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��� Wave Polarization�

We learnt that

E � �xEx � �xE� cos��t� �z	� �
	

is a solution to the wave equation because r �E � �� Similarly�

E � �yEy � �yE� cos��t� �z � �	� �
	

is also a solution to the wave equation� Solutions �
	 and �
	 are known as
linearly polarized waves� because the electric �eld or the magnetic �eld are
polarized in only one direction� However� a linear superposition of �
	 and
�
	 are still a solution to Maxwell�s equation

E � �xEx�z� t	 � �yEy�z� t	� ��	

If we observe this �eld at z � �� it is

E � �xE� cos�t� �yE� cos��t� �	� ��	

When � � ����

Ex � E� cos�t Ey � E� cos��t� ���	� ��	

When �t � ��� Ex � E�� Ey � �� ��	

When �t � ���� Ex �
E�p


� Ey � �E�p



� ��	

When �t � ���� Ex � �� Ey � �E�� ��	

When �t � 
���� Ex � �E�p


� Ey � �E�p



� ��	

When �t � 
���� Ex � �E�� Ey � �� �
�	

If we continue further� we can sketch out the tip of the vector �eld E� It
traces out an ellipse as shown when E� �� E�� Such a wave is known as an
elliptically polarized wave�
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When E� � E�� the ellipse becomes a circle� and the wave is known as
a circularly polarized wave� When � is ����� the vector E rotates in the
counter�clockwise direction�

A wave is classi�ed as left hand elliptically �circularly� polarized when
the wave is approaching the viewer� A counterclockwise rotation is classi�ed
as right hand elliptically �circularly� polarized�

When � �� ����� the tip of the vector E traces out a tilted ellipse� We
can show this by expanding Ey in ��	�

Ey � E� cos�t cos�� E� sin�t sin�
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Rearranging terms� we get

aE�

x
� bExEy � cE�

y
� 
� �

	

where
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Equation �

	 is of the form

ax� � bxy � cy� � 
� �
�	

which is the equation of a tilted ellipse�
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The equation of an ellipse in its self coordinate is�
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where A and B are the semi�axes of the ellipse� However�

x� � x cos � � y sin �� �
�	

y� � x sin � � y cos �� �
�	

we have

x�
�
cos� �

A�
�

sin� �

B�

�
� xy sin 
�

�



A�
� 


B�

�
� y�

�
sin� �

A�
�

cos� �

B�

�
� 
�

�
�	
Equating �
�	 and �
�	� we can deduce that
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AR is the axial ratio which is the ratio of the two axes of the ellipse� It is
de�ned to be larger than one always�
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