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Multiple Scattering of EM Waves by Spheres 
Part 11-Numerical and Experimental Results 

Abstracf-In [SI, both low- and high-frequency solutions to 
the two-sphere problem were  presented in a form  suitable for ef- 
ficient computer solution. Here, numerical  results are presented 
using a method which has  enabled  the  6rst appearance of reliable 
results for the  scattered field from two spheres of radii larger 
than  one wavelength and  as large as ten  or more. Radar cross 
sections (RCS) are computed for  numerous configurations of 
two spheres of various  materials. Results  for  scattering by three 
collinear spheres  are also given. An experimental program was 
undertaken  and is briefly described. Whenever possible, these 
results  are compared with the theory. In all cases  the  agreement 
is excellent. Depolarization due to multiple  scattering is also in- 
vestigated,  revealing some  interesting effects and practical ap- 
plications to  scattering range calibration. 

INTRODUCTION 

T HE SOLUTION to  the electroma.gnet,ic (EX) scat- 
tering  by  two spheres  has its rootls as  far back a.s 

1935, but  the complexity of the solution  has  t,hwarted 
efforts  for numerica.1 results  for  all  but.  tmhe  smallest pair 
of spheres. A recent effort using  t.he modern  comput.er 
also failed to give reliable results  for the same reason 
for  spheres  larger than 3X/4 in  radius [SI. M'ith the 
newly derived recursion rehtions,  as given in [SI, nu- 
merical comput,ation becomes feasible for  two  spheres  as 
large  as 10X in radius, of arbitrary material, and at any 
spacing,  even in  contact. It is also possible to extend 
t.he comput.at.ion t.0 three collinear spheres. 

Little  has been reported  on the depolarization effect 
due to muhiple  scat.tering. This effect is studied  for  a 
few cases of two closely spaced  spheres,  with some  re- 
vealing  results.  Such a study could find application in 
cross-polarization calibration in  radar. 

A fairly  extensive  experimental  program was  con- 
ducted  to verify the theoretical  results. The comparison 
has  shon-n  nearly perfect agreement  in all cases. This is 
not  accidental, since ext,reme care was exercised in planning 
and executing t.he experiments. Some of these  are briefly 
discussed. 
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NUMERICAL TECHNIQUES 

In  the mult.ipole expansion solution, t.he most difficult 
computat.iona1 problem  involves  t.he  calculation of the 
t.ranslat,ion coefficients A,,mvBmnmv, [S, eqs. (22)-(25)]. 
Each of these coefficients is composed of a. summation in- 
volving 1 + max ( v , ~ )  terms,  and each  containing 
another coefficient u.(m,n,-m,v,p).  Each one of a(.) 
is rehted  to  the product. of t.n-o Wigner 3-j coefficients 
which are a.ssociated with the coupling of two  angular 
momentum eigenvectors. St.il1, each of t.he Wigner coeffi- 
cients  involves mult.it.udes of factorials [lo]. This  formu- 
lat,ion of the translation  t,heorem,  as given by  Stein [11] 
and  Cruzan [E], was regarded as a.n elegant  formu- 
lation since 3-j coefficient.s are ext,ensively t>abulated 
[l]. In  terms of comput.at.ion for  t>he  two  or more sphere 
sca,t.tering problem,  this is an impractical  approach, 
since the number of 3-j coefficients needed is prohibi- 
tively hrge except for  tlhe  smallest  pair of spheres  (radii 
much less than a  wavelength).  This was the approach 
taken recently by Liang a,nd Lo [9]. To give some sort 
of feeling for the amount. of computation  involved  using 
this technique, consider the case of comput.ation of the 
scattered field  from a pair of spheres of size ka = 4. This 
requires about  ten radia.1  modes in t,he  multipole  expan- 
sion of the scattered field. This  means 2300 of the coeffi- 
cient>s a(?n,n.: - m , v , p )  must be calculated ! Thk is not a 
trivial  task since the computation of a single coefficient 
a ( - )  involves  as  many as 156 factorials, the largest  one 
being 41 !. The situat.ion get.s rapidly out. of hand as the 
spheres get larger.  Generally,  for  a  pair of spheres of size 
ka (k = %/A, a = radius)  approximately 9 z ka + 
3(ka)'I3 radial modes must  be ret.ained in  the modal 
expansion. For t,his number of radial modes, the num- 
ber of coefficients a( - )  to be  computed becomes rapidly 
large,  as shown in Fig. 1. In addition, the problem of 
cornputzing each a( .) becomes increasingly more difficult 
as K gets  larger. 

In  [SI, a recursive method was  described for com- 
puting t,he coefficients a(.) which is highly efficient, and 
foremost., does not  require the calculation of a single 
3-j coefficient,. This results in a.n astounding  saving  in 
computation  time.  For  our  previous  example, ka = 4, 
t,he set of translation coefficients AmnmY and Bmnm7 can be 
generated lo3 times more rapidly  than  by using the 3-j 
approach. The sa.vings in  time become even  greater 
for  larger spheres. 
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Fig. 1. Minimum  number of coefficients a ( -  ) required for d -  
culation of multiple scattering by two spheres of size ka. 

