
Elastic Wave Lecture Notes, ECE471

University of Illinois at Urbana-Champaign

W. C. Chew

Fall, 1991

1



Elastic Wave Class Note 1, ECE471, U. of Illinois

W. C. Chew

Fall, 1991

Derivation of the Elastic Wave Equation (optional read-
ing)

The elastic eave equation governs the propagation of the waves in solids. We shall
illustrate its derivation as follows: the waves in a solid cause perturbation of the
particles in the solid. The particles are displaced from their equilibrium position.
The elasticity of the solid will provide the restoring force for the displaced particles.
Hence, the study of the balance of these forces will lead to the elastic wave equation.

The displacement of the particles in a solid from their equilibrium position causes
a displacement field u(x, t) where u is the displacement of the particle at position
x at time t. Here, x is a position vector in three dimensions. Usually, we use r for
position vector, but we use x here so that indicial notation can be used conveniently.
In indicial notation, x1, x2, and x3 refer to x, y, z respectively. The displacement
field u(x, t) will stretch and compress distances between particles. For instance,
particles at x and x + δx are δx apart at equilibrium. But under a perturbation by
u(x, t), the charge in their separation is given by

δu(x, t) = u(x + δx, t)− u(x, t) (1)

By using Taylor’s series expansion, the above becomes

δu(x, t) ' δx · ∇u(x, t) + O(δx2) (2)

or in indicial notation,
δui ' ∂juiδxj (3)

where ∂jui = ∂ui
∂xj

. This change in separation δu can be decomposed in to a sym-
metric and an antisymmetric part as follows:

δui =
1
2

symmetric︷ ︸︸ ︷
(∂jui + ∂iuj) δxj +

1
2

antisymmetric︷ ︸︸ ︷
(∂jui − ∂iuj) δxj (4)

Using indicial notation, it can be shown that

[(∇× u)× δx]i = εijk(∇× u)jδxk

= εijkεjlm∂lumδxk (5)

From the identity that

εijkεjlm = −εjikεjlm = δimδkl − δilδkm (6)
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we deduce that
[(∇× u)× δx]i = (∂kui − ∂iuk)δxk (7)

Hence,

δui =

stretch︷ ︸︸ ︷
eijδxj +

1
2

rotation︷ ︸︸ ︷
[(∇× u)× δx]i = (ē · δx)i +

1
2

[∇× u)× δx]i (8)

where we have defined
eij =

1
2
(∂jui + ∂iuj)) (9)

The first term in (8) results in a change in distance between the particles, while
the second term, which corresponds to a rotation, has a higher order effect. This
can be shown easily as follows: The perturbed distance between the particles at x
and x + δx is now δx + δu. The length square of this distance is (using (8))

(δx + δu)2 ∼= δx · δx + 2δx · δu + O(δu2)
= |δx|2 + 2δx · ē · δx + O(δu2) (10)

assuming that δu ¿ δx, since u is small, and δu is even smaller. The second term
in (8) vanished in (10) because it is orthogonal to δx.

The above analysis shows that the stretch in the distance between the particles
is determined to first order by the first term in (8). The tensor ē describes how
the particles in a solid are stretched in the presence of a displacement field: it is
called the strain tensor. This strain produced by the displacement field will produce
stresses in the solid.

Stress in a solid is described by a stress tensor T̄ . Given a surface 4S in the
body of solid with a unit normal n̂, the stress in the solid will exert a force on this
surface 4S. This force acting on a surface, known as traction, is given by

T = n̂ · T̄ 4S (11)

S∆

V

S

n̂ T

Figure 1:

Hence, if we know the traction on the surface S of a volume V, the total force
acting on the body is given by

∮

S
n̂ · T dS =

∫∫∫

V
∇ · T dV (12)

where the second equality follows from Gauss’ theorem, assuming that T is defined
as a continuous function of space. This force caused by stresses in the solid, must be
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balanced by other forces acting on the body, e.g, the inertial force and body forces.
Hence ∫∫∫

