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Derivation of the Elastic Wave Equation (optional read-
ing)

The elastic eave equation governs the propagation of the waves in solids. We shall
illustrate its derivation as follows: the waves in a solid cause perturbation of the
particles in the solid. The particles are displaced from their equilibrium position.
The elasticity of the solid will provide the restoring force for the displaced particles.
Hence, the study of the balance of these forces will lead to the elastic wave equation.

The displacement of the particles in a solid from their equilibrium position causes
a displacement field u(x,t) where u is the displacement of the particle at position
x at time t. Here, x is a position vector in three dimensions. Usually, we use r for
position vector, but we use x here so that indicial notation can be used conveniently.
In indicial notation, x1, x2, and x3 refer to x, y, z respectively. The displacement
field u(x,t) will stretch and compress distances between particles. For instance,
particles at x and x 4+ dx are dx apart at equilibrium. But under a perturbation by
u(x,t), the charge in their separation is given by

du(x,t) = u(x+ 0x,t) — u(x,1t) (1)
By using Taylor’s series expansion, the above becomes
su(x,t) ~ 0x - Vu(x, t) + O(6x?) (2)

or in indicial notation,
du; =~ Oju;dx; (3)

where Oju; = % This change in separation du can be decomposed in to a sym-
J

metric and an antisymmetric part as follows:

symmetric antisymmetric
1 ——— 1 ———
ou; = 5 (8]111 + &uj) (5SU]' + 5 (@u, — (Zu]) 535]- (4)

Using indicial notation, it can be shown that

[(V X ll) X (SX]Z = eijk(V X u)jéﬂj‘k
= €ijk€EjlmOUm 0Ty, (5)
From the identity that
€ijk€jlm = —€jik€jim = OimOkl — 0it0km (6)



we deduce that

[(V X u) X 5X]z = (&Cuz — (%uk)&xk (7)
Hence,
stretch rotation
—N— ] M/ _ 1
du; = €;;0x; +5 [(V xu) x §x|, = (& x); + 3 [V x u) x dx], (8)
where we have defined 1
eij = 5 (Ojui + dyu;)) (9)

The first term in (8) results in a change in distance between the particles, while
the second term, which corresponds to a rotation, has a higher order effect. This
can be shown easily as follows: The perturbed distance between the particles at x
and x + 0x is now 6x + du. The length square of this distance is (using (8))

(6x 4+ 0u)? =2 6x-0x + 20x - du+ O(du?)
= [0x|? + 26x - &- 0x + O(Ju?) (10)

assuming that du < §x, since u is small, and du is even smaller. The second term
in (8) vanished in (10) because it is orthogonal to dx.

The above analysis shows that the stretch in the distance between the particles
is determined to first order by the first term in (8). The tensor € describes how
the particles in a solid are stretched in the presence of a displacement field: it is
called the strain tensor. This strain produced by the displacement field will produce
stresses in the solid.

Stress in a solid is described by a stress tensor T. Given a surface AS in the
body of solid with a unit normal 7, the stress in the solid will exert a force on this
surface AS. This force acting on a surface, known as traction, is given by

T=n-TAS (11)

Figure 1:

Hence, if we know the traction on the surface S of a volume V, the total force
acting on the body is given by

fa-zas= [[[ v.Tav (12)

where the second equality follows from Gauss’ theorem, assuming that 7 is defined
as a continuous function of space. This force caused by stresses in the solid, must be



balanced by other forces acting on the body, e.g, the inertial force and body forces.

Hence
0%u _
p——=dV = [ V-TdV 4+ | fdV (13)
v Ot v v

where p is the mass density and f is a force density, e.g., due to some externally
applied sources in the body. The left hand side is the inertial force while the right
hand side is the total applied force on the body. Since (13) holds true for a arbitrary
volume V', we have
UL 14
Pﬁ =V -7+ (14)
as our equation of motion.

Since the stress force, the first term on the right hand side of (14), is caused
by strains in the solid, 7 should be a function of €. Under the assumption of
small perturbation, 7" should be linearly independent on €. The most general linear
relationship between the second rank tensor is

Tij = Cijrien (15)

The above is the constitutive relation for a solid. Cjjy; is a fourth rank tensor.

