ECE 255, Differential Amplifiers, Cont.

29 March 2018

In this lecture, we continue to study differential amplifiers, with emphasis on small signal analysis followed by BJT differential amplifiers.

1 MOS Differential Amplifier, Cont.

1.1 Small-Signal Analysis

To operate the differential amplifier in the linear regime, it has to operate with small signal input. Figure 1(a) is the differential amplifer with a small signal superimposed on top of at DC common-mode signal $V_{C M}$. The input signals are

$$
\begin{equation*}
v_{G 1}=V_{C M}+\frac{1}{2} v_{i d}, \quad v_{G 2}=V_{C M}-\frac{1}{2} v_{i d} \tag{1.1}
\end{equation*}
$$

Then without loss of generality, one can set $V_{C M}=0$, and get the small signal model shown in Figure 1(b). The transistor circuit can be further simplified with T-model equivalent circuit to arrive at Figure 1(c).

The differential input signal is applied in an anti-symmetric or complementary manner as shown. Also, by symmetry, because of the way the amplifier is driven by anti-symmetric signals, the voltage midway between the two amplifiers must be zero making a virtual ground.

From (7.42) of Sedra and Smith, or from the previous supplementary notes,

$$
\begin{equation*}
g_{m}=\frac{2 I_{D}}{V_{O V}}=\frac{2(I / 2)}{V_{O V}}=\frac{I}{V_{O V}} \tag{1.2}
\end{equation*}
$$

Notice that due to symmetry, a virtual ground is established at the location of the original current source. Finally, using the transconductance, one obtains that

$$
\begin{align*}
v_{o 1} & =-g_{m} \frac{v_{i d}}{2} R_{D}, & v_{o 2} & =+g_{m} \frac{v_{i d}}{2} R_{D} \tag{1.3}\\
\frac{v_{o 1}}{v_{i d}} & =-\frac{1}{2} g_{m} R_{D}, & \frac{v_{o 2}}{v_{i d}} & =+\frac{1}{2} g_{m} R_{D} \tag{1.4}
\end{align*}
$$

Or when the differential output is taken, the differential voltage gain proper is

$$
\begin{equation*}
A_{d}=\frac{v_{o d}}{v_{i d}}=\frac{v_{o 2}-v_{o 1}}{v_{i d}}=g_{m} R_{D} \tag{1.5}
\end{equation*}
$$

Printed on April 3, 2018 at 10:19: W.C. Chew and S.K. Gupta.

Figure 1: Small-signl analysis of the MOS differential amplifier: (a) The circuit with DC biases in place. (b) The small-signal circuit of the differential amplifier with DC biases removed. (c) The T-model equivalent circuit of the differential amplifier (Courtesy of Sedra and Smith).

Figure 2: Alternative view of the small-signal analysis where (a) the analysis is done directly on the circuit, (b) the analysis is done on the T-model equivalent circuit (Courtesy of Sedra and Smith).

Figure 3: The equivalent differential half-circuit of the model shown in Figure 2(a) (Courtesy of Sedra and Smith).

An alternative way of viewing the above analysis is to use the model shown in Figure 2. When a total voltage $v_{i d}$ is applied between gates G_{1} and G_{2}, then the impedance seen by this voltage is $2 / g_{m}$. And the current produced is $\left(g_{m} / 2\right) v_{i d}$, and the voltage $v_{o 1}=-g_{m} R_{D} / 2$, giving the same result as seen before.

1.1.1 The Differential Half-Circuit

Due to the symmetry of the differential amplifier, a virtual ground can be inserted right in between the two transistors: hence, only a half circuit needs to be analyzed as shown in Figure 3. Then the differential gain is given by

$$
\begin{equation*}
A_{d}=g_{m}\left(R_{D} \| r_{o}\right) \tag{1.6}
\end{equation*}
$$

where we have assumed the presence of an output resistor r_{o} to account for the Early effect.