V
ρ
∂2u
∂t2

dV =
∫

v
∇ · T̄ dV +

∫

V
fdV (13)

where ρ is the mass density and f is a force density, e.g., due to some externally
applied sources in the body. The left hand side is the inertial force while the right
hand side is the total applied force on the body. Since (13) holds true for a arbitrary
volume V , we have

ρ
∂2u
∂t2

= ∇ · T̄ + f (14)

as our equation of motion.
Since the stress force, the first term on the right hand side of (14), is caused

by strains in the solid, T̄ should be a function of ē. Under the assumption of
small perturbation, T should be linearly independent on ē. The most general linear
relationship between the second rank tensor is

Tij = Cijklekl (15)

The above is the constitutive relation for a solid. Cijkl is a fourth rank tensor.
For an isotropic medium, Cijkl should be independent of any coordinate rotation.

The most general form for a fourth rank tensor that is independent of coordinate
rotation is [see Exercise 1]

Cijkl = λδijδkl + µ1δikδjl + µ2δilδjk (16)

Furthermore, since ekl is symmetric, Cijkl = Cijlk. Therefore,

Cijkl = λδijδkl + µ(δjkδil + δilδik) (17)

Consequently, in an isotropic medium, the constitutive relation is characterized by
two constants λ and µ known as Lamé constant. Note that as a consequence of
(17), Tij = Tji in (15). Hence, both the strain and the stress tensors are symmetric
tensors.

Using (17) in (15), we have after using (9) that

Tij = λδijell + µ(eij + eji)
= λδij∂lul + µ(∂jui + ∂iuj). (18)

Then

(∇ · T̄ )j = ∂iTij = ∂jλ∂lul + ∂iµ∂jui + ∂iµ∂iuj

= λ∂i∂lul + (∂lul)∂jλ + µ∂j∂iui + (∂jui)∂iµ + ∂iµ∂iuj

= (λ + µ)[∇∇ · u]j + (∇ · µ∇u)j + (∇ · u)(∇λ)j + [(∇u) · ∇µ]j(19)

If µ and λ are constants of positions, we have

∇ · T̄ = (λ + µ)∇∇ · u + µ∇2u (20)

Using (20) in (14), we have

ρ
∂2u
∂t2

= (λ + µ)∇∇ · u + µ∇2u + f (21)

3



which is the elastic wave equation for homogeneous and isotropic media.
If µ, which is also the shear modulus, is zero, taking the divergence of (21), and

defining θ = ∇ · u, we have

ρ
∂2θ

∂T 2
= λ∇2θ +∇ · f (22)

which is the acoustic wave equation for homogenous media, and λ is the bulk mod-
ulus.

Exercise 1

1.(a) Under coordinate rotations, show that the fourth rank tensor Cijkl transforms
as

Cijkl = Tii′Tjj′Tkk′Tll′C
′
i′j′k′l′

(b) Show that if

C ′
i′j′k′l′ = λ1δi′j′δk′l′ + µ1δi′k′δj′l′ + µ2δi′l′δj′k′

then under coordinate rotation,

Cijkl = λ1δijδkl + µ1δikδjl + µ2δilδjk

In other words, Cijkl remains the same under coordinate rotation, i.e., it is an
isotropic tensor.

(c) Proof that the form in (b) is the only form for isotropic fourth rank tensor
(difficult).
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Solution of the Elastic Wave Equation—A Succinct
Derivation

The elastic wave equation is

(λ + 2µ)∇∇ · u− µ∇× (∇× u)− ρü = −f(x, t). (1)

By Fourier transform,

u(x, t), =
1
2π

∫ ∞

−∞
dωe−iωtu(x, ω) (2)

(1) becomes

(λ + 2µ)∇∇ · u− µ∇× (∇× u) + ω2ρu = −f (3)

where u = u(x, ω), and f = f(x, ω) now. By taking ∇× of the above equation, and
defining Ω = ∇× u, the rotation of u, we have

µ∇× (∇×Ω)− ω2ρΩ = ∇× f (4)

Since ∇ ·Ω = ∇ · ∇ × u = 0, the above is just

∇2Ω + k2
sΩ = − 1

µ
∇× f (5)

where k2
s = ω2ρ/µ = ω2/c2

s and cs =
√

µ
ρ . The solution to the above equation is

Ω(x, ω) =
1
µ

∫
dx′gs(x− x′)∇′ × f

(
x′, ω

)
(6)

where gs(x− x′) = eiks|x−x′|/4π|x− x′|. Taking the divergence of (3), and defining
θ = ∇ · u, the dilational part of u, we have