For an isotropic medium, Cjjz; should be independent of any coordinate rotation.
The most general form for a fourth rank tensor that is independent of coordinate
rotation is [see Exercise 1]

Cijkl = N0ijOky + p10ik051 + 1120710k (16)
Furthermore, since ey; is symmetric, Cjji; = Cjjix. Therefore,
Cijki = M40kt + p(0jx0: + dadik) (17)

Consequently, in an isotropic medium, the constitutive relation is characterized by
two constants A and p known as Lamé constant. Note that as a consequence of
(17), T;5 = Tj; in (15). Hence, both the strain and the stress tensors are symmetric
tensors.

Using (17) in (15), we have after using (9) that
Tij = Mijeu + p(eij + €ji)
/\5Z‘j81ul + ,U(ajui + alu]) (18)

(V . T)J = &Zj = 8j)\8lul + 6ip8jui + Oiu&uj
= AO;0iu; + (Olul)aj)\ + m?jaiui + (8ju2-)6m + al-u@iuj
= A+ w[VV-ulj+ (V- pVu);+ (V-u)(VA); + [(Vu) - Vi];(19)

If 4 and X\ are constants of positions, we have
V-T=(A+p)VV-u+pVvia (20)
Using (20) in (14), we have

9%*u

PaE = A+ ) VV -u+ pViu+f (21)



which is the elastic wave equation for homogeneous and isotropic media.

If 1, which is also the shear modulus, is zero, taking the divergence of (21), and
defining # = V - u, we have

020 9

— . f 22

P o7z V=04V (22)

which is the acoustic wave equation for homogenous media, and A is the bulk mod-
ulus.

Exercise 1

1.(a) Under coordinate rotations, show that the fourth rank tensor Cj;i; transforms
as
Cijrt = Tisr Ty Ti T Ci oy

(b) Show that if
Cirjriryr = MOirjr Oprr 4 paOingrSjor + pualiny Sjns
then under coordinate rotation,
Cijkt = M104j0k1 + 11038051 + 120510k

In other words, Cjjr; remains the same under coordinate rotation, i.e., it is an
isotropic tensor.

(c¢) Proof that the form in (b) is the only form for isotropic fourth rank tensor
(difficult).
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Solution of the Elastic Wave Equation—A Succinct
Derivation

The elastic wave equation is
A+2u)VV-u—puV x (V xu) —pia = —f(x,t). (1)

By Fourier transform,

1 [ ,
u(x,t),= / dwe™"“"u(x,w) (2)
2 J_
(1) becomes
A +2u)VV -u—puV x (V xu) +w’pu = —f (3)

where u = u(x,w), and f = f(x,w) now. By taking Vx of the above equation, and
defining €2 = V x u, the rotation of u, we have

VvV x (Vx Q) —w?p =V xf (4)
Since V-2 =V -V x u =0, the above is just

1
VIQ+EQ=—--Vxf (5)
p
where k2 = w?p/p = w?/c? and ¢; = \/%. The solution to the above equation is

Q(x,w) = ;/dxlgs(x —x )V x f(x,w) (6)

where gq(x — x) = e*s*=*'l /47|x — x/|. Taking the divergence of (3), and defining
0 = V - u, the dilational part of u, we have

(A +2u)V?0 + w?ph = -V - f. (7)

The solution to the above is

_ 1
A+ 2u

0(x,w) /dx/gc(x —x V' £(f (x',w) (8)



where 12 = 2p/(A + 20) = W/, e = T IW)/p, and golx — x) =
ke =Xl Jaz|x — X/|.
From (3), we deduce that

