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Multiple Scattering of EM Waves by Spheres
Part II—Numerical and Experimental Results

JOHN H. BRUNING, MEMBER, IEEE, AND YUEN T. LO, FELLOW, IEEE

Abstract—In [8], both low- and high-frequency solutions to
the two-sphere problem were presented in a form suitable for ef-
ficient computer solution. Here, numerical results are presented
using a method which has enabled the first appearance of reliable
results for the scattered field from two spheres of radii larger
than one wavelength and as large as ten or more. Radar cross
sections (RCS) are computed for numerous configurations of
two spheres of various materials. Results for scattering by three
collinear spheres are also given. An experimental program was
undertaken and is briefly described. Whenever possible, these
results are compared with the theory. In all cases the agreement
is excellent. Depolarization due to multiple scattering is also in-
vestigated, revealing some interesting effects and practical ap-
plications to scattering range calibration.

INTRODUCTION

HE SOLUTION to the electromagnetic (EM) scat-

tering by two spheres has its roots as far back as
1935, but the complexity of the solution has thwarted
efforts for numerical results for all but the smallest pair
of spheres. A recent effort using the modern computer
also failed to give reliable results for the same reason
for spheres larger than 3\/4 in radius [9]. With the
newly derived recursion relations, as given in [8], nu-
merical computation becomes feasible for two spheres as
large as 10X in radius, of arbitrary material, and at any
spacing, even in contact. It is also possible to extend
the computation to three collinear spheres.

Little has been reported on the depolarization effect
due to multiple scattering. This effect is studied for a
few cases of two closely spaced spheres, with some re-
vealing results. Such a study could find application in
cross-polarization calibration in radar.

A fairly extensive experimental program was con-
ducted to verify the theoretical results. The comparison
has shown nearly perfect agreement in all cases. This is
not accidental, since extreme care was exercised in planning
and executing the experiments. Some of these are briefly
discussed.
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NoMmEerICAL TECHNIQUES

In the multipole expansion solution, the most difficult
computational problem involves the calculation of the
translation coefficients A..”"B..™, [8, egs. (22)-(25)].
Each of these coeflicients is composed of a summation in-
volving 1 + max ({»n} terms, and each containing
another coefficient a(m,n,—m,v,p). Kach one of a(-)
is related to the product of two Wigner 3-j coefficients
which are associated with the coupling of two angular
momentum eigenvectors, Still, each of the Wigner coeffi-
cients involves multitudes of factorials [10]. This formu-
lation of the translation theorem, as given by Stein [11]
and Cruzan [12], was regarded as an elegant formu-
lation since 3-7 coefficients are extensively tabulated
[1]. In terms of computation for the two or more sphere
scattering problems, this is an impractical approach,
since the number of 3-j coefficients needed is prohibi-
tively large except for the smallest pair of spheres (radii
much less than a wavelength). This was the approach
taken recently by Liang and Lo [9]. To give some sort
of feeling for the amount of computation involved using
this technique, consider the case of computation of the
scattered field from a pair of spheres of size ka = 4. This
requires about ten radial modes in the multipole expan-
sion of the scattered field. This means 2300 of the coeffi-
cients a(m,n,—m,»,p) must be calculated! This is not a
trivial task since the computation of a single coefficient
a(+) involves as many as 156 factorials, the largest one
being 41!. The situation gets rapidly out of hand as the
spheres get larger. Generally, for a pair of spheres of size
ka (k = 2x/\, a = radius) approximately N ~ ka +
3(ka)'® radial modes must be retained in the modal
expansion. For this number of radial modes, the num-
ber of coefficients a(+) to be computed becomes rapidly
large, as shown in Fig. 1. In addition, the problem of
computing each a(-) becomes increasingly more difficult
as N gets larger.

In [8], a recursive method was deseribed for com-
puting the coefficients a(+) which is highly efficient, and
foremost, does not require the calculation of a single
3-7 coefficient, This results in an astounding saving in
computation time. For our previous example, ka = 4,
the set of translation coefficients Amw™ and B..™ can be
generated 10° times more rapidly than by using the 3-7
approach., The savings in time become even greater
for larger spheres.
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Fig. 1. Minimum number of coefficients a(-) required for cal-
culation of multiple seattering by two spheres of size ka.

Next, we must solve for the multipole coefficients of
each of the spheres which are coupled through the rela-
tion given in [8, eq. (7) ] and which can be written in the
matrix form:

M = 5§+ €M )]

where 9 is the column matrix forming the left-hand
side (LHS) of [8, eq. (7)] from which the definition of
the other elements follows. The solution is clearly

am = (I — e)g.