(λ + 2µ)∇2θ + ω2ρθ = −∇ · f . (7)

The solution to the above is

θ(x, ω) =
1

λ + 2µ

∫
dx′gc(x− x′)∇′ · f(f (

x′, ω
)

(8)
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where k2
c = ω2ρ/(λ + 2µ) = ω2/c2

c , cc =
√

(λ + 2µ)/ρ, and gc(x − x′) =
eikc|x−x′|/4π|x− x′|.

From (3), we deduce that

u(x, ω) = − f
µk2

s

+
1
k2

s

∇× Ω− 1
k2

c

∇θ (9)

Then, using (6) and (8), we have

u(x, ω) = − f
µk2

s

+
1

µk2
s

∇×
∫

dx′gs(x− x′)∇′ × f(x′, ω)−
1

(λ + 2µ)k2
c

∇
∫

dx′gc(x− x′)∇′ · f(x′, ω) (10)

Using integration by parts, and the fact that ∇′g(x − x′) = −∇g(x − x′), the
above

u(x, ω) = − f
µk2

s

+
1

µk2
s

∇×∇×
∫

dx′gs(x− x′)f(x′, ω)

− 1
(λ + 2µ)k2

c

∇∇
∫

dx′gc(x− x′)f(x′, ω) (11)

Using ∇×∇×A = (∇∇−∇2)A, and the fact that ∇2gs((x− x′)− δ(x− x′),
the above becomes

u(x, ω) =
(
I +

∇∇
k2

s

)
· 1
µ

∫
dx′gs(x− x′)f(x′, ω)

−∇∇
k2

c

· 1
λ + 2µ

∫
dx′gc(x− x′)f(x′, ω) (12)

Time-Domain Solution

If f(x, t) = x̂jδ(x)δ(t), then f(x, ω) = x̂jδ(x) and

u(x, ω) =
(
I +

∇∇
k2

s

)
· eiksr

4πµr
x̂j − ∇∇

k2
c

· eikcr

4π(λ + 2µ)r
x̂j (13)

or in indicial notation

ui(x, ω) = δij
eiksr

4πµr
+ ∂i∂j

1
4πr

(
eiksr

µk2
s

− eikcr

(λ + 2µ)k2
c

)
(14)

Since ks = ω/cs = ω
√

ρ/µ , kc = ω/cc = ω
√

ρ/(λ + 2µ), the above can be inverse
Fourier transformed to yield

ui(x, t) = δij
δ(t− r/cs)

4πµr
− ∂i∂j

1
4πrρ

[(
t− r

cs

)
u

(
t− r

cs

)
−

(
t− r

cc

)
u

(
t− r

cc

)]

(15)
Writing ∂i∂j = (∂ir)(∂jr) ∂2

∂r2 , the above becomes

ui(x, t) = [δij − (∂ir)(∂jr)]
δ(t− r/cs)

4πµr
− (∂ir)(∂jr)

1
2πρr3

[
tu

(
t− r

cs

)
− tu

(
t− r

cc

)]

+ (∂ir)(∂jr)
δ(t− r/cc)
4π(λ + 2µ)r

, (16)
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Consequently, if f(x, t) is a general body force, by convolutional theorem,

ui(x, t) = [δij − (∂ir)(∂jr)]
fj(x, t− r

cs
)

4πµr

+(∂ir)(∂jr)
1

2πρr3

∫ r/cs

r/cc

τfj(x, t− τ)dτ

+(∂ir)(∂jr)
fj(x, t− r

cc
)

4π(λ + 2µ)r
(17)