£
o kQ ﬁve 9)

u(x,w) = —

Then, using (6) and (8), we have

f

u(x,w) = e

— + ks —V x /dx’gs(x —x )V x f(x',w) —

MV/dx ge(x —xX" WV - £(x',w) (10)
Using integration by parts, and the fact that Vg(x — x') = —Vg(x — x’), the
above

f

1
u(x,w) = e + va x V x /dx'gs(x— xf(x',w)
1

Using V x V x A = (VV — V2)A, and the fact that V?gs((x — x') — §(x — x/),
the above becomes

u(x,w) = (I+ kav) 'i/dxlgs(x_xl)f(xl,w)
A

Time-Domain Solution
If f(x,t) = 2;0(x)0(t), then f(x,w) = £;0(x) and

_ UV ekt gy ik
_ (1 - SRR ;- 1
u(x,w) ( * k2 ) 47r/u"$J k2 47r()\+2u)7"$] (13)

or in indicial notation

( ) 5. eiksr +aa 1 ezksr iker (14)
e T e T e \ k2 (A + 2p)k2

Since ks = w/cs = wy/p/p , ke = w/cc = w\/p/(A+ 2u), the above can be inverse

Fourier transformed to yield

s (o) D))

Writing 0;0; = (0;1)(09; r)d >, the above becomes

wlxt) = 5 — @)@ ) oy

A ur
@O A



Consequently, if f(x,t) is a general body force, by convolutional theorem,

fj(xvt - é)

uix,1) = [y = @) @Om] =

1 r/cs
+(air)(ajr)27rp73,// Tfi(x,t —T)dr

fj(xvt - é)

+(3i7“)(8j7")m

(17)

Solution of the Elastic Wave Equation—Fourier-Laplace
Transform

The elastic wave equation
A+ @)VV - u+ puVa — pii = —f (18)

can be solved by Fourier-Laplace transform. We let

1 00 . 00 v
u(x,t) = @) /_OO dwe™™! /_OO dke™®*u(k,w), (19)
then (18) becomes
—(\+ wkk - u — pk®u + w?pu = —f (20)

where u = u(k,w), f = f(k,w) now. The above can be formally solved to yield
u(k,w) = [(A+ p)kk + phT — w?pl] " - £, (21)

The inverse of the above tensor commutes with itself, so that the inverse must be of
the form ol + OKKk, i.e.,

[(A+ p)kk + pk’T — w?pI] - [0 + Bkk] =1 (22)
The above yields that
1
_ - 2
“T (k= w2p) 23)
5 = —(A+p)
[uk? — pw?] [(A + 2p)k? — pw?]
_ [ n (A +2p)
pw? [k? — pw?] * pw? [(A + 2p)k? — pw?]
1 1
= - 24
B =k T RO 2 P - k2 24
where k2 = w?p/p, k2 = w?p/(\ + 2p). Consequently,
_ kk]  fkw) Kk - f(k,w)
kw)=|I——|- 25
k) = [1- 35 ] * a3 2 (%)

It can be shown that

, - kk 1 - VV)\ ethsr
ik-x oy - vvyes
] e <I k) (R~ 12) (” B ) Trr (26)

S

3



where ks = w/cs, ¢s = \/p/p is the shear velocity, and r = |x|. Similarly,

A kk VvV  etker
dke™™> =- 27
/ RO+ 20k — k) k2 Am(\+ 2p0)r (27)

where k. = w/C., Cc. = /(A +2u)/p is the compressed velocity.
By convolutional theorem,

B iks|x—x|
u(x,w) = <I+vl€2v> -/dx'eqf(x’,w)

2 Arplx — x
\VAV/ . ez’kc|x—x’\
—_ f(x' 2
k2 x A (N +2p)|x — x| (', w) (28)
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Boundary Conditions for Elastic Wave Equation

The equation of motion for elastic waves is

V-T+f=—wpi (1)

Hy, A,

Figure 1:

By integrating this over a pill-box whose thickness is infinitesimally small at the
interface between two regions, and assuming that f is not singular at the interface,

it can be shown that
i TV =5 7® (2)

The above corresponds to three equations for the boundary conditions at an inter-
face.

If (2) is written in terms of Cartesian coordinates with Z being the unit normal
n, then (2) is equivalent to 7, 7.,, and 7, continuous across an interface. Since

T.. = AV -u+2p0.u, = NOptg + Oyuy) + (A + 20)0,u, (3)

and 7., cannot be singular (does not contain Dirac delta functions), then 0, s, Oyuy
and J,u, must be regular. Requiring 0,u, to be regular implies that at the interface

ul = u? (4)
Furthermore,
Tow = Naxuz + ,Uazum; (5)

the continuity of 7, implies that 0,u, must be regular. This induces the boundary

condition that
JC ©)



By the same argument from 7.,, we have
ulD) = (2 (7)

Hence, in addition to (2), we have boundary conditions (4), (6), and (7) which
form a total of 6 boundary conditions at a solid-solid interface.

