W.C.Chew

ECE 350 Lecture Notes

18. Wave Polarization.

We learnt that

$$
\begin{equation*}
\mathbf{E}=\hat{x} E_{x}=\hat{x} E_{1} \cos (\omega t-\beta z) \tag{1}
\end{equation*}
$$

is a solution to the wave equation because $\nabla \cdot \mathbf{E}=0$. Similarly,

$$
\begin{equation*}
\mathbf{E}=\hat{y} E_{y}=\hat{y} E_{2} \cos (\omega t-\beta z+\phi) \tag{2}
\end{equation*}
$$

is also a solution to the wave equation. Solutions (1) and (2) are known as linearly polarized waves, because the electric field or the magnetic field are polarized in only one direction. However, a linear superposition of (1) and (2) are still a solution to Maxwell's equation

$$
\begin{equation*}
\mathbf{E}=\hat{x} E_{x}(z, t)+\hat{y} E_{y}(z, t) \tag{3}
\end{equation*}
$$

If we observe this field at $z=0$, it is

$$
\begin{equation*}
\mathbf{E}=\hat{x} E_{1} \cos \omega t+\hat{y} E_{2} \cos (\omega t+\phi) \tag{4}
\end{equation*}
$$

When $\phi=90^{\circ}$,

$$
\begin{equation*}
E_{x}=E_{1} \cos \omega t \quad E_{y}=E_{2} \cos \left(\omega t+90^{\circ}\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\text { When } \omega t=0^{\circ}, \quad E_{x}=E_{1}, \quad E_{y}=0 \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\text { When } \omega t=45^{\circ}, \quad E_{x}=\frac{E_{1}}{\sqrt{2}}, \quad E_{y}=-\frac{E_{2}}{\sqrt{2}} . \tag{7}
\end{equation*}
$$

When $\omega t=90^{\circ}, \quad E_{x}=0, \quad E_{y}=-E_{2}$.
When $\omega t=135^{\circ}, \quad E_{x}=-\frac{E_{1}}{\sqrt{2}}, \quad E_{y}=-\frac{E_{2}}{\sqrt{2}}$.
When $\omega t=180^{\circ}, \quad E_{x}=-E_{1}, \quad E_{y}=0$.
If we continue further, we can sketch out the tip of the vector field \mathbf{E}. It traces out an ellipse as shown when $E_{1} \neq E_{2}$. Such a wave is known as an elliptically polarized wave.

When $E_{1}=E_{2}$, the ellipse becomes a circle, and the wave is known as a circularly polarized wave. When ϕ is -90°, the vector \mathbf{E} rotates in the counter-clockwise direction.

A wave is classified as left hand elliptically (circularly) polarized when the wave is approaching the viewer. A counterclockwise rotation is classified as right hand elliptically (circularly) polarized.

When $\phi \neq \pm 90^{\circ}$, the tip of the vector \mathbf{E} traces out a tilted ellipse. We can show this by expanding E_{y} in (5).

$$
\begin{align*}
E_{y} & =E_{2} \cos \omega t \cos \phi-E_{2} \sin \omega t \sin \phi \\
& =\frac{E_{2}}{E_{1}} E_{x} \cos \phi-E_{2}\left[1-\left(\frac{E_{x}}{E_{1}}\right)^{2}\right]^{\frac{1}{2}} \sin \phi . \tag{11}
\end{align*}
$$

Rearranging terms, we get

$$
\begin{equation*}
a E_{x}^{2}-b E_{x} E_{y}+c E_{y}^{2}=1, \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
a=\frac{1}{E_{1}^{2} \sin ^{2} \phi}, \quad b=\frac{2 \cos \phi}{E_{1} E_{2} \sin ^{2} \phi}, \quad c=\frac{1}{E_{2}^{2} \sin ^{2} \phi} \tag{13}
\end{equation*}
$$

Equation (12) is of the form

$$
\begin{equation*}
a x^{2}-b x y+c y^{2}=1, \tag{14}
\end{equation*}
$$

which is the equation of a tilted ellipse.

The equation of an ellipse in its self coordinate is

$$
\begin{equation*}
\left(\frac{x^{\prime}}{A}\right)^{2}+\left(\frac{y^{\prime}}{B}\right)^{2}=1 \tag{15}
\end{equation*}
$$

where A and B are the semi-axes of the ellipse. However,

$$
\begin{align*}
x^{\prime} & =x \cos \theta-y \sin \theta \tag{16}\\
y^{\prime} & =x \sin \theta+y \cos \theta \tag{17}
\end{align*}
$$

we have

$$
\begin{equation*}
x^{2}\left(\frac{\cos ^{2} \theta}{A^{2}}+\frac{\sin ^{2} \theta}{B^{2}}\right)-x y \sin 2 \theta\left(\frac{1}{A^{2}}-\frac{1}{B^{2}}\right)+y^{2}\left(\frac{\sin ^{2} \theta}{A^{2}}+\frac{\cos ^{2} \theta}{B^{2}}\right)=1 \tag{18}
\end{equation*}
$$

Equating (14) and (18), we can deduce that

$$
\begin{gather*}
\theta=\frac{1}{2} \tan ^{-1}\left(\frac{2 \cos \phi E_{1} E_{2}}{E_{2}^{2}-E_{1}^{2}}\right), \tag{19}\\
A R=\left(\frac{1+\Delta}{1-\Delta}\right)^{\frac{1}{2}} \tag{20}
\end{gather*}
$$

where

$$
\begin{equation*}
\Delta=\left[1-\frac{4 E_{1}^{2} E_{2}^{2} \sin ^{2} \phi}{E_{1}^{2}+E_{2}^{2}}\right]^{\frac{1}{2}} \tag{21}
\end{equation*}
$$

$A R$ is the axial ratio which is the ratio of the two axes of the ellipse. It is defined to be larger than one always.