Solution of the Elastic Wave Equation—Fourier-Laplace
Transform

The elastic wave equation

(λ + µ)∇∇ · u + µ∇2u− ρü = −f (18)

can be solved by Fourier-Laplace transform. We let

u(x, t) =
1

(2π)4

∫ ∞

−∞
dωe−iωt

∫ ∞

−∞
dkeik·xu(k, ω), (19)

then (18) becomes
−(λ + µ)kk · u− µk2u + ω2ρu = −f (20)

where u = u(k, ω), f = f(k, ω) now. The above can be formally solved to yield

u(k, ω) =
[
(λ + µ)kk + µk2Ī− ω2ρĪ

]−1 · f . (21)

The inverse of the above tensor commutes with itself, so that the inverse must be of
the form αĪ + βkk, i.e.,

[
(λ + µ)kk + µk2Ī− ω2ρĪ

] · [αĪ + βkk
]

= Ī (22)

The above yields that

α =
1

(µk2 − ω2ρ)
(23)

β =
−(λ + µ)

[µk2 − ρω2] [(λ + 2µ)k2 − ρω2]

=
µ

ρω2 [µk2 − ρω2]
+

(λ + 2µ)
ρω2 [(λ + 2µ)k2 − ρω2]

= − 1
k2

sµ [k2 − k2
s ]

+
1

k2
c (λ + 2µ) [k2 − k2

c ]
(24)

where k2
s = ω2ρ/µ, k2

c = ω2ρ/(λ + 2µ). Consequently,

u(k, ω) =
[
Ī− kk

k2
s

]
· f(k, ω)
µ(k2 − k2

s)
+

kk · f(k, ω)
k2

c (λ + 2µ)(k2 − k2
c )

(25)

It can be shown that
∫

dkeik·x
(
Ī− kk

k2
s

)
1

µ(k2 − k2
s)

=
(
Ī +

∇∇
k2

s

)
eiksr

4πµr
(26)
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where ks = ω/cs, cs =
√

µ/ρ is the shear velocity, and r = |x|. Similarly,

∫
dkeik·x kk

k2
c (λ + 2µ)(k2 − k2

c )
= −∇∇

k2
c

eikcr

4π(λ + 2µ)r
(27)

where kc = ω/Cc, Cc =
√

(λ + 2µ)/ρ is the compressed velocity.
By convolutional theorem,

u(x, ω) =
(
Ī +

∇∇
k2

s

)
·
∫

dx′
eiks|x−x′|

4πµ|x− x′| f(x
′, ω)

−∇∇
k2

c

·
∫

dx′
eikc|x−x′|

4π(λ + 2µ)|x− x′| f(x
′, ω) (28)
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Boundary Conditions for Elastic Wave Equation

The equation of motion for elastic waves is

∇ · T̄ + f = −ω2ρü (1)

n̂
δ

( ) ( )1 1,u �

1 1,µ λ

( ) ( )2 2,u �

2 2,µ λ

Figure 1:

By integrating this over a pill-box whose thickness is infinitesimally small at the
interface between two regions, and assuming that f is not singular at the interface,
it can be shown that

n̂ · T̄ (1) = n̂ · T̄ (2) (2)

The above corresponds to three equations for the boundary conditions at an inter-
face.

If (2) is written in terms of Cartesian coordinates with ẑ being the unit normal
n̂, then (2) is equivalent to Tzz, Tzx, and Tzy continuous across an interface. Since

Tzz = λ∇ · u + 2µ∂zuz = λ(∂xux + ∂yuy) + (λ + 2µ)∂zuz (3)

and Tzz cannot be singular (does not contain Dirac delta functions), then ∂xux, ∂yuy

and ∂zuz must be regular. Requiring ∂zuz to be regular implies that at the interface

u(1)
z = u(2)

z (4)

Furthermore,
Tzx = µ∂xuz + µ∂zux, (5)

the continuity of Tzx implies that ∂zux must be regular. This induces the boundary
condition that

u(1)
x = u(2)

x (6)
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By the same argument from Tzy, we have

u(1)
y = u(2)

y (7)

Hence, in addition to (2), we have boundary conditions (4), (6), and (7) which
form a total of 6 boundary conditions at a solid-solid interface.

At a fluid-solid interface, µ1 = 0 in one region, then Tzx and Tzy are zero at the
interface, in order for them to be continuous across an interface. Further, ux and uy

need not be continuous anymore. The boundary conditions are (2) and (4), a total
of 4 boundary conditions.

