W.C.Chew

ECE 350 Lecture Notes

19. Representation of a Plane Wave.

When $\nabla \cdot \mathbf{E}=0$, the electric field satisfies the wave equation

$$
\begin{equation*}
\nabla^{2} \mathbf{E}+\beta^{2} \mathbf{E}=0, \tag{1}
\end{equation*}
$$

where $\beta^{2}=\omega^{2} \mu \epsilon$. We have learnt that one of the many possible solutions to the above equation is

$$
\begin{equation*}
\mathbf{E}=\hat{x} E_{0} e^{-j \beta z} . \tag{2}
\end{equation*}
$$

The expression $e^{-j \beta z}$, when viewed in three dimensions, has constant phase planes or wave fronts which are orthogonal to the z-axis.

To denote a plane wave propagating in other directions, we write it as

$$
\begin{equation*}
\mathbf{E}=\hat{a} E_{0} e^{-j \beta_{x} x-j \beta_{y} y-j \beta_{z} z}, \tag{3}
\end{equation*}
$$

where \hat{a} is a constant unit vector, and E_{0} a constant. If we substitute (3) into (1), we obtain

$$
\begin{equation*}
\left[-\beta_{x}^{2}-\beta_{y}^{2}-\beta_{z}^{2}+\beta^{2}\right] E_{0}=0 \tag{4}
\end{equation*}
$$

In order for (3) to satisfy (1) and that $E_{0} \neq 0$, we require that

$$
\begin{equation*}
\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}=\beta^{2}=\omega^{2} \mu \epsilon . \tag{5}
\end{equation*}
$$

If we define a vector $\boldsymbol{\beta}=\hat{x} \beta_{x}+\hat{y} \beta_{y}+\hat{z} \beta_{z}$, and $\mathbf{r}=\hat{x} x+\hat{y} y+\hat{z} z$, then (3) can be written as

$$
\begin{equation*}
\mathbf{E}=\hat{a} E_{0} e^{-j \boldsymbol{\beta} \cdot \mathbf{r}} \tag{6}
\end{equation*}
$$

where the magnitude of $\boldsymbol{\beta}$ is

$$
\begin{equation*}
|\boldsymbol{\beta}|=\left[\beta_{x}^{2}+\beta_{y}^{2}+\beta_{z}^{2}\right]^{\frac{1}{2}}=\beta . \tag{7}
\end{equation*}
$$

Equation (6) is a concise way to write a solution to (1). Since $\nabla \cdot \mathbf{E}=0$ using (3), we note that

$$
\begin{equation*}
\nabla \cdot \mathbf{E}=-j\left[\hat{x} \beta_{x}+\hat{y} \beta_{y}+\hat{z} \beta_{z}\right] \cdot \hat{a} E_{0} e^{-j \boldsymbol{\beta} \cdot \mathbf{r}} \tag{8}
\end{equation*}
$$

Therefore, in order for $\nabla \cdot \mathbf{E}=0$, we require that

$$
\begin{equation*}
\boldsymbol{\beta} \cdot \hat{a}=0 \tag{9}
\end{equation*}
$$

To explore further how the function $e^{-j \boldsymbol{\beta} \cdot \mathbf{r}}$ look like, we assume $\boldsymbol{\beta}$ to be pointing in a direction as shown in the figure. The value of $\boldsymbol{\beta} \cdot \mathbf{r}$ is constant on a plane that is orthogonal to $\boldsymbol{\beta}$.

That is

$$
\begin{equation*}
\boldsymbol{\beta} \cdot \mathbf{r}=|\boldsymbol{\beta}||\mathbf{r}| \cos \theta=\beta(O A), \tag{10}
\end{equation*}
$$

for all \mathbf{r} on the plane S that is orthogonal to $\boldsymbol{\beta}$. Hence, S is the constant phase plane of $e^{-j \boldsymbol{\beta} \cdot \mathbf{r}}=e^{-j \beta(O A)}$. As one moves progressively in the $\boldsymbol{\beta}$ diractimon, the function $e^{-j \beta \cdot \mathbf{r}}$ has a phase that is linearly decreasing with distance. Therefore, $e^{-j \boldsymbol{\beta} \cdot \mathbf{r}}$ denotes a plane wave that is propagating in the $\boldsymbol{\beta}$ direction. When $\boldsymbol{\beta}$ is pointing in the z-direction, such that $\boldsymbol{\beta}=\hat{z} \beta$, then $e^{-j \boldsymbol{\beta} \cdot \mathbf{r}}=e^{-j \beta z}$, which is our familiar solution of a plane wave propagating in the z-direction.

An example of a plane wave electric field satisfying Maxwell's equations is

$$
\begin{equation*}
\mathbf{E}=\hat{y} E_{0} e^{-j \beta_{x} x-j \beta_{z} z}, \tag{11}
\end{equation*}
$$

where $\beta_{x}^{2}+\beta_{z}^{2}=\beta^{2}$. The corresponding magnetic field can be derived using Maxwell's equations.

$$
\begin{equation*}
\nabla \times \mathbf{E}=-j \omega \mu \mathbf{H} \tag{12}
\end{equation*}
$$

Hence,

$$
\begin{align*}
\mathbf{H} & =\frac{-1}{j \omega \mu}\left(\hat{z} \frac{\partial}{\partial x} E_{y}-\hat{x} \frac{\partial}{\partial z} E_{y}\right) \\
& =\left(\hat{z} \beta_{x}-\hat{x} \beta_{z}\right) \frac{E_{0}}{\omega \mu} e^{-j \beta_{x} x-j \beta_{z} z} . \tag{13}
\end{align*}
$$

In general, when ∇ operates on a plane wave phasor described by $e^{-j \boldsymbol{\beta} \cdot \mathbf{r}}$, it transforms into $-j \boldsymbol{\beta}$. This is obvious also from Equation (8). Therefore, from (12), we can express

$$
\begin{equation*}
\mathbf{H}=\frac{1}{\omega \mu} \boldsymbol{\beta} \times \mathbf{E} . \tag{14}
\end{equation*}
$$

Therefore, \mathbf{H} is orthogonal to both \mathbf{E} and $\boldsymbol{\beta}$, or that $\mathbf{H} \cdot \mathbf{E}=0$, and that $\mathbf{H} \cdot \boldsymbol{\beta}=0$, in addition to $\mathbf{E} \cdot \boldsymbol{\beta}=0$. Furthermore, $\mathbf{E} \times \mathbf{H}$ points in the direction of $\boldsymbol{\beta}$. Therefore, for a plane electromagnetic wave, \mathbf{E}, \mathbf{H}, and $\boldsymbol{\beta}$ form a righthanded orthogonal system. It is also a transverse electromagnetic (TEM) wave.