At a fluid-solid interface, p1 = 0 in one region, then 7, and 7, are zero at the
interface, in order for them to be continuous across an interface. Further, u, and u,
need not be continuous anymore. The boundary conditions are (2) and (4), a total
of 4 boundary conditions.

At a fluid-fluid interface, only 7, is nonzero. Its continuity implies AV -u = p
is continuous or the pressure is continuous. Furthermore, it induces the boundary
condition (4). Hence there are only 2 boundary conditions.
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Elastic Wave Equation for Planarly Layered Media

The elastic wave equation for isotropic inhomogeneous media is
9;(NOywy) + 0;(udsuj) + 0;(pdju;) + w?puj = 0 (1)
In vector notation, this may be written as
VAV - u) + V- (uVu) + (uVu) - V + w?pu = 0 (2)

«—
where V operates on terms to its left.

If A and p are functions of z only, and % =0, and u = Zuy, then extracting
the & component of (2), we have

Vs 1uVug + (,(J2puJD =0, (3)
where Vg = g)a% + 2%
SH SH
sy _
Honh, X v
SH
Figure 1:

Hence for this problem, a displacement field polarized in x with no variation in
x is a pure shear wave. For instance, an SH (shear horizontal) plane wave will have
this property. Even when p and A are discontinuous in z, only SH waves will be
reflected and transmitted.

However, if the incident plane wave is an SV (shear vertical) wave, the displace-
ment of the particles at an interface will induce both P (compressional) and SV
reflected and transmitted waves. To see this , we let u = guy + Zu,. Then (2)
becomes

Vs(AVs-us) + Vs - (uVsug) + (uVsug) - %s + w?pii, = 0. (4)



The above is the equation that governs the shear and compressional waves in a
one-dimensional inhomogeneity where % =0.

Since A, 1 and ug are smooth functions of y, 8% is smooth. In order for % to be
nonsingular in (4), we need that

0
AV, - us + Z,uauz (5)

be continuous. This is the same as requiring 7., be continuous.

Similarly, taking the ¢ component of (4) that contains % derivatives, we require

that 9 9
gty + Py, (6)

to be continuous. This is the same as requiring 7, to be continuous. In order for
(5) and 6) to be regular, u, and u, have to be continuous functions of z. Hence, the
boundary conditions at an Solid-solid interface are

OCY
uggl) = u§2) (7b)
(1) 9 a_ @) 0 o
MVs-uy’ +2u—uy’ = XV uy” + 2us—uj (7c)
0z 0z
0 0 d 0
Cam e ZL,m) B ) B ¢)
1 <8zuy + 8yuz > 12 (8zuy + ayuz > (7d)

The reflection of SH waves by a plane interface is purely an Scalar problem.
However, the reflection of a P wave or an SV wave by a plane boundary is a vector
problem. In this case us; can always be decomposed into two components us =
DUy + puy, where p is a unit vector in the direction of wave propagation, and ¥ is a
unit vector in the yz-plane orthogonal to p.

For z > 0, the incident wave can be written as

. ik ik
uins _ u;}nc _ Vo€ Z tvz® eikyy _ e titvz® 0 Vo eikyy
s T | yine | T poe—zklpzz - 0 e—zklpzz Do

p
_ e—if{lzz . uoeikyy (8)

In the presence of a boundary , the reflected wave can be written as

upel = [ w

_ _ikinz ik
et ] = ekt ety (9)
Up

The most general relation between u, and ug is that

u, =R -uy (10)
where
_ R, R
R | B B ] 11
{ Rpy  Rpp (1)



By the same token, the transmitted wave is

u?"a _ e—iﬁgzz . uteikyy (12)
where B
u =T up (13)
and
T = [ Too Top ] (12a)
Too Tpp

There are 4 unknowns in u, and u; which can be found from 4 equations as a
consequence of (7a) to (7d).

region 1
N/ y
region 2
z=-h
region 3 \

Figure 2:

When three regions are present as shown above, the field in Region 1 can be
written as

u = e—ifqzz cay + e’if(uz i bla
— [e—ifqzz + eifqzz . ﬁ12 -ay (14)
where we have defined b; = 1::{12 -a;. The ethvy dependance is dropped assuming
that it is implicit.
In Region 2, we have
u, = efil_(gzz cag + eil_czzz X b2
— |:€—il;22z + eiRzz(z+h) X R23 i eif(zzh] - as (15)
where we have defined i i
e tkazh by = Rog - ezl as (14&)

and Rz is just the one-interface reflection coefficient previously defined.