At a fluid-fluid interface, only Tzz is nonzero. Its continuity implies λ∇ · u = p
is continuous or the pressure is continuous. Furthermore, it induces the boundary
condition (4). Hence there are only 2 boundary conditions.
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Elastic Wave Equation for Planarly Layered Media

The elastic wave equation for isotropic inhomogeneous media is

∂j(λ∂lul) + ∂i(µ∂iuj) + ∂i(µ∂jui) + ω2ρuj = 0 (1)

In vector notation, this may be written as

∇(λ∇ · u) +∇ · (µ∇u) + (µ∇u) · ←−∇ + ω2ρu = 0 (2)

where
←−∇ operates on terms to its left.

If λ and µ are functions of z only, and ∂
∂x = 0 , and u = x̂ux, then extracting

the x̂ component of (2), we have

∇s · µ∇sux + ω2ρux = 0, (3)

where ∇s = ŷ ∂
∂y + ẑ ∂

∂z .

SH SH

SH

x

1 1,µ λ

2 2,µ λ y

Figure 1:

Hence for this problem, a displacement field polarized in x with no variation in
x is a pure shear wave. For instance, an SH (shear horizontal) plane wave will have
this property. Even when µ and λ are discontinuous in z, only SH waves will be
reflected and transmitted.

However, if the incident plane wave is an SV (shear vertical) wave, the displace-
ment of the particles at an interface will induce both P (compressional) and SV
reflected and transmitted waves. To see this , we let u = ŷuy + ẑuz. Then (2)
becomes

∇s(λ∇s · us) +∇s · (µ∇sus) + (µ∇sus) · ←−∇s + ω2ρūs = 0. (4)
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The above is the equation that governs the shear and compressional waves in a
one-dimensional inhomogeneity where ∂

∂x = 0.

Since λ, µ and us are smooth functions of y, ∂
∂y is smooth. In order for ∂

∂z to be
nonsingular in (4), we need that

λ∇s · us + 2µ
∂

∂z
uz (5)

be continuous. This is the same as requiring Tzz be continuous.
Similarly, taking the ŷ component of (4) that contains ∂

∂z derivatives, we require
that

µ
∂

∂z
uy + µ

∂

∂y
uz (6)

to be continuous. This is the same as requiring Tzy to be continuous. In order for
(5) and 6) to be regular, uz and uy have to be continuous functions of z. Hence, the
boundary conditions at an Solid-solid interface are

u(1)
z = u(2)

z

u(1)
y = u(2)

y (7b)

λ1∇s · u(1)
s + 2µ1

∂

∂z
u(1)

z = λ2∇s · u(2)
s + 2µ2

∂

∂z
u(2)

z (7c)

µ1

(
∂

∂z
u(1)

y +
∂

∂y
u(1)

z

)
= µ2

(
∂

∂z
u(2)

y +
∂

∂y
u(2)

z

)
(7d)

The reflection of SH waves by a plane interface is purely an Scalar problem.
However, the reflection of a P wave or an SV wave by a plane boundary is a vector
problem. In this case us can always be decomposed into two components us =
v̂uv + p̂up where p̂ is a unit vector in the direction of wave propagation, and v̂ is a
unit vector in the yz-plane orthogonal to p̂.

For z > 0, the incident wave can be written as

uins
s =

[
uinc

v

uinc
p

]
=

[
v0e

−ik1vzz

p0e
−ik1pzz

]
eikyy =

[
e−ik1vzz 0

0 e−ik1pzz

] [
v0

p0

]
eikyy

= e−ik̄1zz · u0e
ikyy (8)

In the presence of a boundary , the reflected wave can be written as

uref
s =

[
uref

v

uref
p

]
= eik̄1zz · ure

ikyy (9)

The most general relation between ur and u0 is that

ur = R̄ · u0 (10)

where

R̄ =
[

Rvv Rvp

Rpv Rpp

]
(11)
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By the same token, the transmitted wave is

utra
s = e−ik̄2zz · ute

ikyy (12)

where
ut = T̄ · u0 (13)

and

T̄ =
[

Tvv Tvp

Tpv Tpp

]
(12a)

There are 4 unknowns in ur and ut which can be found from 4 equations as a
consequence of (7a) to (7d).

