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1 Introduction

In this lecture, we will study the internal capacitances and their effects on the
high-frequency response of a circuit. It is based on Section 10.2 to Section 10.5
of the textbook.

2 Internal Capacitive Effects on MOSFET

Any two pieces of conductive materials can make a capacitor. Hence, when two
pieces of conductors are brought to close proximity of each other, due to that
unlike charges attract, charges will accumulate at these points. Then electric
field is set up in between them, giving rise to electric energy stored. Electric
energy stored corresponds to energy storage in a capacitor. These equivalent
capacitors are called internal capacitors or parasitic capacitors. They are shown
in Figure 1.

These internal capacitors gives rise to the modification to the small-signal
model. This modification is shown in Figure 2(a). Here, Cgs, Cgd, Csb, and
Cdb are the gate-to-source, gate-to-drain, source-to-body, and drain-to-body
capacitances, respectively. But when the source terminal is connected directly
to the body, then the model can be simplified as that shown in Figure 2(b). By
further ignoring Cdb the drain-to-body capacitor, which is small since drain can
be quite far from the body, the model simplifies to that show in Figure 2(c) and
(d).
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Figure 1: Internal capacitors in a MOSFET. Any two pieces of conductive
materials separated by an insulator (or a region of low conductivity) will have a
capacitance between them. This figure shows the internal capacitances as Cgs,
Cgd, Csb, and Cdb (Courtesy of Sedra and Smith).
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Figure 2: (a) High-frequency equivalent circuit of a MOSFET. (b) The sim-
plified case where the source terminal is connected to the body. (c) Further
simplification by ignoring Cdb, which is usually small. (d) The simplified T
model equivalent circuit (Courtesy of Sedra and Smith).
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2.1 The MOSFET Unity-Gain Frequency (fT )

Figure 3: Model for determining the short-circuit current gain (Courtesy of
Sedra and Smith).

As the frequency increases, the gain of the amplifier drops and its performance
deteriorates. The amplifier becomes useless again when its gain drops below
one. Therefore, it is prudent to ascertain the frequency at which the short-
circuit gain becomes one. This is usually denoted as fT , or called the transition
frequency.

To determine the short-circuit current gain using the model shown in Figure
3, one injects a current Ii into the input port of the amplifier. Then the output
current Io, ignoring the current through ro, is1

Io = gmVgs − sCgdVgs (2.1)

Since the capacitance Cgd is small, one can approximate this current as just

Io ≈ gmVgs (2.2)

Furthermore, one finds Vgs as

Vgs =
Ii

s (Cgs + Cgd)
(2.3)

Consequently, using (2.2) and (2.2), one gets

Io
Ii

=
gm

s (Cgs + Cgd)
(2.4)

By letting s = jω, one has ∣∣∣∣IoIi
∣∣∣∣ =

gm
ω (Cgs + Cgd)

(2.5)

1Using KCL which is valid for complex impedances as well.
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The above becomes unity at

ω = ωT = gm/ (Cgs + Cgd) (2.6)

Using fT = ωT /2π yields

fT =
gm

2π (Cgs + Cgd)
(2.7)

Typically, fT ranges from 100 MHz for older technologies (5-µm CMOS) to
many GHz for newer high-speed technologies (0.13-µm CMOS).2 The smaller
the device, the smaller are the internal capacitances, since capacitance is simply
given by the formula εA/d. Making a device 10 times smaller makes the area
100 times smaller, while the separation becomes 10 times smaller. Hence, the
capacitance becomes ten times smaller.

2Now it is possible to make transistors operating at 100 GHz.
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2.2 The BJT

As before, the simple hybrid-π model of the BJT has to be modified accordingly
due to the presence of internal or parasitic capacitances.

2.2.1 The Base-Charging or Diffusion Capacitance Cde

Parasitic capacitances slow down the switching speed of a transistor, since they
have to be charged and discharged. It will be prudent to study various charge
storage mechanisms in a transistor. For an npn transistor, the charge stored in
the base region can be expressed at

Qn = τF iC (2.8)

where τF is the forward base-transit time, the average time a charge carrier
(electron) takes in crossing the base. It is typically about 10 ps to 100 ps. On
the average, this amount of charge will reside in the base region.

Since iC is dependent on vBE , Qn will similarly depend on vBE . And C =
Q/V , a small-signal diffusion capacitance Cde can be derived to be

Cde =
dQn
dvBE

= τF
diC
dvBE

(2.9)

Here, the small-signal transconductance gm = diC/(dvBE) resulting in

Cde = τF gm = τF
IC
VT

(2.10)

We have used the formula that gm = IC/VT .