The amplitude as is determined by the transmission of the amplitude of the
downgoing wave in Region 1 (which is a1) plus the reflection of the upgoing wave in
Region 2.

As a result, we have it at z = 0,
as = T12 -ay + Rgl . 6“_(27‘h . Rgg . eil_{%h - ag (16)
The above solves to yield

L - _ 91
ag = |I— Ry - k2" . Ry; - €Zk22h] T ay (17)

3



The amplitude by of the upgoing wave in Region 1 is the consequence of the
reflection of the downgoing wave in Region 1 plus the transmission of the upgoing
wave in Region 2. Hence, at z = 0,

b = ﬁ12 ca; = Ryg-a; + Ty - ezt Ros - ezt as (18)
Using (16), the above can be solved for ﬁlg, yielding

Riz =Rz + Tya-e™" Ryy- el

— _ . _ = -1 _
L R (19)

where Ry5 is the generalized reflection operator for a layered medium. If a region is
added beyond Region 3, we need only to change Ras to Ra3 in the above to account
for subsurface reflection.

The above is a recursive relation which in general, can be written as

Ri,i-{-l = Ri,i-‘rl —|— Ti+1,i . elkH-l,zhi_H X Ri+1,i+2 . eZki+1,zh )
_ _ - ~ _ o
{I — Ripr,i - M Ry g - elkw’zhm} “Tiir1 (20)

where h;11 is the thickness of the (i 4+ 1)-th layer. Equation (17) is then

I D ikit1:h T iKiq h] 1
a1 = [I —Rip1,i- e Ry 40 - €702 } “Tiig1-a; (21)
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Decomposition of Elastic Wave into SH, SV and P Waves

The preceding discussion shows that for elastic plane waves, the SH waves propagate
through a planarly layered medium independent of the SV and P waves. Moreover,
the SV and P waves are coupled together at the planar interfaces. Given an arbi-
trary source, we can use the Weyl or Sommerfeld identity to expand the waves into
plane waves. If these plane waves can be further decomposed into SH, SV and P
waves, then the transmission and reflection of these waves through a planarly layered
medium can be easily found.

It has been shown previously that an arbitrary source produces a displacement
field in a homogeneous isotropic medium given by

f 1 1
= 4+ VX Q- —V0 1
u(r) gzt eV x5y (1)
us ub

Outside the source region the first term is zero. The second term corresponds to S
waves while the third term correspond to P waves. Hence, in a source-free region,
the S component of (1) is

s 1
uw'(r) = 5V x Q (2)
From the definition of €2, we have
0=V xu(r). (3)

In the above, €2 was previously derived in Class Notes 2 to be

1 eiks|r7r’|
Qr)=-Vx [ dr' ——f(r 4
) =V [ ) (@
using the Sommerfeld-Weyl identities, (4) can be expressed as a linear superposition
of plane waves. Assuming that Q and u® are plane waves in (2) and (3), replacing
V by iks, we note only the SV waves have uj # 0, and only the SH waves have
Q, # 0. Hence, we can use uj to characterize SV waves and €2, to characterize SH
wave.