 1region

 2region

 3region

y

z h= −

z

0

Figure 2:

When three regions are present as shown above, the field in Region 1 can be
written as

u1 = e−ik̄1zz · a1 + eik̄1zz · b1,

=
[
e−ik̄1zz + eik̄1zz · ˜̄R12

]
· a1 (14)

where we have defined b1 = ˜̄R12 · a1. The eikyy dependance is dropped assuming
that it is implicit.

In Region 2, we have

u2 = e−ik̄2zz · a2 + eik̄2zz · b2

=
[
e−ik̄2zz + eik̄2z(z+h) · R̄23 · eik̄2zh

]
· a2 (15)

where we have defined
e−ik̄2zh · b2 = R̄23 · eik̄2zh · a2 (14a)

and R̄23 is just the one-interface reflection coefficient previously defined.
The amplitude a2 is determined by the transmission of the amplitude of the

downgoing wave in Region 1 (which is a1) plus the reflection of the upgoing wave in
Region 2.

As a result, we have it at z = 0,

a2 = T̄12 · a1 + R̄21 · eik̄2zh · R̄23 · eik̄2zh · a2 (16)

The above solves to yield

a2 =
[
Ī− R̄21 · eik̄2zh · R̄23 · eik̄2zh

]−1
· T̄12 · a1 (17)
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The amplitude b1 of the upgoing wave in Region 1 is the consequence of the
reflection of the downgoing wave in Region 1 plus the transmission of the upgoing
wave in Region 2. Hence, at z = 0,

b1 = ˜̄R12 · a1 = R̄12 · a1 + T̄21 · eik̄2zh · R̄23 · eik̄2zh · a2 (18)

Using (16), the above can be solved for ˜̄R12, yielding

˜̄R12 = R̄12 + T̄12 · eik̄2zh · R̄23 · eik̄2zh

·
[
Ī− R̄21 · eik̄2zh · R̄23 · eik̄2zh

]−1
· T̄12, (19)

where ˜̄R12 is the generalized reflection operator for a layered medium. If a region is
added beyond Region 3, we need only to change R̄23 to ˜̄R23 in the above to account
for subsurface reflection.

The above is a recursive relation which in general, can be written as

˜̄Ri,i+1 = R̄i,i+1 + T̄i+1,i · eik̄i+1,zhi+1 · ˜̄Ri+1,i+2 · eik̄i+1,zh ·
[
Ī− R̄i+1,i · eik̄i+1,zhi+1 · ˜̄Ri+1,i+2 · eik̄i+1,zhi+1

]−1
· T̄i,i+1 (20)

where hi+1 is the thickness of the (i + 1)-th layer. Equation (17) is then

ai+1 =
[
Ī− R̄i+1,i · eik̄i+1,zh · ˜̄Ri+1,i+2 · eik̄i+1,zh

]−1
· T̄i,i+1 · ai (21)
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Decomposition of Elastic Wave into SH, SV and P Waves

The preceding discussion shows that for elastic plane waves, the SH waves propagate
through a planarly layered medium independent of the SV and P waves. Moreover,
the SV and P waves are coupled together at the planar interfaces. Given an arbi-
trary source, we can use the Weyl or Sommerfeld identity to expand the waves into
plane waves. If these plane waves can be further decomposed into SH, SV and P
waves, then the transmission and reflection of these waves through a planarly layered
medium can be easily found.

It has been shown previously that an arbitrary source produces a displacement
field in a homogeneous isotropic medium given by

u(r) = − f
µk2

s

+
1
k2

s

∇×Ω
︸ ︷︷ ︸

us

− 1
k2

c

∇θ

︸ ︷︷ ︸
up

(1)

Outside the source region the first term is zero. The second term corresponds to S
waves while the third term correspond to P waves. Hence, in a source-free region,
the S component of (1) is

us(r) =
1
k2

s

∇×Ω (2)

From the definition of Ω, we have

Ω = ∇× us(r). (3)

In the above, Ω was previously derived in Class Notes 2 to be

Ω(r) =
1
µ
∇×

∫
dr′

eiks|r−r′|

4π|r− r′| f(r
′) (4)

using the Sommerfeld-Weyl identities, (4) can be expressed as a linear superposition
of plane waves. Assuming that Ω and us are plane waves in (2) and (3), replacing
∇ by iks, we note only the SV waves have us

z 6= 0, and only the SH waves have
Ωz 6= 0. Hence, we can use us

z to characterize SV waves and Ωz to characterize SH
wave.

