7. The Smith Chart

We have seen from Equation (6.9) that a generalized impedance can be defined as

$$
\begin{equation*}
Z(z)=\frac{\tilde{V}(z)}{\tilde{I}(z)}=Z_{0} \frac{e^{-j \beta z}+\rho_{v} e^{+j \beta z}}{e^{-j \beta z}-\rho_{v} e^{+j \beta z}} \tag{1}
\end{equation*}
$$

The above can be written as

$$
\begin{equation*}
Z(z)=Z_{0} \frac{1+\rho_{v} e^{2 j \beta z}}{1-\rho_{v} e^{2 j \beta z}}=Z_{0} \frac{1+\Gamma(z)}{1-\Gamma(z)} \tag{2}
\end{equation*}
$$

where $\Gamma(z)$ is as defined in (6.16). When $z=0, Z(0)=Z_{L}$, and $\Gamma(0)=\rho_{v}$, and (2) becomes (6.25). Hence (6.25) is a special case of (2). We can introduce a normalized generalized impedance to be

$$
\begin{equation*}
Z_{n}(z)=\frac{Z(z)}{Z_{0}}=\frac{1+\Gamma(z)}{1-\Gamma(z)} \tag{3}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
\Gamma(z)=\frac{Z_{n}(z)-1}{Z_{n}(z)+1} . \tag{4}
\end{equation*}
$$

Given $\Gamma(z)$, we can solve for $Z_{n}(z)$ in (3), and given $Z_{n}(z)$, we can solve for $\Gamma(z)$ in (4). It turns out that the mapping of $Z_{n}(z)$ to $\Gamma(z)$ and the mapping of $\Gamma(z)$ to $Z_{n}(z)$ are one-to-one. We shall next discuss a graphical method to solve (3) and (4) rapidly using the Smith Chart.

Z_{n} is a complex number and can be represented by a point on the Z_{n}-plane, and Γ is a complex number and can be represented by a point on the complex Γ plane.

We noted that from Equation (4) that:
(i) When $Z_{n}=0, \quad \Gamma=-1$.
(ii) When $Z_{n}=1$, or $R_{n}=1, X_{n}=0, \quad \Gamma=0$.
(iii) When $Z_{n} \rightarrow \infty$ in any direction, $\Gamma \rightarrow 1$.
(iv) When $Z_{n}=j X_{n}, \quad|\Gamma|=1$.
(v) When $Z_{n}=j$, or $R_{n}=0, X_{n}=1, \quad \Gamma=j$.
(vi) When $Z_{n}=-j$, or $R_{n}=0, X_{n}=-1, \quad \Gamma=-j$.

If one works out the mapping from Z_{n}-plane to Γ-plane completely, one finds that the $R_{n}=0$ line on Z_{n}-plane maps onto the unit-circle on the Γ plane. Furthermore, the other $R_{n}=$ constant lines map into circles as shown. The $X_{n}=$ constant lines map into arcs like the $X_{n} \pm 1$ lines as shown. Hence, if one puts grids on the Γ-plane, one can read off the R_{n} and X_{n} associated with the corresponding Γ immediately, and, given the value of Γ, one can read off the values of R_{n} and X_{n} immediately.

The mappings (3) and (4) are known as bilinear transforms. A bilinear transform always maps a circle onto a circle.

Properties of a Smith Chart

(i) The normalized admittance $Y_{n}=1 / Z_{n}$, or the reciprocal of Z_{n}, can be found easily from a Smith Chart, because

$$
\begin{equation*}
\Gamma=\frac{Z_{n}-1}{Z_{n}+1}=\frac{1-\frac{1}{Z_{n}}}{1+\frac{1}{Z_{n}}}=\frac{1-Y_{n}}{1+Y_{n}}=-\frac{Y_{n}-1}{Y_{n}+1} . \tag{5}
\end{equation*}
$$

(ii) The change of impedance along the line is obtained by adding or subtracting phase to $\Gamma(z)$ via the relationship

$$
\begin{equation*}
\Gamma(z)=\rho_{v} e^{2 j \beta z} \tag{6}
\end{equation*}
$$

(iii)

$$
\begin{equation*}
\mathrm{VSWR}=\frac{1+\left|\rho_{v}\right|}{1-\left|\rho_{v}\right|}=R_{n \max } \tag{7}
\end{equation*}
$$

since the Smith Chart is a graphical tool to solve Equation (7), and $\left|\rho_{v}\right|$ is real, corresponding to a number on the $X_{n}=0$ line. Notice that $1<$ VSWR $<\infty$ always.