The matrix (I ~ €) may be inverted directly or 9% may
be determined by iteration. While the former method
may always be applied, the latter requires that all eigen-
values of € be of modulus less than unity. This method
is, however, preferable as it tends to minimize error
accumulation, requires less storage, and is more suited
for computer solution. In terms of our previous example
for two spheres ka = 4, the matrix inversion approach
would require inversion of eleven 40 X 40 complex
nonsymmetric matrices for one particular choice of
parameters (sphere radii, separation, and material of
each).

There are various iterative schemes available. The
Gauss—Seidel iteration method was used almost ex-
clusively instead of the slower Jacobi method which
was used in [97. It was rare to find a situation when this
method did not converge. Convergence was for the most
part rapid except when the spheres are in contact for the
horizontal polarization. The iteration process is termi-
nated when the final answer does not change within
some prescribed amount.

With the multitudes of caleulations involved, the
question of numerical accuracy arises. This was checked
in several ways, First, several programs were written
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at different times for different computers, in the Fortran
IT language in one case and Fortran IV in the others.
There was agreement to no less than five of the six
significant figures carried. Second, the reeciprocity prin-
ciple was exploited as a check. By illuminating the
spheres at an incident angle o and observing the scattered
field at an angle ¢, we should obtain the same result as
by illuminating at ¢ and observing at «. This allowed
checking the endfire incidence program (which involves
only the single azimuthal mode m = 1) with the general
and broadside incidence programs. In all these cases
tested, there was agreement to no less than four of the
six places carried. Finally, the excellent agreement be-
tween the computed and experimental results places
additional confidence in the results.

Before proceeding to the numerieal results, some
typical computer times are quoted and compared with
the technique reported in {9]. It is difficult to make a
direct comparison of the computation times between the
present method and that in [97], since in the latter case
only the first iteration toward the solution to the system
of (1) was considered, whereas the present results were
obtained by iterating as many times as necessary to
obtain convergence to the true solution. The number of
iterations required in some cases is very large. For ex-
ample, in the case of large spheres (ka > 15) in contact
at endfire illumination, the required number exceeds 40.
For comparison, calculation of a single radar cross section
(RCS) point for spheres with ka = 4.19 took about
11 min using the previously cited method and less than
1 s with the present method—the present method having
performed an average of about six iterations, more
near contact, less at large separation. The time factor
between the two methods becomes rapidly larger as
the sphere size increases. Calculations with the present
program have been made for two spheres in contact
at endfire incidence for ka = 30. At this value, the
computer time is still quite reasonable, being only 40 s
for a single point after performing about 50 iterations.
The upper limit for sphere sizes depends on the price
one is willing to pay for each point.

NuouwErIicaL REsULTS

It would be a diffieult task to give a complete set of
numerical results for scattering by two spheres because
of the large number of parameters involved, To illustrate
this, recall that for backscattering by a single sphere
we have only the size and material to specify, whereas
for two spheres we must specify not only the size and
material of each, but also the separation between centers
d, the incident wave vector k and its polarization.

Since measurements of RCS can be made with relative
ease, this will constitute the major body of the numerical
results. The backscattered far field is given by [8, eq. (8)]
with § = 7 — o and ¢ = 7. Using this, we may compute
the RCS from the definition

o = lim 4=7? | E,/E; |2

r>0
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In what follows, this is calculated for various configura-
tions of two and three spheres. In nearly all RCS com-
putations, experimental results are also shown for com-
parison, although the experimental procedures are not
discussed until later. Unless otherwise stated, solid curves
were computed using the multipole expansion (exaet)
technique, and dotted curves represent the experimental
results. The theoretical curves were plotted by computer
in a manner similar to that described in [8]. By plotting
the theoretical curves to the same size and scale as the
experimental results, the latter could be transferred
simply by tracing. This explains the somewhat unusual
scales used.

Broadside Incidence—Variable Separation

Fig. 2 shows the broadside RCS of a pair of identical
metallic spheres for y = 7/2, normalized to ¢,, the RCS
of sphere A alone for ke = 4.19 and ke = 6.246. The
agreement is remarkably good with the exception of
an apparent scale shift near contact. This is an experi-
mental error associated with one of the suspension
techniques and is explained elsewhere [137]. The coupling
which is manifested by the oscillations about the line
40, (6 dB) is nearly negligible for d/a > 6. This has a
simple interpretation in terms of geometric optics as
explained in [8]. Similar results were calculated and
measured for a pair of dielectric spheres and adjacent
dielectric and metal spheres, but the coupling is.in
general much weaker because of the low reflectance,
in the optical sense, of an air dielectric interface.