Assuming that f(r) = âAδ(r), i.e., a point excitation polarized in the â direction,
then (4) becomes

Ω(r) =
A

µ
(∇× â)

eiksr

4πr
(5)

1



Consequently, us
z follows from (2) to be

us
z(r) =

A

µk2
s

(ẑẑk2
s +∇z∇) · âeiksr

4πr
(6)

The z component of (5) characterizes an SH wave while (6) characterizes an SV
wave. The P wave can be characterized by θ which has been previously derived to
be

θ =
∇·

λ + 2µ

∫
dr′

eikc|r−r′|

4π|r− r′| f(r
′)

=
A∇ · â
λ + 2µ

eikcr

4πr
(7)

for this particular point source. Alternatively, P wave can be characterized by up
z.

Using the Sommerfeld identity, the above can be expressed as

Ωz(r) =
iAẑ · (∇× â)

4πµ

∫ ∞

0
dkρ

kρ

ksz
eiksz |z|J0(kρρ), SH, (8a)

us
z(r) =

iA(ẑ · âk2
s + ∂

∂z∇ · â)
4πµk2

s

∫ ∞

0
dkρ

kρ

ksz
eiksz |z|J0(kρρ), SV, (8b)

up
z(r) =

±A∇ · â
4π(λ + 2µ)k2

c

∫ ∞

0
dkρkρe

ikcz |z|J0(kρρ), P (8c)

The above have expressed the field from a point source in terms of a linear super-
position of plane waves. We have used up

z to characterize P waves so that it has the
same dimension as us

z.
When the point source is placed above a planarly layered medium, the SH wave

characterized by Ωz will propogate through the layered medium independently of
the other waves. Hence, the SH wave for a point source on top of a layered medium
can be expressed as

Ωz(r) =
iAẑ · (∇× â)

4πµ

∫ ∞

0
dkρ

kρ

ksz
J0(kρρ)

[
eiksz |z| + RHHeiksz(z+2d1)

]
(8)

Since the SV waves and the P waves are always coupled together in a planarly
layered medium, we need to write them as a couplet:

φ =
[

us
z

up
z

]
=

∫ ∞

0
dkρkρe

ik̄z |z|
[

ũs
z±

ũp
z±

]
z > 0
z < 0

(9)

where

ũs
z± =

iA(ẑ · âk2
s ± iksz∇s± · â)

4πµk2
sksz

J0(kρρ), ũp
z± =

±A∇p
± · â

4π(λ + 2µ)k2
c

J0(kρρ) (10a)

k̄z =
[

ksz 0
0 kcz

]
,∇s

± = ∇s ± ẑiksz,∇p
± = ∇s ± ẑikcz. (10b)

When the point excitation is placed on top of a layered medium, we have

φ =
∫ ∞

0
dkρkρ

[
eik̄z |z| · ũ± + eik̄z(z+d1) · R̄ · eik̄zd1 · ũ−

]
J0(kρρ) (10)

where ũt± =
[
ũs

z±, ũp
z±

]
and R̄ is the appropriate refecltion matrix describing the

reflection and cross-coupling between the SV and P waves.
The above derivation could be repeated with the Weyl identity if we so wish.
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Exercise

The shear part of the displacement field us(r) is related to Ω as given by (2) and
(3). Show that if us

z, Ωz are known, and they have plane wave behaviour in the
z variable, i.e., Ωz, us

z ∼ e±ikszz, then us
s, Ωs, the components transverse to z are

given by

us
s =

1
k2

s − k2
sz

[
∇s ×Ωz +∇s

∂

∂z
us

z

]
,

Ωs
s =

1
k2

s − k2
sz

[
k2

s∇s × us
z +∇s

∂

∂z
Ωz

]