2.2.2 The Base-Emitter Junction Capacitance Cje

In addition to the base-charging diffusion capacitance, there capacitance at the
depletion layers at the junctions. For the base-emitter junction, this capacitance
is assumed to be

Cje ≈ 2Cje0 (2.11)

where Cje0 is the value of Cje at zero EBJ voltagen or no biasing. This capaci-
tance increases on forward biasing because the depletion layer becomes thinner.

2.2.3 The Collector-Base Junction Capacitance Cµ

Since in the active mode, the CBJ is reverse biased, there is a depletion ca-
pacitance Cµ is empirically given by

Cµ =
Cµ0(

1 + VCB

V0c

)m (2.12)

Here, VCB is the magnitude of the CBJ reverse-bias voltage, and V0c is the CBJ
built-in voltage around 0.75 V, and m is typically around 0.2− 0.5. It is noted
that this capacitance decreases under reverse biasing due to that the depletion
layer becomes thicker.

6



2.2.4 The High-Frequency Models

Figure 4: The high-frequency model for BJT both in hybrid-π model in (a), and
the T model in (b) (Courtesy of Sedra and Smith).

Because of the internal capacitances of the BJT, the high-frequency model is
shown in Figure 4 where Cπ = Cde+Cje, and Cµ is as defined before. Here, Cπ
is a few to a few tens of picofarads, while Cµ is a fraction to a few picofarads. In
general, Cµ � Cπ. They get increasingly smaller with progress in technology.
A resistor rx is used here to model an intrinsic silicon material resistance.
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2.2.5 The BJT Unity-Gain Frequency

Figure 5 can be used to find the short-circuit current gain of a BJT at high
frequency. The collector current

Ic = (gm − sCµ)Vπ (2.13)

Furthermore, one can show that

Vπ = Ib (rπ ‖ Cπ ‖ Cµ) =
Ib

1/rπ + sCπ + sCµ
(2.14)

Thus, a frequency dependent β, called hfe, is given as

hfe =
Ic
Ib

=
gm − sCµ

1/rπ + s(Cπ + Cπ)
(2.15)

When ωCµ � gm, the above can be approximated as

hfe ≈
gmrπ

1 + s(Cπ + Cµ)rπ
(2.16)

Thus,

hfe =
β0

1 + s(Cπ + Cµ)rπ
(2.17)

where β0 = gmrπ is the low-frequency value of β. The 3-dB point is at ω = ωβ
where

ωβ =
1

(Cπ + Cµ)rπ
(2.18)

Writing

hfe =
β0

1 + s/ωβ
=

β0
1 + iω/ωβ

(2.19)

It can be seen that when
ω = ωT ≈ β0ωβ (2.20)

the gain is approximately unity. Thus

ωT ≈
gm

Cπ + Cµ
(2.21)

and
fT ≈

gm
2π(Cπ + Cµ)

(2.22)
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Figure 5: Circuit model for deriving hfe (Courtesy of Sedra and Smith).

Figure 6: Bode plot for |hfe| (Courtesy of Sedra and Smith).
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Summary
The table below summarizes the BJT high-frequency model.
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3 High-Frequency Response of the CS and CE
Amplifier with Miller Effect

Figure 7: Models for the high-frequency response of a CS amplifier. (a) Equiva-
lent circuit. (b) A simplified circuit by consolidation. (c) Further simplification
by using Ceq. (d) A single-time-constant frequency response Bode plot (Cour-
tesy of Sedra and Smith).

11



Figure 8: Continuation of the previous Figure 7 (Courtesy of Sedra and Smith).

