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Figure 1: Example of a multi-stage amplifier by cascading a number of discrete
circuit amplifiers in Problem 9.124 of the textbook (Courtesy of Jaeger and
Blalock).

In this lecture, we look at some miscellaneous topics such as finding the
terminal resistance of a discrete circuit amplifier. This knowledge is useful when
we want to cascade a number of discrete circuit amplifiers into to obtain higher
total gain as seen in Figure 1. In order to cascade them, the input resistance
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of an amplifier becomes the load of the output of the previous stage. In the
small-signal linear analysis, it simplifies the circuit if the previous stages of the
amplifier can be replaced with a Thévenin equivalence or a Norton equivalence.
In this case, it is important to know the output resistance of the amplifier
which becomes the Thévenin resistor of the equivalent circuit. Hence, it is
useful to start with finding the small-signal terminal resistance of a discrete
circuit amplifier.

1 Terminal Resistances

1.1 Collector Resistance

Figure 2: Collector resistance with ro included (Courtesy of Jaeger and Blalock).

The collector resistance of an amplifier can be used to arrive at the Thévenin
equivalence of the small-signal linear amplifier. To obtain the Thévenin resistor,
the voltage source is set to zero, and a small test current ix is injected into this
linear circuit. This test current will cause a voltage vx to develop across the
test terminal, and from this, the Thévenin resistor can be found.

First, KVL is applied to Loop 1 as shown in Figure 2, to arrive at

vx = vr + ve = (ix − β0i)ro + ve (1.1)

where a base current i has been assumed to flow into the base. This base current
will induce a controlled-current source in the hybrid-π model for the transistor.
The voltage ve can also be obtained by Ohm’s law, namely,

ve = ix [(Rth + rπ) ‖ RE ] = ix
(Rth + rπ)RE
Rth + rπ +RE

(1.2)
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The current i can be found by the current-divider formula applied at the node
ve, yielding

i = −ix
RE

Rth + rπ +RE
(1.3)

Note that i is negative to ix. Finally, from (1.1)

vx =

(
ix + ix

β0RE
RE + rπ +Rth

)
ro + ix [RE ‖ (rπ +Rth)] (1.4)

where all terms on the right-hand side have been expressed as a linear function
of ix. Then using

RiC =
vx
ix

(1.5)

one has

RiC = ro

(
1 +

β0RE
Rth + rπ +RE

)
+ (Rth + rπ) ‖ RE ≈ ro

(
1 +

β0RE
Rth + rπ +RE

)
(1.6)

where it has been assumed that

ro � RE .

This inequality follows from that the Early effect gives rise to a large ro, or that
a transistor mimics almost an ideal current source.

Moreover, the following approximation and equality are to be made on the
above formula, namely,

(rπ +RE)� Rth

One assumes that in the design of the previous stage amplifier, Rth is small
so as to enable maximum-power transfer to a reasonable load that justifies the
above inequality. Hence,

RiC ≈ ro
(

1 +
β0RE
rπ +RE

)
= ro

(
1 +

β0
rπ

rπRE
rπ +RE

)
(1.7)

In the above, β0

rπ
= gm, then

RiC ≈ ro [1 + gm(RE ‖ rπ)] (1.8)

Notice that RiC is amplified by coupling between RE and rπ. This is because
the induced base current i is negative when ix is positive, making the output
resistance at the collector look even bigger than ro.

Similar analysis can be applied to the MOSFET where rπ = ∞, replacing
RE by RS , and the drain resistance is then

RiD = ro(1 + gmRS) (1.9)
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1.2 Base Resistance

The base resistance is the resistance of the base terminal looking from the base
into the transistor. Using the resistance-reflection formula, this gives

RiB = rπ + (β0 + 1)RE (1.10)

The above can be understood that for every unit of current that flows in the
base terminal, there is a (β0 + 1) unit of current that flows in the emitter
terminal. Applying KVL to the base terminal and the ground of the emitter,
one can arrive at the above formula. Noticing that gmrπ = β0, the above can
be rewritten approximately as

RiB ≈ rπ(1 + gmRE) (1.11)

The second form is easier to remember by some. Similar analysis can be applied
to a MOSFET gate resistance, or letting β0 =∞, one gets that

RiG =∞ (1.12)

1.3 Emitter Resistance

Figure 3: Emitter resistance which serves as the output resistance for the
common-collector amplifier (Courtesy of Jaeger and Blalock).