In other words, in a homogeneous, isotropic, source free region, all components
of us and Ω are known if us

z and Ωz are known.
Hint: Write us = us

s +us
z, Ω = Ωs +Ωz, ∇ = ∇s + ẑ ∂

∂z in (2) and (3) and equals
the transverse to z components.
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Finite Difference Scheme for the Elastic Wave Equation

The equation of motion for elastic waves is given by

ρ
∂2ux

∂t2
=

∂Txx

∂x
+

∂Txz

∂z
(1a)

ρ
∂2uz

∂t2
=

∂Txz

∂x
+

∂Tzz

∂z
(1b)

Txx = (λ + 2µ)
∂ux

∂x
+ λ

∂uz

∂z
(1c)

Tzz = (λ + 2µ)
∂uz

∂z
+ λ

∂ux

∂x
(1d)

Txz = Tzx = µ(
∂ux

∂z
+

∂uz

∂x
) (1e)

Defining υi = ∂ui/∂t, the above can be transformed into a first-order system,
i.e.,

∂υx

∂t
= ρ−1

(
∂Txx

∂x
+

∂Txz

∂z

)
(2a)

∂uz

∂t
= ρ−1

(
∂Txz

∂x
+

∂Tzz

∂z

)
(2b)

∂Txx

∂t
= (λ + 2µ)

∂υx

∂x
+ λ

∂υz

∂z
(2c)

∂Tzz

∂t
= (λ + 2µ)

∂υz

∂z
+ λ

∂υx

∂x
(2d)

∂Txz

∂t
= µ

(
∂υx

∂z
+

∂υz

∂x

)
(2e)

Using central differencing, the above could be written as

υ
k+ 1

2
x,i,j − υ

k− 1
2

x,i,j = ρ−1
ij

∆t

∆x

[
T k

xx,i+ 1
2
,j
− T k

xx,i− 1
2
,j

]

+ρ−1
ij

∆t

∆z

[
T k

xz,i,j+ 1
2

− T k
xz,i,j− 1

2

]
(3a)

1



υ
k+ 1

2

z,i+ 1
2
,j+ 1

2

− υ
k− 1

2

z,i+ 1
2
,j+ 1

2

= ρ−1
i+ 1

2
,j+ 1

2

∆t

∆x

[
T k

xz,i+1,j+ 1
2

− T k
xz,i,j+ 1

2

]

+ρ−1
i+ 1

2
,j+ 1

2

∆t

∆z

[
T k

zz,i+ 1
2
,j+1

− T k
zz,i+ 1

2
,j

]
(3b)

T k+1
xx,i+ 1

2
,j
− T k

xx,i+ 1
2
,j

= (λ + 2µ)i+ 1
2
,j

∆t

∆x

[
υ

k+ 1
2

x,i+1,j − υ
k+ 1

2
x,i,j

]

+λi+ 1
2
,j

∆t

∆z

[
υ

k+ 1
2

z,i+ 1
2
,j+ 1

2

− υ
k+ 1

2

z,i+ 1
2
,j− 1

2

]
(3c)

T k+1
zz,i+ 1

2
,j
− T k

zz,i+ 1
2
,j

= (λ + 2µ)i+ 1
2
,j

∆t

∆z
·
[
υ

k+ 1
2

z,i,j+1 − υ
k+ 1

2
z,i,j

]

+λi+ 1
2
,j

∆t

∆x

[
υ

k+ 1
2

x,i+ 1
2
,j
− υ

k+ 1
2

x,i,j

]
(3d)

T k+1
xz,i,j+ 1

2

− T k
xz,i,j+ 1

2
= µi,j+ 1

2

∆t

∆z

[
υ

k+ 1
2

x,i,j+1 − υ
k+ 1

2
x,i,j

]

+µi,j+ 1
2

∆t

∆x

[
υ

k+ 1
2

z,i+ 1
2
,j+ 1

2

− υ
k+ 1

2

z,i− 1
2
,j+ 1

2

]
(3)

For a homogenous medium, the stability criterion is

υρ∆t

√
1

(∆x)2
+

1
(∆z)2

< 1 (4)
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