ECE 255

12 October 2017

In this lecture, we will cover some examples.

Example 7.8

A CE amplifier utilizes a BJT with $\beta=100$ is biased at $I_{C}=1 \mathrm{~mA}$ and has a collector resistance $R_{C}=5 \mathrm{k} \Omega$. Find R_{in}, R_{o}, and $A_{v o}$. If the amplifier is fed with a signal source having a resistance of $5 \mathrm{k} \Omega$, and a load resistance $R_{L}=5 \mathrm{k} \Omega$ is connected to the output terminal, find the resulting A_{v} and G_{v}. If \hat{v}_{π} is to be limited to 5 mV , what are the corresponding $\hat{v}_{\text {sig }}$ and \hat{v}_{o} with the load connected?

Solution

At $I_{C}=1 \mathrm{~mA}$,

$$
\begin{aligned}
g_{m} & =\frac{I_{C}}{V_{T}}=\frac{1 \mathrm{~mA}}{0.025 \mathrm{~V}}=40 \mathrm{~mA} / \mathrm{V} \\
r_{\pi} & =\frac{\beta}{g_{m}}=\frac{100}{40 \mathrm{~mA} / \mathrm{V}}=2.5 \mathrm{k} \Omega
\end{aligned}
$$

Example 7.8 continued

The amplifier characteristic parameters can now be found as

$$
\begin{aligned}
R_{\mathrm{in}} & =r_{\pi}=2.5 \mathrm{k} \Omega \\
A_{v o} & =-g_{m} R_{C} \\
& =-40 \mathrm{~mA} / \mathrm{V} \times 5 \mathrm{k} \Omega \\
& =-200 \mathrm{~V} / \mathrm{V} \\
R_{o} & =R_{C}=5 \mathrm{k} \Omega
\end{aligned}
$$

With a load resistance $R_{L}=5 \mathrm{k} \Omega$ connected at the output, we can find A_{v} by either of the following two approaches:

$$
\begin{aligned}
A_{v} & =A_{v o} \frac{R_{L}}{R_{L}+R_{o}} \\
& =-200 \times \frac{5}{5+5}=-100 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

or

$$
\begin{aligned}
A_{v} & =-g_{m}\left(R_{C} \| R_{L}\right) \\
& =-40(5 \| 5)=-100 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The overall voltage gain G_{v} can now be determined as

$$
\begin{aligned}
G_{v} & =\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}} A_{v} \\
& =\frac{2.5}{2.5+5} \times-100=-33.3 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

If the maximum amplitude of v_{π} is to be 5 mV , the corresponding value of $\hat{v}_{\text {sig }}$ will be

$$
\hat{v}_{\text {sig }}=\left(\frac{R_{\mathrm{in}}+R_{\text {sig }}}{R_{\mathrm{in}}}\right) \hat{v}_{\pi}=\frac{2.5+5}{2.5} \times 5=15 \mathrm{mV}
$$

and the amplitude of the signal at the output will be

$$
\hat{v}_{o}=G_{v} \hat{v}_{\text {sig }}=33.3 \times 0.015=0.5 \mathrm{~V}
$$

Example 7.9

For the CE amplifier specified in Example 7.8, what value of R_{e} is needed to raise $R_{\text {in }}$ to a value four times that of $R_{\text {sig }}$? With R_{e} included, find $A_{v o}, R_{o}, A_{v}$, and G_{v}. Also, if \hat{v}_{π} is limited to 5 mV , what are the corresponding values of $\hat{v}_{\text {sig }}$ and \hat{v}_{o} ?

Solution

To obtain $R_{\text {in }}=4 R_{\text {sig }}=4 \times 5=20 \mathrm{k} \Omega$, the required R_{e} is found from

$$
20=(\beta+1)\left(r_{e}+R_{e}\right)
$$

With $\beta=100$,

$$
r_{e}+R_{e} \simeq 200 \Omega
$$

Thus,

$$
\begin{aligned}
R_{e} & =200-25=175 \Omega \\
A_{v o} & =-\alpha \frac{R_{C}}{r_{e}+R_{e}} \\
& \simeq-\frac{5000}{25+175}=-25 \mathrm{~V} / \mathrm{V} \\
R_{o} & =R_{C}=5 \mathrm{k} \Omega \text { (unchanged) } \\
A_{v} & =A_{v o} \frac{R_{L}}{R_{L}+R_{o}}=-25 \times \frac{5}{5+5}=-12.5 \mathrm{~V} / \mathrm{V} \\
G_{v} & =\frac{R_{\text {in }}}{R_{\text {in }}+R_{\text {sig }}} A_{v}=-\frac{20}{20+5} \times 12.5=-10 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

