W.C.Chew
ECE 350 Lecture Notes

4. Using Phasor Techniques to Solve Maxwell’s Equations

For a time-harmonic (simple harmonic) signal, Maxwell’s Equations can
be easily solved using phasor techniques. For example, if we let

H = Re[He!], (1)
E = Re[Ee™™], (2)

and substituting into (3.1), we have
Re[V x Hel!] = Re {%ef}eﬁ"t} . (3)

We could replace % by jw since the signal is time harmonic. Furthermore,
we can remove the Re operator and obtain

V x He'*t = jweBet, (4)

where e/“t cancels out on both sides.
Equation (4) implies Equation (3). Also, any time dependence cancels out in
the problem. Hence,

V x H = jweE. (5)

Similarly, _ _
VxE=—jwuH, (6)
V. ¢E = 0. (8)

Taking the curl of (6) and substituting (5) into it, we have
V xVxE=—jwuV x H=w?ueE. (9)

Again, making use of the identity VxVxE = V(V-E)—V2E, and V-E = 0,
we have _ .
V2E = —w?ueE. (10)

Similarly, _ _
V’H = —w?ueH. (11)

These are the Helmholtz’s wave equations.

Lossy Medium (Conductive Medium)
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Phasor technique is particularly appropriate for solving Maxwell’s equa-
tions in a lossy medium. In a lossy medium, Equation (3.1) becomes

OE
VxH=¢e—+J 12

where J is the induced currents in the medium, and hence,
J =0E. (13)
Applying phasor technique to (12), we have
V xH-= jwef) +oE
= jw (e - jf) E. (14)
w

We can define the quantity
o

_ .0 15
E=e—j— (15)

to be the complex permittivity of the medium, and (14) becomes
V x H = jwéE. (16)

Notice that the only difference between (16) and (5) is the complex permit-
tivity versus the real permittivity. If one goes about deriving the Helmholtz
wave equations for a lossy medium, the results are

VZE = —w?uéE, (17)
VH = —w?péH. (18)

Hence, a lossy medium is easily treated using phasor technique by replacing
a real permittivity with a complex permittivity.
If we restrict ourselves to one dimension, Equation (17), for instance,

becomes of the form 2
- )= B
@Em(z) — v E,(z) =0, (19)

’Yzjw\/;g:jw\/u(e—jg):aﬂﬁ- (20)

The general solution to (19) is of the form

where

E,(z) = C1e77" + Che™. (21)
In real space time,

E.(z,t) = %G[Ew(z)ejm]
= Re[Cre e’ 4+ Re[Che?? /Y] (23)
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If C, = |Ci|e?%, Cy=1|0y|e'*?, y=a+jB, then
E.(z,t) = |Cy| cos(wt — Bz + ¢1)e”**+ | Cy | cos(wt + Bz + ¢o)e**.  (24)

Note that one of the solutions in (24) is decaying with z while another solution
is growing with z. The function cos(wt+ (3z+ @) can be written as cos[+3(z+
5t) + ¢]. Hence, it moves with a velocity

v = 3 (25)

Depending on its sign, it moves either in the positive or negative z direction.
In the above, v is the propagation constant, o is the attenuation constant
while (3 is the phase constant.

Intrinsic Impedance

The intrinsic impedance can be easily derived also in the phasor world.
The phasor representation of Equation (3.23) is

%Ew = —jwuH,. (26)
A corresponding one for I;Ty is
EHy = —jwekF,. (27)

If we now let E, = Ege 7, I:Iy = Hpe 7* , and using them in (26) yields
—yFEge 7 = —jwuHye 7%, (28)
The above implies that

Ey  jwu ©
=2 =20 /0 29
n H, o € ( )

For a lossy medium, we replace € by the complex permittivity and the intrinsic

impedance becomes
Iz [ Jwi
=,./=2 = = . 30
" \/; €—Jj2 o+ Jwp (30)

The above is obviously a complex number.