The emitter resistance serves as the output resistance of the the common-
collector design. It can be found using the test-current method as shown in
Figure 3. Or it can be argued that for every unit of current that flows in the
base, there is a (β0 + 1) unit of current that flows in the emitter. Hence,

RiE =
rπ +Rth

β0 + 1
≈ 1

gm
+
Rth

β0
(1.13)
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This is like the resistance inverse reflection formula.
Apply similar analysis to a MOSFET, or letting β0 =∞ yields

RiS =
1

gm
(1.14)

2 Resistance Inverse Reflection Formula

Figure 4: DC biasing of BJT using using a single power supply: (a) circuit;
(b) circuit with the voltage divider supplying the base voltage replaced by its
Thévenin equivalence (Courtesy of Sedra and Smith).

The fact that for every unit of current that flows in the base, there is a (β0 + 1)
unit of current that flows in the emitter gives rise to the resistance-reflection
formula. This fact remains true at DC and can be used in DC analysis as well.

Referring to Figure 4, one can write the KVL around loop L to get

IB [(β0 + 1)RE +RB ] = VBB − VBE (2.1)

where one notices that IE = (β0 + 1)IB . The above can be written as

IB(β0 + 1) =
VBB − VBE

RE +RB/(β0 + 1)
(2.2)

The left-hand side is just IE giving

IE =
VBB − VBE

RE +RB/(β0 + 1)
(2.3)

One can also view the base resistance RB appears (β0+1) times smaller because
the base current is smaller by the same factor.
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Figure 5: The Darlington pair or configuration for the analysis in Exercise 8.30
of S&S (Courtesy of Sedra and Smith).

3 Darlington Pair

In order to understand the Darlington pair, which is a frequently used multi-
stage amplifier, it will be prudent to do Exercise 8.30 from Sedra and Smith.
You are asked to show that (see Figure 1):

1. Rin = (β1 + 1) [re1 + (β2 + 1)(re2 +RE)]

2. Rout = RE ‖
[
re2 +

re1+[Rsig/(β1+1)]
β2+1

]
3. vo

vsig
= RE

RE+re2+[re1+Rsig/(β1+1)]/(β+2+1)

Answers:

1. The answer is to use the resistance-reflection rule twice. If Q1 has an
emitter resistance of RE1, then using formula (7.107) of S&S, one gets

Rin = (β1 + 1)(re1 +RE1)

But RE1 is the input resistance looking into the base of Q2. Using the
reflection formula again to get RE1 from RE , or

RE1 = (β2 + 1)(re2 +RE)

one gets the above formula in Part 1.

Note: Since (β1+1)re1 = rπ1 which can be gotten by comparing the input
impedance of the hybrid-π model and the T model, the above reflection
formula can also be written as

Rin = (β1 + 1)re1(1 +RE1/re1) = rπ1(1 +RE1/re1)
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Since gm = α/re1 ≈ 1/re1, the above formula is often approximated as

Rin ≈ rπ1(1 + gm1RE1)

The above formula is often used in some textbook like Jaeger and Blalock
and it is easier to remember by some.

Again, using the approximate reflection formula, one can rewrite RE1 as

RE1 = rπ2(1 + gm2RE)

2. First, one needs to find the Thévenin resistor, RTh of the Thévenin equiv-
alence of the source to the left of RE . Then Rout = RE ‖ RTh. To find
RTh, one shorts out the voltage source, and uses the inverse reflection rule
two times to get

RThev =

[
re2 +

re1 + [Rsig/(β1 + 1)]

β2 + 1

]
The inverse reflection formula is based on that, for a BJT, every unit of
current that flows in the base, there is β + 1 unit of current that flows in
the emitter to arrive at the formula in Part 2.

Using the fact that gm = α/re ≈ 1/re, and that β + 1 ≈ β, the above
formula can also be approximated as

Rout ≈ RE ‖
[
1/gm2 +

1/gm1 + [Rsig/(β1)]

β2

]
as is found in some textbooks.

3. For this problem, it is necessary to find the Thévenin resistor looking to
the left of RE from the emitter of Q2. This resistor is obtained by short-
circuiting the source, and looking at the impedance to the left of RE .
This Thévenin resistor is similar to that in Part 2. Next, the equivalent
Thévenin voltage source needs to be found. This can be done by open-
circuiting the load by letting RE → ∞. It is seen that Rin → ∞ in this
case. With the small voltage drops between the base and the emitters,
it is seen that vTh ≈ vsig. Hence formula in Part 3 above can be derived
using the Thévenin equivalent circuit and the voltage divider formula.

7