1.1.2 Differential Amplifier with Current-Source Loads

A MOSFET without the Early effect behaves like a current source because changes in $V_{D S}$ does not change I_{D}. Hence, an appropriately biased MOSFET with the correct gate voltage can be used as a current source. Thus, the load of the differential amplifier can be replaced with a current source which ideally has an infinite internal impedance. Figure $4(\mathrm{a})$ shows the realization of such current sources with PMOS Q_{3} and $Q_{4} \cdot{ }^{1}$ The bias voltage V_{G} is chosen to ensure a drain current equal to $I / 2$. Due to the symmetry of the design, the half-circuit is shown in Figre 4(b). Therefore, the differential gain is given by

$$
\begin{equation*}
A_{d}=\frac{v_{o d}}{v_{i d}}=g_{m 1}\left(r_{o 1} \| r_{o 3}\right) \tag{1.7}
\end{equation*}
$$

where the R_{D} in (1.6) is now replaced by $r_{o 3}$.

2 BJT Differential Pair

The basic configuration of the BJT differential pair is shown in Figure 5, which is very similar to the MOSFET differential pair. Here it is assumed that the transistors are in active mode and not in saturation mode ${ }^{2}$

2.1 Basic Operation

Again, the basic operation of the differential pair is divided into the common mode operation plus a differential mode operation. In other words,

$$
\begin{equation*}
v_{B 1}=\frac{1}{2}\left(v_{B 1}+v_{B 2}\right)+\frac{1}{2}\left(v_{B 1}-v_{B 2}\right), \quad v_{B 2}=\frac{1}{2}\left(v_{B 1}+v_{B 2}\right)-\frac{1}{2}\left(v_{B 1}-v_{B 2}\right) \tag{2.1}
\end{equation*}
$$

[^0]
(a)

(b)

Figure 4: (a) Differential amplifier where the load is replaced by a current source approximated by MOSFETs Q_{3} and Q_{4}. (b) The differential half circuit of (a) (Courtesy of Sedra and Smith).

Figure 5: The basic BJT differential-pair configuration (Courtesy of Sedra and Smith).

The above can be rewritten as

$$
\begin{equation*}
v_{B 1}=V_{C M}+\frac{1}{2} v_{i d}, \quad v_{B 2}=V_{C M}-\frac{1}{2} v_{i d} \tag{2.2}
\end{equation*}
$$

or that the inputs at the bases can be written as a sum and difference of the two inputs at the two bases, the sum of which is twice the common-mode voltage $V_{C M}$, and the difference of which is the differential input voltage.

When the transistors are matched, then $i_{E 1}=i_{E 2}=I / 2$. Then the currents through the emitters are $\alpha I / 2$ for each branch and the voltage at the collector is then by KVL,

$$
V_{C}=V_{C C}-\frac{1}{2} \alpha I R_{C}
$$

The difference voltage at the collectors is zero due to symmetry.
Figure 6 shows the different operation of the BJT differential amplifier. Figure 6(a) shows the common-mode operation of the amplifier. Figure 6(b) shows that when a large positive base voltage of +1 V is applied at transistor Q_{1}, it is turned on when transistor Q_{2} is turned off. On the other hand, when large negative base voltage of -1 V is applied at transistor Q_{1}, Q_{1} is turned off while Q_{2} is turned on as shown in Figure 6(c). Figure 6(d) shows a small signal operation of the BJT differential amplifier.

Figure 6: Different operational modes of the BJT differential amplifier: (a) The common-mode operation. (b) The differential mode wih Q_{2} off and Q_{1} on with $V_{C M}=0$. (c) The differential mode wih Q_{1} off and Q_{2} on with $V_{C M}=0$. (d) The small-signal differential mode operation with $V_{C M}=0$ (Courtesy of Sedra and Smith).