For $\hat{v}_{\pi}=5 \mathrm{mV}$,

$$
\begin{aligned}
\hat{v}_{i} & =\hat{v}_{\pi}\left(\frac{r_{e}+R_{e}}{r_{e}}\right) \\
& =5\left(1+\frac{175}{25}\right)=40 \mathrm{mV} \\
\hat{v}_{\text {sig }} & =\hat{v}_{i} \frac{R_{\text {in }}+R_{\text {sig }}}{R_{\text {in }}} \\
& =40\left(1+\frac{5}{20}\right)=50 \mathrm{mV} \\
\hat{v}_{o} & =\hat{v}_{\text {sig }} \times\left|G_{v}\right| \\
& =50 \times 10=500 \mathrm{mV}=0.5 \mathrm{~V}
\end{aligned}
$$

Thus, while $\left|G_{v}\right|$ has decreased to about a third of its original value, the amplifier is able to produce as large an output signal as before for the same nonlinear distortion.

Example 7.10

It is required to design an emitter follower to implement the buffer amplifier of Fig. 7.46(a). Specify the required bias current I_{E} and the minimum value the transistor β must have. Determine the maximum allowed value of $v_{\text {sig }}$ if v_{π} is to be limited to 5 mV in order to obtain reasonably linear operation. With $v_{\text {sig }}=200 \mathrm{mV}$, determine the signal voltage at the output if R_{L} is changed to $2 \mathrm{k} \Omega$, and to $0.5 \mathrm{k} \Omega$.

(a)

Figure 7.46 Circuit for Example 7.10.

Example 7.10 continued

(b)

Figure 7.46 continued

Solution

The emitter-follower circuit is shown in Fig. 7.46(b). To obtain $R_{o}=10 \Omega$, we bias the transistor to obtain $r_{e}=10 \Omega$. Thus,

$$
\begin{aligned}
10 \Omega & =\frac{V_{T}}{I_{E}} \\
I_{E} & =2.5 \mathrm{~mA}
\end{aligned}
$$

The input resistance $R_{\text {in }}$ will be

$$
\begin{gathered}
R_{\mathrm{in}}=(\beta+1)\left(r_{e}+R_{L}\right) \\
100=(\beta+1)(0.01+1)
\end{gathered}
$$

Thus, the BJT should have a β with a minimum value of 98 . A higher β would obviously be beneficial.
The overall voltage gain can be determined from

$$
G_{v} \equiv \frac{v_{o}}{v_{\text {sig }}}=\frac{R_{L}}{R_{L}+r_{e}+\frac{R_{\text {sig }}}{(\beta+1)}}
$$

Assuming $\beta=100$, the value of G_{v} obtained is

$$
G_{v}=0.5
$$

Thus when $v_{\text {sig }}=200 \mathrm{mV}$, the signal at the output will be 100 mV . Since the 100 mV appears across the 1-k Ω load, the signal across the base-emitter junction can be found from

$$
\begin{aligned}
v_{\pi} & =\frac{v_{o}}{R_{L}} \times r_{e} \\
& =\frac{100}{1000} \times 10=1 \mathrm{mV}
\end{aligned}
$$

If $\hat{v}_{\pi}=5 \mathrm{mV}$ then $v_{\text {sig }}$ can be increased by a factor of 5 , resulting in $\hat{v}_{\text {sig }}=1 \mathrm{~V}$.
To obtain v_{o} as the load is varied, we use the Thévenin equivalent of the emitter follower, shown in Fig. 7.45(a) with $G_{v o}=1$ and

$$
R_{\mathrm{out}}=\frac{R_{\mathrm{sig}}}{\beta+1}+r_{e}=\frac{100}{101}+0.01=1 \mathrm{k} \Omega
$$

to obtain

$$
v_{o}=v_{\text {sis }} \frac{R_{L}}{R_{L}+R_{\text {out }}}
$$

For $R_{L}=2 \mathrm{k} \Omega$,

$$
v_{o}=200 \mathrm{mV} \times \frac{2}{2+1}=133.3 \mathrm{mV}
$$

and for $R_{L}=0.5 \mathrm{k} \Omega$,

$$
v_{o}=200 \mathrm{mV} \times \frac{0.5}{0.5+1}=66.7 \mathrm{mV}
$$