Endfire Incidence—V ariable Separation

RCS calculations and experimental measurements for
the endfire cases are shown in TFigs. 3 and 4. As in the
other cases, experimental and theoretical results are
normalized to the RCS from the front sphere alone.
Fig. 3 shows the cases of identical metallic spheres for
ka = 7.41 and 11.048; the former case was chosen for
comparison with the experimental results of Angelakos
and Kumagai [14] which are indicated by the squares.
These results indicate very little eoupling for d/a > 5.

The RCS of two identical dielectric spheres at endfire
is shown in Fig. 4(a) for ka = 7.44. Here we see that the
interaction between the spheres persists for larger values
of kd than for the case of metallic spheres nearly the
same size as in Fig. 3(a). The stronger coupling in this
case may be due to a focusing effect from the front
sphere. In the adjacent curve, Fig. 4(b), we have a
metallic sphere behind a dielectric sphere, both about
the same size. The large return at and near contact may
be interpreted as due to rays focused by the front dielec-
tric sphere, reflected by the metallic sphere and refocused
by the dielectric sphere back to the observer, analogous
to placing a mirror behind a lens near its focal point.
The same enhancement for this geometry and the same
spheres was also observed both experimentally and theo-
retically at several other frequencies. It is interesting
to note that the optical paraxial focus of the dielectric
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Fig. 2. RCS of two equal metallic spheres at broadside incidence.
(a) ka = 4.19. (b) ka = 6.246. Modal approach (—) and ex-
periment ().

sphere is positioned at a distance of 0.3a from the back
surface of the sphere,

Variable Angle of Incidence—Fixed Separation

In Fig. 5, the aspect angle, or angle of incidence «
is the independent variable while the spacing remains
fixed. In these two cases the spheres are in contact as
the aspect changes. Recall that at contact the coupling
is strongest, requiring the most iterations. Again, the
difference between measured and experimental results
is extremely small. We note also, as previously mentioned,
the large enhancement of the radar return when the
dielectric sphere is in front of the metallic one, even
though the sizes are different from those in Fig. 4(b).

Bistatic Cross Sections

The multipole coefficients for the two spheres, or any
scatterer, clearly depend on the angle of incidence of
the plane wave and not the point of observation. Hence,
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once the coefficients Az(m,n), Ag(m,mn), Be(m,n), Ba(m,n)
are calculated, it is a simple matter to find the scattered
field in any direction. Two such examples are considered
in Fig. 6 where ¢ and o4 corresponding to Ey and F,
respectively, have been computed for ka = 1 and 2.
We see, as expected, that these two cross sections coin-
cide in the two directions of axial symmetry.

Depolarization Due to Multiple Scattering

From [8, eq. (8) ] we can see that if the incident EM field
is linearly polarized in one of the two principal planes
(v = 0, 7/2), there is no depolarization of the back-

scattered field regardless of sphere sizes, material, or
angle of incidence «. If the incident field is polarized in
some other direction, both incident field components
will be present, each of which in general scatter a different
field, thus depolarizing the scattered field. Beckmann
[2] defines a polarization factor (eall it P) as the quotient
of the horizontal and vertical components of the electric
field under consideration. Hence a horizontally polarized
field has a polarization factor of infinity, and for vertical
polarization it is zero. All complex values of P repre-
sent elliptical polarization in general, with a right rota-
tional sense if Im {P} < 0 and a left rotational sense if
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Im {P} > 0. Circular polarization is described by the val-
ues ==1. If now a scattered wave has the same polarization
factor as the incident wave, then the scatterer has not
depolarized the incident wave. A depolarization factor D
is then defined as: D = P,/P;. Hence D = +1 when
there is no depolarization. If we consider only the back-
scattered field, then by symmetry we know that an
isolated sphere cannot depolarize an incident plane wave
regardless of incident polarization. The same would also
apply to any two spheres if there were no coupling be-
tween them. Therefore, in the absence of symmetry, the
depolarization of the backscattered field from two ad-
jacent spheres is an indication of the degree of the coupling
between the spheres. Consider first the case of two identi-
cal spheres at broadside incidence. As we said previously,
there will be no depolarization at v = Ir/2, where [ is
any integer. Consider the intermediate cases where vy =
(21 — 1)n/4; then depolarization of the backscattered
field is expected. The depolarization will be strong for
close spacing and weak for large.