2.2 Input Common-Mode Range

To investigate the range over which the transistors remain in the active mode, we remind ourselves of the following figure, as shown in Figure 7 (from previous lecture notes, or Figure 6.8 of Sedra and Smith). In order to remain in the active mode, the CBJ should not be forward biased but in reverse biased. So the collector-base voltage should not be more negative than -0.4 V for an $n p n$ transistor. Thus, one gets

$$
\begin{equation*}
V_{C M \max } \approx V_{C}+0.4=V_{C C}-\alpha \frac{I}{2} R_{C}+0.4 \tag{2.3}
\end{equation*}
$$

in order for the CBJ not to become forward biased.
On the other hand, the current source I in the circuit needs a certain minimum $V_{C S}$ to ensure its proper operation. Thus,

$$
\begin{equation*}
V_{C M \min }=-V_{E E}+V_{C S}+V_{B E} \tag{2.4}
\end{equation*}
$$

It is noted that with large values for $V_{E E}$ and $V_{C C}$, then $V_{C M}$ can have a large range of values from a large negative number to a large positive number.

Figure 7: The $i-v$ characteristic of the CBJ (collector-base junction) showing when the transistor enters a saturation mode (Courtesy of Sedra and Smith).

2.3 Large-Signal Operation

Figure 8: The transfer characteristics of the BJT differential amplifier with $\alpha \approx 1$ (Courtesy of Sedra and Smith).

Recall that in a BJT, the collector current is given by $i_{C}=I_{S} e^{v_{B E} / V_{T}}$, and that the emitter and collector currents are related by the ratio α, i.e., $\alpha i_{E}=i_{C}$. Then the emitter currents, applied specifically to the differential amplifier, are

$$
\begin{equation*}
i_{E 1}=\frac{I_{S}}{\alpha} e^{\left(v_{B 1}-v_{E}\right) / V_{T}}, \quad i_{E 2}=\frac{I_{S}}{\alpha} e^{\left(v_{B 2}-v_{E}\right) / V_{T}} \tag{2.5}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
\frac{i_{E 1}}{i_{E 2}}=e^{\left(v_{B 1}-v_{B 2}\right) / V_{T}} \tag{2.6}
\end{equation*}
$$

From it, one gets

$$
\begin{equation*}
\frac{i_{E 1}}{i_{E 1}+i_{E 2}}=\frac{1}{1+e^{\left(v_{B 2}-v_{B 1}\right) / V_{T}}}, \quad \frac{i_{E 2}}{i_{E 1}+i_{E 2}}=\frac{1}{1+e^{\left(v_{B 1}-v_{B 2}\right) / V_{T}}} \tag{2.7}
\end{equation*}
$$

Since $i_{E 1}+i_{E 2}=I$, it follows that

$$
\begin{equation*}
i_{E 1}=\frac{I}{1+e^{-v_{i d} / V_{T}}}, \quad i_{E 2}=\frac{I}{1+e^{+v_{i d} / V_{T}}} \tag{2.8}
\end{equation*}
$$

where $v_{i d}=v_{B 1}-v_{B 2}$.
Because of the exponential relation between the collector current i_{C} and the base-emitter voltage, the current switches rapidly between the two transistors as shown in Figure 8: A small differential voltage $v_{i d}$ of several V_{T} can enable the switching.

Furthermore, because of the exponential relation of the collector current, the BJT differential pair is very sensitive to the change in the base-emitter voltage of the input voltage. This sensitivity can be reduced by adding emitter resistors R_{e} to the circuit as shown in Figure 9(a). Figure 9(b)shows the improved linearity of the collector current to the input voltage $v_{i d}$ with increasing R_{e}.

Figure 9: The transfer characteristics of the BJT differential amplifier (b) can be made more linear by adding emitter resistors R_{e} in the differential pair as shown in (a) (Courtesy of Sedra and Smith).

For the MOSFET case, the linearity can be improved by increasing $V_{O V}$ which is dependent on the geometry of the gate, and it can be changed by altering its geometry. But this cannot be done for BJT; however, the linearity
is improved by adding external resistors R_{e}.

