J2 are impressed current sources. They need to be constant when turned
on. This is easy to achieve if Port 1 and Port 2 are very small compared to
wavelength so that circuit theory prevails. So the above result can also be
applied to an experiment where two antennas are communicating over a vast
terrain as shown in Figure 3. The terrain can also be replaced by complex
circuits as in a circuit board, as long as the materials are reciprocal, linear and
time invariant.

Figure 3:
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Figure 4: Courtesy of Kong, ELectromagnetic Wave Theory.

The use of the impressed currents so that circuit concepts can be applied
is shown in Figure 4. A magnetic current can be used as a voltage source in
circuit theory as shown by Figure 4b.

1.3 Epilogue

The proof of uniqueness for Maxwell’s equations is very deeply to the symmetry
of the operator involved. We can see this from linear algebra. Given a matrix
equation driven by two different sources, they can be written as

A · x1 = b1 (1.21)

A · x2 = b2 (1.22)

We can left dot multiply the first equation with x2 and do the same with the
second equation with x1 to arrive at

xt2 ·A · x1 = xt2 · b1 (1.23)

xt1 ·A · x2 = xt1 · b2 (1.24)

If A is symmetric, the left-hand side of both equations are equal to each other.
Subtracting the two equations, we arrive at

xt2 · b1 = xt1 · b2 (1.25)

The above is analogous to the statement of the reciprocity theorem. So if
the operators in Maxwell’s equations are symmetrical, then reciprocity theorem
applies.
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2 Paraxial Wave Equation

We have seen previously that in a source free space

∇2A + ω2µεA = 0 (2.1)

∇2Φ + ω2µεΦ = 0 (2.2)

The above are four scalar equations with the Lorenz gauge

∇ ·A = −jωµεΦ (2.3)

connecting A and Φ. We can examine the solution of A such that

A(r) = A0(r)e−jβz (2.4)

where A0(r) is a slowly varying function while e−jβz is rapidly varying in the z
direction. This is primarily a quasi-plane wave propagating in the z-direction.
We know to be the case in the far field of a source, but let us assume that this
form persists less than the far field. Taking the x component of (2.4), we have

Ax(r) = Ψ(r)e−jβz (2.5)

where Ψ(r) = Ψ(x, y, z) is a slowly varying function of x, y, and z. Substituting
(2.5) into (2.1), and taking the double z derivative first, we arrive at

∂2

∂z2

[
Ψ(x, y, z)e−jβz

]
=

[
∂2

∂z2
Ψ(x, y, z)− 2jβ

∂

∂z
Ψ(x, y, z)− β2Ψ(x, y, z)

]
(2.6)

Consequently, after substituting the above into the x component of (2.1), we
obtain an equation for Ψ(r), the slowly varying envelope as

∂2

∂x2
Ψ +

∂2

∂y2
Ψ− 2jβ

∂

∂z
Ψ +

∂2

∂z2
Ψ = 0 (2.7)

When β →∞ , or in the high frequency limit,∣∣∣∣2jβ ∂

∂z
Ψ

∣∣∣∣� ∣∣∣∣ ∂2

∂z2
Ψ

∣∣∣∣ (2.8)

In the above, we assume the envelope to be slowly varying and β large, so that
|βΨ| � |∂/∂zΨ|. And then (2.7) can be approximated by

∂2Ψ

∂x2
+
∂2Ψ

∂y2
− 2jβ

∂Ψ

∂z
= 0 (2.9)

The above is called the paraxial wave equation. It is also called the parabolic
wave equation. It implies that the β vector of the wave is approximately parallel
to the z axis, and hence, the name.
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A closed form solution to the paraxial wave equation can be obtained by a
simple trick. It is known that

Ax(r) =
e−jβ|r−r

′|

4π|r− r′|
(2.10)

is the solution to

∇2Ax + β2Ax = 0 (2.11)

if r 6= r′. If we make r′ = −ẑjb, a complex number, then (2.10) is always a
solution to (2.10) for all r, because |r− r′| 6= 0 always. Then

|r− r′| =
√
x2 + y2 + (z + jb)2

≈ (z + jb)

[
1 +

x2 + y2

(z + jb)2
+ . . .

]1/2

≈ (z + jb) +
x2 + y2

2(z + jb)
+ . . . (2.12)

And then

Ax(r) ≈ e−jβ(z+jb)

4π(z + jb)
e−jβ

x2+y2

2(z+jb) (2.13)

By comparing the above with (2.5), we can identify

Ψ(x, y, z) = A0
jb

z + jb
e−jβ

x2+y2

2(z+jb) (2.14)

By separating the exponential part into the real part and the imaginary part,
we have

Ψ(x, y, z) =
A0√

1 + z2/b2
ej tan−1( zb )e

−jβ x2+y2

2(z2+b2)
z
e
−bβ x2+y2

2(z2+b2) (2.15)

The above can be rewritten as

Ψ(x, y, z) =
A0√

1 + z2/b2
e−jβ

x2+y2

2R e−
x2+y2

w2 ejψ (2.16)

where

w2 =
2b

β

(
1 +

z2

b2

)
, R =

z2 + b2

z
, ψ = tan−1

(z
b

)
(2.17)

For a fixed z, the parameters w, R, and ψ are constants. Here, w is the beam

waist which varies with z, and it is smallest when z = 0, or w = w0 =
√

2b
β .

And R is the radius of curvature of the constant phase front. This can be
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appreciated by studying a spherical wave front e−jβR, and make a paraxial
wave approximation, namely, x2 + y2 � z2 to get

e−jβR = e−jβ(x2+y2+z2)1/2 = e
−jβz

(
1+ x2+y2

z2

)1/2

≈ e−jβz−jβ
x2+y2

2z ≈ e−jβz−jβ
x2+y2

2R (2.18)

In the last approximation, we assume that z ≈ R in the paraxial approximation.
The phase ψ changes rapidly with z.

A cross section of the electric field due to a Gaussian beam is shown in
Figure 5.

Figure 5: Electric field of a Gaussian beam in the x − z plane frozen in time.
The wave moves to the right as time increases; b/λ = 10/6 (Courtesy of Haus,
Electromagnetic Noise and Quantum Optical Measurements).

In general, the paraxial wave equation has solution of the form

Ψnm(x, y, z) =

(
2

πn!m!

)1/2

2−N/2
(

1

w

)
e−(x2+y2)/w2

e−j
β
2R (x2+y2)ej(m+n+1)Ψ

(2.19)

·Hn

(
x
√

2/w
)
Hm

(
y
√

2/w
)

(2.20)

where Hn(ξ) is a Hermite polynomial of order n. The solution can also be
express in terms of Laguere polynomials, namely,

Ψnm(x, y, z) =

(
2

πn!m!

)1/2

min(n,m)!
1

w
e−j

β
2Rρ

2

− e−ρ
2/w2

e+j(n+m+1)Ψejlφ

(−1)min(n,m)

(√
2ρ

w

)
Ln−mmin(n,m)

(
2ρ2

w2

)
(2.21)
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where Lkn(ξ) is the associated Laguerre polynomial.
These gaussian beams have rekindled recent excitement in the community

because, in addition to carrying spin angular momentum as in a plane wave,
they can carry orbital angular momentum due to the complex transverse field
distribution of the beams.5 They harbor potential for optical communications
as well as optical tweezers to manipulate trapped nano-particles. Figure 6 shows
some examples of the cross section (xy plane) field plots for some of these beams.

Figure 6: Courtesy of L. Allen and M. Padgett’s chapter in J.L. Andrew’s book
on structured light.

5See D.L. Andrew, Structured Light and Its Applications and articles therein.

10


