W.C.Chew

ECE 350 Lecture Notes

25. Vector Potential - Introduction to Antennas \& Radiations

Maxwell's equations are

$$
\begin{align*}
& \nabla \times \mathbf{E}=-j \omega \mu \mathbf{H} \tag{1}\\
& \nabla \times \mathbf{H}=j \omega \epsilon \mathbf{E}+\mathbf{J}, \tag{2}\\
& \nabla \cdot \mu \mathbf{H}=0 \tag{3}\\
& \nabla \cdot \epsilon \mathbf{E}=\rho \tag{4}
\end{align*}
$$

Since $\nabla \cdot(\nabla \times \mathbf{A})=0$, we can let

$$
\begin{equation*}
\mu \mathbf{H}=\nabla \times \mathbf{A} \tag{5}
\end{equation*}
$$

so that equation (3) is automatically satisfied. Substituting (5) into (1), we have

$$
\begin{equation*}
\nabla \times(\mathbf{E}+j \omega \mathbf{A})=0 \tag{6}
\end{equation*}
$$

Since $\nabla \times \nabla \phi=0$, we have

$$
\begin{equation*}
\mathbf{E}=-j \omega \mathbf{A}-\nabla \phi . \tag{7}
\end{equation*}
$$

Hence, knowing \mathbf{A} and ϕ uniquely determines \mathbf{E} and \mathbf{H}. We shall relate \mathbf{A} and ϕ to the sources \mathbf{J} and ρ of Maxwell's equations. Substituting (5) and (7) into (2), we have

$$
\begin{equation*}
\nabla \times \nabla \times \mathbf{A}=j \omega \mu \epsilon[-j \omega \mathbf{A}-\nabla \phi]+\mu \mathbf{J} \tag{8}
\end{equation*}
$$

or

$$
\begin{equation*}
\nabla^{2} \mathbf{A}+\omega^{2} \mu \epsilon \mathbf{A}=-\mu \mathbf{J}+j \omega \mu \epsilon \nabla \phi+\nabla \nabla \cdot \mathbf{A} \tag{9}
\end{equation*}
$$

Using (7) in (4), we have

$$
\begin{equation*}
\nabla \cdot(j \omega \mathbf{A}+\nabla \phi)=-\frac{\rho}{\epsilon} . \tag{10}
\end{equation*}
$$

The above could be simplified for the following observation. Equations (5) and (7) give the same \mathbf{E} and \mathbf{H} fields under the transformation

$$
\begin{align*}
\mathbf{A}^{\prime} & =\mathbf{A}+\nabla \psi \tag{11}\\
\phi^{\prime} & =\phi-j \omega \psi . \tag{12}
\end{align*}
$$

The above are known as the Gauge Transformation. With the new \mathbf{A}^{\prime} and ϕ^{\prime}, we can substitute into (5) and (7) and they give the same \mathbf{E} and \mathbf{H} fields, i.e.

$$
\begin{array}{r}
\nabla \times \mathbf{A}^{\prime}=\nabla \times \mathbf{A}+\nabla \times \nabla \psi=\nabla \times \mathbf{A}=\mu \mathbf{H} \\
-j \omega \mathbf{A}^{\prime}-\nabla \phi^{\prime}=-j \omega \mathbf{A}-j \omega \nabla \psi-\nabla \phi+j \omega \nabla \psi=\mathbf{E} . \tag{14}
\end{array}
$$

It implies that \mathbf{A} and ϕ are not unique. The vector field \mathbf{A} is not unique unless we specify both its curl and its divergence. Hence, in order to make A unique, we have to specify its divergence. If we specify the divergence of A such that

$$
\begin{equation*}
\nabla \cdot \mathbf{A}=-j \omega \mu \epsilon \phi \tag{15}
\end{equation*}
$$

then (9) and (10) become

$$
\begin{align*}
\nabla^{2} \mathbf{A}+\omega^{2} \mu \epsilon & =-\mu \mathbf{J} \tag{16}\\
\nabla^{2} \phi+\omega^{2} \mu \epsilon \phi & =-\frac{\rho}{\epsilon} \tag{17}
\end{align*}
$$

The condition in (15) is also known as the Lorentz gauge. Equations (16) and (17) represent a set of four inhomogeneous wave equations driven by the sources of Maxwell's equations. Hence given the sources ρ and \mathbf{J}, we may find \mathbf{A} and $\phi . \mathbf{E}$ and \mathbf{H} may in turn be found using (5) and (7). However, as a consequence of the Lorentz gauge, we need only to find $\mathbf{A} ; \phi$ follows directly from equation (15).