Fig. 7 shows polarization ellipses of the broadside
backseattered field from two identical perfectly con-
ducting spheres ka = 2, illuminated by a plane wave
with y = x/4, (P; = 1). The number under each ellipse
is the center separation kd and the letters L and R in-
dicate the sense of polarization. At contaet (kd = 4),
strong depolarization is evident. As the sphere sepa-
ration increases, the ellipse orientation oscillates about
the direction of the incident E vector; the ellipse itself
contracts and expands, undulating and changing the
sense of polarization in the process, and eventually con-
verging to a 45° line corresponding to no depolarization.
It is rather fascinating to portray such a complex scat-
tering process through the use of depolarization.

The depolarization effects are perhaps even more
vividly seen in Fig. 8 where polarization ellipses are
shown for the backscattered field of the same two spheres
this time as they rotate in contact (¢ = 0 — 87°). Here,
starting at endfire where there is no depolarization (be-
cause of symmetry), we see that the major axis of the
ellipse swings from —445° to about 190° and then back
to approximately 90° with wide variations in the ampli-
tude. Several other cases of this type were investigated
for different ka, with the interesting result that some
cases exhibited a backscattered field at particular angles
with nearly perfect circular polarization (D ~ =9).

As final examples, we compute the cross-polarized
RCS normalized to wa? for the two examples considered
previously. The transmitted (incident) field is polarized
at v = 45° and the received at 135°. Hence, if there were
no coupling, we would receive nothing at this orthogonal
polarization as with an isolated sphere. Results of this
type for the broadside case are shown in Fig. 9(a). The
decrease in the cross-polarized RCS is quite rapid as
kd is increased. This is to be expected since the coupling
is generally related to the ratio d/a which changes more
rapidly for small spheres for the same interval in kd.

397

RECEIVE TRANSMIT

OYO

t %a=kb=20

Nﬂ p
5

8

Bi

8

2.00

kd
(a)
| ;
4 %
]

8 2
Nl:!
3
5 & e

50
S0

25
E

8L . —— 8

S270.00  -225.00  -18D.00  -135.00  -30.00 -4s.00 .m
ASPECT ANGLE a
(b)

Fig. 9. Cross-polarized RCS of two equal metallic spheres ka = 2.0.
(a) Versus separation. (b) In contact versus aspect angle.

For large spheres, this behavior may be very simply
predicted by geometric opties as shown in [8].

The cross-polarized RCS for two equal spheres in-
contact as their aspect angle changes is shown in Fig.
9(b). As we expect, there is no cross-polarized return
for the aspect angles 0 and =. It was suggested by Knott
[3] that two spheres in either of these configurations
might serve as a new means of calibration for cross-
polarized RCS measurements. Another application would
be the calibration of circularly polarized radars which
transmit and receive the same sense of circular polari-
zation and as such reject the return from symmetrical
targets, such as rain clutter (which assumes no multiple
scattering). The large number of parameters in the
two-sphere system would allow calibration of such a
radar over nearly any desired dynamic range.
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The extinction or total scattering cross section is a
frequently discussed quantity in single body scattering
theory since it is so simply related to the forward scat-
tered field of the object [4]. In the case of scattering by
a single lossless sphere, the normalized extinection ecross
section approaches asymptotically the value 2 as kg — «;
i.e., the cross seetion approaches twice its geometric area.
We would expect that in the absence of multiple scat-
tering, the total scattering by two bodies would be the
sum of the total scattering by each, regardless of orienta-
tion. With multiple scattering it is no surprise that the
total cross section varies with changes in the configu-
ration of two spheres. As separation is increased, the
total cross section oscillates about and eventually eon-
verges to the value which is the sum of the total cross
sections of the two isolated spheres. No such general
statements can be made concerning other parameter
changes.

The rather interesting phenomens of resonance scat-
tering by isolated dielectric spheres also deserves some
attention in relation to multiple secattering. When e.1/2 3>
1, one finds very strong peaks in the scattering by a
single sphere [5]. The first peak occurs quite reliably
at ka = 7(1 — & %)/&'2 and is due to the very small
value 'in the denominator of the first magnetic dipole
coefficient [47]. Now consider Rayleigh scattering for
two small spheres. In this case, one may solve for the
multipole coefficients explicitly. If, however, the spheres
are in close proximity, the resonant phenomena can be

: e O
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Fig.10. RCS of three equal metallic spheres in contact versus aspect angle. Modal solution (—) and experiment (- ++).
" Miscellaneous Resulls drastically altered. This can be understood in terms of

the matrix representation of (1). In the case of one or
both spheres near resonance, € will be large, implying
that 97 is not given by a small perturbation of F. This
also indieates that (1) eannot be solved by iteration.

