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This set of lecture notes was written by W.C. Chew when he was a graduate
student studying with Professor J.A. Kong at MIT.

§ The Wiener-Hopf Technique as Applied to Mixed Boundary

Value Problems

The Wiener-Hopf technique was invented by Wiener and Hopf

.

in 1931 to solve a speci

0

1 type of integral eguation. Later,

it was noted by Schwinger and Ccpson that the Sommerfeld's half-
plane problem can be formulated in terms of an integral equation
solvable by the Wiener-Hopf technique. The technigue is also
known as the Fock-Wiener-Hopf techniqgue to Russian readers in
order not to ignore the important contribution of Fock.

The Wiener-Hopf technigque provides a significant and natural
extension of the range of problems solvable by the use of Fourier,
Laplace, Hankel and Mellin transfcrms. The technique can be
enmployed to solve many problems with semi-infinite geometry
which can be reduced to a two dimensional procblem, like dif-
fraction from a set of semi-infinite parallel plates, radiation
from an open-end parallel plate waveguide, bifurcated waveguide
etc.

In the Wiener-Hopf technique, the aim is to obtain an
equation of Wiener-Hopf type. !This equation can be obtained
from a set of dual integral eqﬁations, an integral equation or
from the differential equation directly. For our case, we shall
derive the dual integral equations first for better physical

interpretation and derive the Wiener-Hopf equation from there.
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(1ii)

(iv)

If F(x) 4is a positive semi-infinite function, (without
loss of generality, we consider F(x) to be nonzero for

L ~when x - 0+, then

0 < x < 4«), and F(x) ~ A X
f(kx)“JO(kx-n-l) when k- o in the region of analy-

ticity implied in (i). This follows from the fact that
£(k,) = }_J F(x) e ¥ dx (2)
* 0

By the argument of stationary phase, when kx tends to
infinity in the region where the above integral is de-
fined, most of the contribution to the above integral

comes from around x = 0. Hence, we can approximate

) k, + . (3)

If F(x) is a negative semi-infinite function, and
F(x) ~ A x' when x » 0, then .f(kx} N O(k;n"l)
when kX + « in the region of analyticity implied in

(i) «






(ii) continuity of normal derivation of potential for all x,

in particular,

i

2 o%(x, 0) =~ 22 =, 0 x > 0 (6a)
dy Yy

'and

8S(x, 07) - 2%(x, 07) = D(x) = 0 x < 0 (6b)

as in the TE electromagnetic wave.

Taking case (i) as an illustrative example, it is known
that the scattered potential can be expressed as the normal
derivative of the potential on the surface of the screen (half-

plane, etc).

co
2% (x, y) = J glx - x', y) 2 [e5(x', 0% - ¢%(x', 07)lax’
—co oy :
= J gix - x', y) J(x")dx" (7)
where g(x, y) is the appropriate Green's function. Using

Parseval's theorem, the above can be written as

ik x
X

6% (x, y) = J %(kx’ v) E(kx) e dk_ . (7a)

O






termined as discussed in the previous section. Thus, we deduce
that S(kx) and ¢u(kx) are both analytic functions in the

lower half-plane and the upper half-plane of the complex kx—
plane respectively. Hence we denote them by 5_(kx) and ¢+u{kx).

Furthermore, by assuming slight loss in the medium, or that

k = k' + ik", we deduce that

85 (x,) ~ ok ¥y % + = : (11)

and that. ¢ u(k ) is analytic for Im(k_) > -k". Since @l(x, 0)
ixtx ¥ x A

— X 5 i ] i 3
= B8y 8 where we assume kx real, then ¢ (kx) ¢_ (kX;

is analytic for Im(kx) < 0. Since J(x) 1is induced by ¢l(x, V),

|J(x)| ~ 0(1) when X » =, or J(k,) is analytic for Im(k)

< 0. Consequently, (10) becomes

~ _ i u
gk, 0) J_(k) = = ¢_"(k) + ¢," (k) (12)

which is the Wiener-Hopf equation. It is solvable, even though
there are two unknowns involved, by using the Wiener-Hopf tech-
nique. Similar equations can pe derived for case (ii) concerning
the TE waves. It is to be néted in the subsequent section that
even though &{kx, 0) is the Fourier transform of g(-x, ¥y),

it is often simpler to derive é(kx, y) directly from the dif-

ferential equation.






