
W�C�Chew
ECE ��� Lecture Notes

��� Real Poynting Theorem�

Since E�H has the dimension of watts�m�� we can study its divergence
property and its conservative property� Using the vector identity in ���	
��
we have�
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We can de�ne

S � E�H Poynting vector �Power Flow Density wattm���� ���

UH �
�

	
� jHj�Magnetic Energy Density �joulem���� �
�

UE �
�

	
� jEj� Electric Energy Density�joulem���� ���

E � J � Energy Dissipation Density�wattm���� ���

UH and UE represent the energy stored in the magnetic �eld and electric �eld
respectively� Alternatively� ��� becomes
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Using the divergence theorem� ��� can be written in integral form�
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The equation says that the LHS will be positive only if there is a net
out�ow of the �ux due to the vector �eld S� If there is no current inside V so
that E � J � �� then this is only possible if the stored energy UH � UE inside
V decreases with time�

If J � �E� then the last term is � R � jEj� dV is always negative� Hence�
the last term tends to make

H
S
S � �n dA negative� because energy dissipation

has to be compensated by power �ux �owing into V � The Poynting theorems
��� and ���� are statements of energy conservation� For example� for a plane
wave�

E � �xf�z � vt�� H � �y
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Also�
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Therefore�
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Hence� the velocity times the total energy density stored equals the power
density �ow in a plane wave�
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