Figure 7 shows the small-signal equivalence of a CS amplifier. The overall
voltage gain is given by

AM =
Vo
Vsig

= − RG
RG +Rsig

(gmR
′
L) (3.1)

In order to simplify the circuit, it can be consolidate using Thevenin theorem
so that the source is modeled by only two elements as shown in Figure 7(b).
Also, R′

L consolidates the three resistances at the output end.
One further simplification is to replace the capacitor with an equivalence

capacitor Ceq as shown in Figure 7(c). We shall calculate the load current, in
accordance with Figure 7(b), which is given by (gmVgs− Igd). Then the output
voltage is given by

Vo = (gmVgs − Igd)R′
L ≈ −gmR′

LVgs (3.2)

assuming that gmVgs � Igd. In the above, R′
L = ro ‖ RD ‖ RL. The current
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Igd can now be found as

Igd = sCgd(Vgs − Vo) ≈ sCgd [Vgs − (−gmR′
LVgs)] = sCgd(1 + gmR

′
L)Vgs (3.3)

Now, one can assume that this extra current Igd is due to an equivalent capacitor
Ceq connected in parallel to Cgs as shown in Figure 8. The current that flows
into this equivalent capacitance Ceq is

sCeqVgs = sCgd(1 + gmR
′
L)Vgs (3.4)

The above results in that

Ceq = Cgd(1 + gmR
′
L) (3.5)

This equivalent capacitance Ceq is much larger than Cgd, and this effect is known
as the Miller effect, and the factor (1 + gmR

′
L) is the Miller multiplier.

Hence, the larger the gain of the amplifier is, the larger is this effect.
The above approximation replaces a double-pole system with a single pole

system or a single-time-constant (STC) circuit. Then the function can now be
represented as

Vgs =

(
RG

RG +Rsig
Vsig

)
1

1 + s/ω0
(3.6)

The pole frequency of the STC circuit is then

ω0 = 1/(CinR
′
sig) (3.7)

with
Cin = Cgs + Ceq = Cgs + Cgd(1 + gmR

′
L) (3.8)

and
R′

sig = Rsig ‖ RG (3.9)

A sanity check of (3.6) shows that is the correct formula: it reduces to the
correct formula when s = ω = 0. The system in Figure 8 can only have one
pole with the corresponding relaxation frequency given by (3.7). Therefore, it
the correct formula which can be confirmed by a longer derivation.

Then using Vgs given in (3.2), one has

Vo
Vsig

= −
(

RG
RG +Rsig

)
(gmR

′
L)

1

1 + s/ω0
(3.10)

which can be simplified as
Vo
Vsig

=
AM

1 + s/ωH
(3.11)

where AM is the midband gain given by (3.1), and ωH is the upper 3-dB fre-
quency point, or

ωH = ω0 =
1

CinR′
sig

, fH =
ωH
2π

=
1

2πCinR′
sig

(3.12)

Observations
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1. The upper 3-dB frequency is determined by the interaction of R′
sig = Rsig ‖

RG ≈ Rsig since RG � Rsig, and Cin = Cgs + Cgd(1 + gmR
′
L). Hence, a

large Rsig will cause fH to be lowered, decreasing the bandwidth of the
amplifier.

2. The total capacitance Cin is increased by the Miller which magnify Cgd
by the factor 1 + gmR

′
L, which lowers fH .

3. To improve the high-frequency response of MOSFET, one has to reduce
the Miller effect.

4. The STC is an approximation because we are replacing a double-pole
system with a single-pole system. A system with two capacitors has two
poles, but replacing it with one single pole is only approximately correct.

5. The dominant high-frequency pole of the system is given by by fP ≈ fH .
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3.1 The Common-Emitter Amplifier

Figure 9: Models for the high-frequency response of a CE amplifier. (a) Equiva-
lent circuit. (b) A simplified circuit by consolidation. (c) Further simplification
by using Ceq. (d) A single-time-constant frequency response Bode plot (Cour-
tesy of Sedra and Smith).

15



Figure 10: Continuation of the previous Figure 9 (Courtesy of Sedra and Smith).

The analysis of the CE amplifier is very similar to that of the CS amplifier as
shown in Figure 9.

3.2 Miller’s Theorem

Figure 11: The Miller equivalent circuit (Courtesy of Sedra and Smith).

The Miller’s theorem allows the replacement of a bridging capacitance by two
equivalent capacitances as shown in Figure 11. This theorem relies on that

V2 = KV1 (3.13)
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in Figure 11. In this case, it can be shown that

Z1 = Z/(1−K), Z2 = Z
/(

1− 1

K

)
(3.14)

The proof is given in the textbook and will not be reproduced here.

4 Useful Tools for High-Frequency Response of
Amplifiers

When the simple analysis previously discussed fails, one may resort to more so-
phisticated analysis tools for the frequency response. This happens for instance,
when the poles and zeros are not far apart.