(o)

The left-hand side of (15) is analytic for Im[kX] < 0 while
the right hand side of (15) is analytic for Im[kx] > il OO SHnce
the function on the RHS of (15) and that on the LHS share a strip
of analyticity, by complex variable theory, they represent the
same function which is analytic over the entire complex plane,

viz.,
LHS(15) = RHS(15) = P(k ) ' (16)

where P(kx) is an entire function for all kx. We can further
study the behavior of P(kx) at infinity, by observing how LHS
(15) and RHS (15) behave when kx » o for. Im(kx} < 0 and

kX + « for Im[kx} > 0 respectively. Even though 3_(kx) and
¢+u(kx) are not known, their amplitude at infinity can be de-
duced from the edge condition, i.e. the asymptotic values of

J(x) and ¢°(x) when x - 0t™. often times, it can be shown
that P(kx) + 0 when kx + o on the whole of the complex plane.

In such a case, Louiville's theorem can be invoked implying that

P(kx) = 0 for all kx. Therefore, we deduce that

Il

J (k) - e AR (17)
6, (k) G_(k)

and






11

is an even function of kx' then K(kx) -+ 0 when kx +

Using Cauchy's integral-formula, we can write K(kx) as

R K(¢)
Kk, ) = J dg

2vi /C £ - k

where C 1is defined in Fig. 1, since K(§) is analytic for
-tl < Im(E) < t2. C = Cl + 02 since the contribution from the
two extremes of C is vanishingly small when they recede to

infinity. As such, (20) can be written as

K(kx)=LJ i‘—‘—g—’—dg~~1—J X&) g4¢ ., (21)
85 -C

2mi 2 £ - kX 2mi 1 £ - kX

The first integral is well-defined if Im(kx) > —tl and thus

is analytic for Im(kx) > —tl. The second integral, by similar

argument, is analytic for Im(kx) < t2. Thus,

K, (k) = L J' _K(E) 4 (22a)
2mi Jc, £ -k
K_(k) = - - J REE)  ae (22b)
271 "'Cl E - k

Therefore, we derive G+(kx) from (20) where G+(kx) is analytic






)

and nonzero for Im(kx) > --t1 and G_(kx) is analytic and

nonzero for Im(k ) < t..
X 2

The above represents a systematic method of factorizing

g(kx) though the integral in (22a) and (22b), as you will find

out in your homework, can be difficult to perform.
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Figure 2
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T

¢_i(k ) = . (28)

with a pole location at kx = k '. We notice that G+(kx) "

X
=172

O(ky ) when kX - o, Also, since J(x) is proportional to

30°/3y, from the edge condition, J(x) ~ 0(}:“1/2

-1/2

) at most when

) when k_ = «. Since

X > 0+. In other words, S(kx} N O(kx -

1

¢_l(kx) N O(kxw*) when kx + o, +the LHS of (15) vanishes on
the lower half-plane. Noticing that Qs(x, 0) = - él{x, 0) v
0(1) when x -~ 0+, by continuity of potentiai, @s(x, 0) ~ 0O(1)
too when x + 0 . Hence ¢+u(kx) N O(kx_l) when k, > «. We

observe also that the RHS of (15) vanishes when k -+ = on the
upper half-plane. It can be shown [similar to (11) and the
subsequent discussion] that the functiqn on the RHS of (15) and
the LHS of (15) share a strip of analyticity. Thus they represent

an analytic function P(kx) which is identically zero everywhere.

From (18) we conclude that

iy1/2
. G (k) e kw B&T
o5k = - ¢ T(k) T = - ——— O [ = ] s G20
G+(kx ) Zﬂl(kx - kx ) (k + kx
As such
L2178 ik x 4+ ik v
eo(k * By ). g g Y

: ,
" (x, y) = - - . dk_ . (30)
271 Jew (k. - k. 1)k, + K)V/2 X
X X X
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