Assuming that f(r) = aAd(r), i.e., a point excitation polarized in the a direction,
then (4) becomes

A eikST

Q) = (VX )

()



Consequently, u? follows from (2) to be

A iksr
(22k2 +V.V) - a

ui(r) =

6
dmr (6)

The z component of (5) characterizes an SH wave while (6) characterizes an SV
wave. The P wave can be characterized by 6 which has been previously derived to
be

\v2 eikc|r7r’|
9 — / f /
A+ 2u dr Am|r — 1| ()
~ AV-a ether (7)
A+ 2u 4w

for this particular point source. Alternatively, P wave can be characterized by u%.
Using the Sommerfeld identity, the above can be expressed as

A5 o g
Qu(r) = = 4(73)( a)/o kg e o kpp), - SH, (8a)
iAGZ-ak2+ LV -a) [k,

S(r) = 5 0Oz dle, P etkszl2l I (e b

uz(r) 47Tﬂk§ /0 pksze JO( pp)a SV7 (8 )
+AV-a [ :

Piey=—— """ [ dk,kyeel?l 1o (k p 8

uz(r) 47r()\+2,u)kg/o pee olkor), (5

The above have expressed the field from a point source in terms of a linear super-
position of plane waves. We have used 1% to characterize P waves so that it has the
same dimension as u3.

When the point source is placed above a planarly layered medium, the SH wave
characterized by €2, will propogate through the layered medium independently of
the other waves. Hence, the SH wave for a point source on top of a layered medium
can be expressed as

1Az - (V xa) [ k , ,
Qz(r) — ()/ dkpip']O(kpp) |:elk‘sz|2‘ + RHHestz(z+2d1)j| (8)
47T,LL 0 ksz

Since the SV waves and the P waves are always coupled together in a planarly
layered medium, we need to write them as a couplet:

_ Ui _ o iRz|Z\ ﬂi:ﬁ: z>0
o= || = [ e G| IZ0 ®
where
L GA(Z - ak? ik, VY - Q) LAVE -4
s — s k = —~———5Jo(k 1
Uyq 477,Ufkgksz ‘]0( ,Op)7 Uzt 47_‘_(>\+ 2H)k3 JO( Pp) ( Oa)
k. — [ kSZ ko ] V4 =V, + Ziks,, VB = V, + Zike. (10b)

When the point excitation is placed on top of a layered medium, we have
00 _ - B -
¢= / dhyhy €% Ty 4 MG R DG o(kyp) (10)
0

where Ul = [ﬁzi, uﬂgi} and R is the appropriate refecltion matrix describing the
reflection and cross-coupling between the SV and P waves.

The above derivation could be repeated with the Weyl identity if we so wish.



Exercise

The shear part of the displacement field u®(r) is related to Q as given by (2) and
(3). Show that if u, Q. are known, and they have plane wave behaviour in the
z variable, i.e., £2,, u$ ~ eT*s:7 then uf, Q, the components transverse to z are

given by
u; = 1 Vex Q2,4+ V 9 s
ST Rk, [T Vet
s 1 2 s 0
Q= 7]{:3 ey {ksvs x u; + Vsazflz]

In other words, in a homogeneous, isotropic, source free region, all components
of u® and © are known if u; and 2, are known.

Hint: Write u® = ui+u$, @ = Q,+Q., V=V, + 2 in (2) and (3) and equals
the transverse to z components.
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Finite Difference Scheme for the Elastic Wave Equation

The equation of motion for elastic waves is given by

aZU;B 67;31 87.—12
_|_

o2 = ax " 92 (1a)
Tow = (A + 2u)(?;; + )x(?;: (1c)
T = o 2 4\ (1)
T =T = u(2 + 9 (16
Defining v; = du;/0t, the above can be transformed into a first-order system,
ie.,
Poo_ o <8{)T;z .\ aan) oa)
e _ o (a; . a;) oh)
6671”” = (A +2p) %7;” + /\8(;: (2c)
ML P (2d)
(5%
Using central differencing, the above could be written as
UI;JZJ% - Ul;:]% = p;jlg [ xkz,i-«—%,j - xkac,z‘—%,j}
+pi—j1% [,ij,i,j+% - xkz,i,jfé} (3a)



Uk+§ _ Uk—% _ At [ k
nitggty  zitgdty  Uitgits Ag
-1 At [ k

T
p’H—%JJ"%AZ

k

k

1 1
K+l ok _ At | k3 kit
Tovinty ~ Towirty = A F 20t 570 (Vaidty — Vi
At | K+l k+i
+)\Z+lj7 1.1 U T
20 Az | #itz.0ts 2i+5,0—5
1 1
k+1 gk _ At kts _ kt3
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For a homogenous medium, the stability criterion is
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