2.4 Small-Signal Operation

Figure 10: The differential amplifier with the DC bias voltages plus the small differential input signals $v_{i d}$ (Courtesy of Sedra and Smith).

Figure 10 shows the small signal model of the BJT differential amplifier. One can show that

$$
\begin{equation*}
i_{C 1}=\frac{\alpha I}{1+e^{-v_{i d} / V_{T}}}, \quad i_{C 2}=\frac{\alpha I}{1+e^{+v_{i d} / V_{T}}} \tag{2.9}
\end{equation*}
$$

The above can be manipulated to become

$$
\begin{equation*}
i_{C 1}=\frac{\alpha I e^{v_{i d} /\left(2 V_{T}\right)}}{e^{v_{i d} /\left(2 V_{T}\right)}+e^{-v_{i d} /\left(2 V_{T}\right)}}, \quad i_{C 2}=\frac{\alpha I e^{-v_{i d} /\left(2 V_{T}\right)}}{e^{v_{i d} /\left(2 V_{T}\right)}+e^{-v_{i d} /\left(2 V_{T}\right)}} \tag{2.10}
\end{equation*}
$$

Assuming that $v_{i d} \ll 2 V_{T}$, and using that $e^{x} \approx 1+x$ when x is small, then
$i_{C 1} \approx \frac{\alpha I\left[1+v_{i d} /\left(2 V_{T}\right)\right]}{1+v_{i d} /\left(2 V_{T}\right)+1-v_{i d} /\left(2 V_{T}\right)}, \quad i_{C 2} \approx \frac{\alpha I\left[1-v_{i d} /\left(2 V_{T}\right)\right]}{1+v_{i d} /\left(2 V_{T}\right)+1-v_{i d} /\left(2 V_{T}\right)}$
or

$$
\begin{equation*}
i_{C 1} \approx \frac{\alpha I}{2}+\frac{\alpha I}{2 V_{T}} \frac{v_{i d}}{2}, \text { and similarly, } i_{C 2} \approx \frac{\alpha I}{2}-\frac{\alpha I}{2 V_{T}} \frac{v_{i d}}{2} \tag{2.11}
\end{equation*}
$$

In other words, the small signal i_{c} is

$$
\begin{equation*}
i_{c} \approx \frac{\alpha I}{2 V_{T}} \frac{v_{i d}}{2} \tag{2.13}
\end{equation*}
$$

Since $g_{m}=I_{C} / V_{T}=\alpha I /\left(2 V_{T}\right)$, the above is just

$$
\begin{equation*}
i_{c}=g_{m} \frac{v_{i d}}{2} \tag{2.14}
\end{equation*}
$$

Figure 11: (a) The small signal model of the BJT differential amplifier with the DC bias voltages removed. (b) The T-model equivalent circuit of the smallsignal model (Courtesy of Sedra and Smith).

Alternatively, one can look at Figure 11 and see that

$$
\begin{equation*}
i_{e}=\frac{v_{i d}}{2 r_{e}} \tag{2.15}
\end{equation*}
$$

Consequently,

$$
\begin{equation*}
i_{c}=\alpha i_{e}=\frac{\alpha v_{i d}}{2 r_{e}}=g_{m} \frac{v_{i d}}{2} \tag{2.16}
\end{equation*}
$$

where $g_{m}=\alpha / r_{e}$ have been used.
In the case of Figure 12 when an emitter resistor R_{e} is added, then

$$
\begin{equation*}
i_{e}=\frac{v_{i d}}{2 r_{e}+2 R_{e}} \tag{2.17}
\end{equation*}
$$

Figure 12: The small signal model of the BJT differential amplifier with the DC bias voltages removed and emitter resistors added (Courtesy of Sedra and Smith).

[^0]: ${ }^{1}$ They could equally have been realized with NMOS.
 ${ }^{2}$ Please note that saturation for BJT is very different in meaning from saturation for MOSFET.