4.1 High-Frequency Gain Function

The frequency gain as a function of frequency can be expressed as

A(s) = AMFH(s) (4.1)

where

FH(s) =
(1 + s/ωZ1)(1 + s/ωZ2) · · · (1 + s/ωZn)

(1 + s/ωP1)(1 + s/ωP2) · · · (1 + s/ωPm)
(4.2)

Notice that the above function FH(s)→ 1 when s→ 0, which is what is desired.

4.2 Determing the 3-dB Frequency fH

As in the low-frequency case, when the above function is dominated by a single
pole, then one has

FH(s) ≈ 1

1 + s/ωP1
(4.3)

The 3-dB point is easily shown to be

ωH ≈ ωP1 (4.4)

by first letting s = jω and then ω = ωP1. The above single pole approximation
is good when the next pole or zero is two octaves (4 times) further away from
the dominant pole.

If a dominant pole approximation is not possible, the aggregate effects of
the poles and zeros need to be considered in finding ωH . For simplicity, one
considers first a simple two-pole and two-zero system. Then

FH(s) =
(1 + s/ωZ1)(1 + s/ωZ2)

(1 + s/ωP1)(1 + s/ωP2)
(4.5)
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Letting s = jω and taking the magnitude square of the above, one gets

|FH(jω)|2 =
(1 + ω2/ω2

Z1)(1 + ω2/ω2
Z2)

(1 + ω2/ω2
P1)(1 + ω2/ω2

P2)
(4.6)

By definition, at ω = ωH , the half-power point, |FH(jωH)|2 = 1
2 , and

1

2
=

(1 + ω2
H/ω

2
Z1)(1 + ω2

H/ω
2
Z2)

(1 + ω2
H/ω

2
P1)(1 + ω2

H/ω
2
P2)
≈

1 + ω2
H

(
1
ω2

Z1
+ 1

ω2
Z2

)
+ · · ·

1 + ω2
H

(
1
ω2

P1
+ 1

ω2
P2

)
+ · · ·

(4.7)

where we have kept only the quadratic terms in both the numerator and de-
nominator. The remaining terms are proportional to ω4

H , which are negligible
when ωH is small, compared to the terms retained. The above equation can be
solved approximately to yield

ωH ≈ 1
/√ 1

ω2
P1

+
1

ω2
P2

− 2

ω2
Z1

+
2

ω2
Z2

(4.8)

The above expression can be generalized to a multi-pole and multi-zero system
giving

ωH ≈ 1
/√( 1

ω2
P1

+
1

ω2
P2

+ · · ·
)
− 2

(
1

ω2
Z1

+
1

ω2
Z2

+ · · ·
)

(4.9)

4.3 Low-Frequency Gain Function

A similar low-frequency gain function can be defined such that the frequency
gain as a function of frequency can be expressed as

A(s) = AMFL(s) (4.10)

where

FL(s) =
(1 + ωZ1/s)(1 + ωZ2/s) · · · (1 + ωZn/s)

(1 + ωP1/s)(1 + ωP2/s) · · · (1 + ωPm/s)
(4.11)

Notice that the above function FL(s)→ 1 when s→∞, which is what is desired.
A similar analysis shows that the half-power frequency point ωL is

ωL ≈
√

(ω2
P1 + ω2

P2 + · · · )− 2 (ω2
Z1 + ω2

Z2 + · · · ) (4.12)

One can obtain the above result by comparing (4.2) and (4.11). One notices
that the roles of ω’s and s’s are switched in the formulas. Hence, by symmetry,
one arrives at the above formula by letting s
 ω.

18



4.4 The Method of Open-Circuit Time Constants

In finding fL, when a single pole dominates and they are far from each other, one
uses the short-circuit time-constant method to decouple the capacitors and find
their respective time constants. The rationale is that at the highest frequency
pole that decides fL, the frequency is high enough such that the other capacitors
can be considered short-circuited, and hence, the determination of the highest
frequency pole is a reasonable approximation.

By the same token, when one finds fH , it is the lowest frequency pole that
dominates fH . Again, this frequency is low enough that the other capacitors can
be considered open-circuited. Then the time-constant for the lowest frequency
pole is fairly accurate. With this in mind, then

ωH = 2πfH ≈
1∑

i CiRi
(4.13)

In the above sum, it will automatically be dominated by the largest RC time
constant term, since it is an ordinary mean.

In contrast, in the short-circuit time-constant method,

ωL = 2πfL ≈
∑
i

1

RiCi
(4.14)

which is proportional to the harmonic mean of the RC time constants. The
term with the shortest time constant automatically dominates this sum.
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