Let us consider the relation due to an elemental current that can be described by

$$
\begin{equation*}
\mathbf{J}=\hat{z} I l \delta(\mathbf{r}) \quad A / m^{2} \tag{18}
\end{equation*}
$$

where $I l$ denotes the strength of this current, and $\delta(\mathbf{r})=\delta(x) \delta(y) \delta(z)$. Equation (16) becomes

$$
\begin{equation*}
\nabla^{2} A_{z}+\omega^{2} \mu \epsilon A_{z}=-\mu I l \delta(\mathbf{r}) \tag{19}
\end{equation*}
$$

Taking advantage of the spherical symmetry of the problem, ∇^{2} has only r dependence in spherical coordinates, we have

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r} A_{z}+\beta^{2} A_{z}=-\mu I l \delta(\mathbf{r}) \tag{20}
\end{equation*}
$$

where $\beta^{2}=\omega^{2} \mu \epsilon$. Equations (19) and (20) are similar in form to Poisson's equation with a point charge Q at the origin,

$$
\begin{equation*}
\nabla^{2} \phi=-\frac{Q}{\epsilon} \delta(\mathbf{r}) \tag{21}
\end{equation*}
$$

We know that (21) has the solution of the form

$$
\begin{equation*}
\phi=\frac{Q}{4 \pi \epsilon r} . \tag{22}
\end{equation*}
$$

Hence, we guess that the solution to (20) is of the form

$$
\begin{equation*}
A_{z}=\frac{\mu I l}{4 \pi r} C(r) \tag{23}
\end{equation*}
$$

It can be shown that

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r} r^{2} \frac{d}{d r} f(r)=\frac{1}{r} \frac{d^{2}}{d r^{2}} r f(r) \tag{24}
\end{equation*}
$$

Outside the origin, the RHS of (20) is zero, and after using (23) and (24) in (20), we have

$$
\begin{equation*}
\frac{d^{2}}{d r^{2}} C(r)+\beta^{2} C(r)=0 \tag{25}
\end{equation*}
$$

This gives

$$
\begin{equation*}
C(r)=e^{ \pm j \beta r} \tag{26}
\end{equation*}
$$

Since we are looking for a solution that radiates energy to infinity, we choose an outgoing solution in (26). Hence,

$$
\begin{equation*}
A_{z}(r)=\frac{\mu I l}{4 \pi r} e^{-j \beta r} \tag{27}
\end{equation*}
$$

for a source directed at a \hat{z}-direction. From (16), we note that \mathbf{A} and \mathbf{J} always point in the same direction. Therefore, for a point source directed at \mathbf{l} and located at \mathbf{r}^{\prime} instead of the origin, the vector potential \mathbf{A} is

$$
\begin{equation*}
\mathbf{A}(\mathbf{r})=\frac{\mu I \mathbf{l}}{4 \pi\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} e^{-j \beta\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{28}
\end{equation*}
$$

By linear superposition, the vector potential due to an arbitrary source \mathbf{J} is

$$
\begin{equation*}
\mathbf{A}=\frac{\mu}{4 \pi} \iiint d \mathbf{r}^{\prime} \frac{\mathbf{J}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} e^{-j \beta\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{29}
\end{equation*}
$$

Similarly, we can show that

$$
\begin{equation*}
\phi=\frac{1}{4 \pi \epsilon} \iiint d \mathbf{r}^{\prime} \frac{\rho\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} e^{-j \beta\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} \tag{30}
\end{equation*}
$$