One such case of ‘“resonant multiple scattering” was
investigated numerically for two identical lossless dielec-
tric spheres with ¢!/2 = 50. The first resonance for the
isolated sphere oceurs at ko = 0.0628068. The normalized
RCS of one of these spheres at this value of ke is 2280!
As indicated earlier, multiple scattering effect by two
spheres is usnally small when the spheres are separated
by several diameters (d/a > 6); however, for this case,
the interaction is considerable even for d/a =~ 50. It
would indeed be interesting to investigate this experi-
mentally, even for a single resonant sphere.

There are many other results that could be cited but
they are too numerous to be included here. They may be
found in [13].

It is curious that the history of the problem does not
include (to the authors’ knowledge) the solution to the
simpler problem of scalar or acoustic scattering by two
spheres. This problem has been solved [13] and it will
appear in a future publication.

Three-Sphere Problem and Some Numerical Results

The generalization of the results for electromagnetic
scattering by two spheres to the case of three [13], [15]
is quite straightforward but tedious. No attempt was
made to obtain numerical results for the very general
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case of three spheres, but it is relatively simple to con-
sider a collinear array of three spheres of equal size,
equally spaced. For this case, two sets of translation
coefficients are needed, namely, A4,,”(d), Bn.™(d)
and An.™(2d), Bm,™(2d). When these are used and the
boundary conditions satisfied, we are led to a system
of six coupled sets of equations of a form similar to
[8, eq. (7)]. Fig. 10 shows numerical and experimental
results for three equal metallic spheres in contact as the
aspect angle « is changed. The agreement is excellent
except near endfire. Further numerical results and meas-
urements with various combinations of three spheres
(dielectric and metallic) showed a generally high sen-
sitivity to sphere alignment at and near endfire. Mis-
alignment of sphere A or C could be easily detected as
an asymmetry in the recorded scatter pattern; however,
if the center sphere were positioned slightly high or low
with respect to the other two, then the pattern would
still retain its symmetry. This type of misalignment (if
indeed there was any) could not be detected at the time
of the measurement,.

CONSIDERATION AND PROCEDURE IN EXPERIMENT

In view of the complexity of the solution, it is desirable
to have experimental verification of the theoretical re-
sults. A practical quantity for measurement is the RCS.
Through an inter-university cooperative organization,
(CIC), we were fortunate to have the permission to
use the excellent scattering measurement facilities of
the Radiation Laboratory, University of Michigan. A
detailed description of the range may be found in
[671.

In contrast to the experiment reported in [14], [16],
the present measurements were made for continuously
varying sphere spacings or incident angles by means
of servos. To keep the unwanted background scattered
energy to a minimum, it was decided to support the
spheres with thin suspension lines. This was possible
only if the spheres were not excessively heavy. For this
reason, the following different kinds of spheres were used:
3-in and 5-in hollow aluminum, 3-in Rexolite, and less
than 13-in copper-plated .steel (ball bearing). The
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(b)

Tig. 12. Suspension technique showing spheres. (a) In lowered
position for balancing of chamber. (b) In raised aligned position
ready for measurement.

commercially available monofilament line Stren® was
used; it has a high tensile strength before plastic stretch-
ing. The 2 Ib line is 0.005-in in diameter; it was found
to introduce a signal 40 dB below that from the two
spheres under test [7]. Several suspension techniques
were actually used [137, but only one is described in
the following.

It is obviously desirable to have the capability of
making all adjustments and alignment of the spheres
from outside the anechoeic chamber, including a method
for withdrawing the spheres to balance the system. To
this end, a system was constructed, as shown schemati-
cally in Fig. 11. As seen, the rotary table provides for
aspect angle changes; another motor and servo allow the
spheres to be separated at will, and small motorized
pulleys allow both spheres to be moved up and down
independently. All these motions can be controlled from
outside the chamber. The unit is covered with mi-
crowave absorbing material to minimize extraneous
scattering.

@ Registered trade mark of E. I. duPont De Nemowrs.
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Measurements for any of the configurations could be
made quite rapidly with this system. Since a variable
ratio drive mechanism was used for separation of the
spheres, a horizontal scale expansion or compression
feature for the recorded RCS pattern was available.
Fig. 12(a) shows the two spheres withdrawn below the
absorbing barrier in position for the balancing of the
system, and Fig. 12(b) shows the same spheres raised
and aligned in position for the start of a measurement.

The results consistently showed excellent agreement
with the theory, indicating that the return from sup-
porting structure and suspension lines was indeed small.
This of course must also demonstrate an overall superb
quality of the microwave equipment and the chamber
itself at the Radiation Laboratory.
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