Next, we must solve for t.he multipole coefficients of 
ea.ch of t,he spheres which are coupled through the rela- 
tion given in [S, eq. ('i)] and which can be written  in  the 
matrix form : 

m = 5 + e m  (1) 

where is the column matrix forming the left-hand 
side (LHS) of [S, eq. (7)] from which the definition of 
t.he other elements follows. The solution is clearly 

m = ( I  - eys .  

The  matrix ( I  - e) may  be  inverted direct>ly or nt may 
be determined by iteration. While the former met.hod 
may always be applied, the  latter requires that all eigen- 
values of e be of modulus less than unity.  This met,hod 
is, however, preferable as it. tends t o  minimize error 
accumulation, requires less storage,  and  is more suited 
for  computer  solution. In  t.erms of our previous example 
for two  spheres ka = 4, the matrix inversion approach 
would require inversion of eleven 40 X 40 complex 
nonspmmetric  matrices for one particular choice of 
paramet,ers  (sphere  radii,  separation, and material of 
each). 

There  are various  iterative schemes available.  The 
Ga.ussSeide1  iteration  method &-as used almost ex- 
clusively instead of the slower Jacobi  method which 
was used in [SI. It was  rare to find a  situation when t.his 
method  did not. converge. Convergence was for the most 
part rapid except, Tvhen t,he spheres are in contact, for the 
horizontal poIarization. The  iteration process is termi- 
nated when t.he final a.nswer does not change within 
some prescribed amount,. 

With  the  multitudes of ca.lculations involved, the 
question of numerica.1 accuracy arises. This was checked 
in several ways. First, several  programs n-ere written 

at. different times for different computers, in the  Fortran 
I1 language in one ca.se and  F0rtra.n  IV  in  the others. 
There was  agreement to no less than five of the six 
significant figures carried. Second, the reciprocity  prin- 
ciple was exploited as a check. By illuminating the 
spheres at an incident. a.ngle Q and observing t.he scatt.ered 
field at  an angle q, we should obtain  the same  result as 
by illuminating a t  q and observing a t  a. This allowed 
checking the endfire incidence program (which involves 
only the single azimuthal mode m = 1) with t.he general 
and broadside incidence programs. In  all  these cases 
test.ed, there was agreement to no less than four of the 
six places carried. Finally, the excellent agreement be- 
tmeen the. computed and experiment.al results places 
a.dditiona1 confidence in  the results. 

Before proceeding to  the numerical results, some 
typical  computer  times are quoted and compared  with 
the technique  reported in [SI. It is difficult to make a 
direct comparison of the computat.ion  times  between the 
present. method and  that,  in [SI, since in  the  latter ca.se 
only t.he first iteration  toward  t.he solution to  the system 
of (1) was considered, whereas the present  results mere 
obtained by  iterating  as  many  times as necessary t o  
obta.in convergence to  the t.rue  solution. The  number of 
iterations required in some cases is very large. For ex- 
ample, in  the case of large spheres (ku > 16) in  contact 
at. endfire illuminat,ion, the required number exceeds 40. 
For comparison, calculat,ion of a single radar cross section 
(RCS)  point for spheres  with ka = 4.19 took about 
11 min using t,he previously cited  method and less than 
1 s wit,h t,he present, method-the present, method  having 
performed an average of about six itera.t.ions, more 
near conta.ct, less at large separation. The t.ime factor 
bet,--een the t-n-o met.hods becomes rapidly  larger as 
the sphere size increases. Calcula.t,ions with the present 
program have been made for two  spheres in contact 
at endfire incidence for ka = 30. At this value, the 
computer  time is still  quite reasonable, being only 40 s 
for a single point. after performing about 50 iterations. 
The upper limit for  sphere sizes depends on the price 
one is willing to pay for each point. 

NUMERICAL RESULTS 
I t  would be a difficult task  to give a complete set. of 

numerical results  for  scat,tering by t,mo spheres because 
of the large number of parameters  involved.  To  illust,rate 
t,his, recall tha.t for backscattering by a single sphere 
we have only t.he size and  material t.0 specify, whereas 
for t.wl-0 spheres xve must specify not. only the size and 
material of each, but. also the  separation between centers 
d, t,he incident, wave  vector k and  its polarization. 

Since measurements of RCS  can be made  with  relative 
ease, this will const.itute t.he major  body of the numerical 
results. The backscattered far field is given by [S, eq. (S)] 
Xvith e = T - 01 and 4 = T. Using this, we may  compute 
t,he RCS from the definit,ion 

u = lim 4nr2 1 E,/Ei 1 2 .  
-03 
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In  what follows, this is calculated  for  various configura- 
tions of two  and  three spheres. In  nearly  all  RCS com- 
put.ations,  experimental results are a.lso shown  for com- 
parison,  although the expe.riment.al procedures  are not 
discussed until lat.er. Unless  otherwise sta.ted, solid curves 
were computed  using the muhipole expansion (exact,) 
technique,  a,nd  dott.ed  curves  represent the experimental 
results. The  theoretical  curves were plotted  by  computer 
in a  manner  similar to  that described in [8]. By plot,ting 
the theoret.ica1 curves to  the same size and scale as  the 
experiment,al  results,  t,he  lat,t.er could be  transferred 
simply by tracing.  This exp!sins the somewhat  unusual 
scales used. 

Broadside  I?widence-Variable  Separation 
Fig. 2 shows the broa.dside RCS of a pair of ident,ical 

metallic  spheres  for y = ~ / 2 ,  normalized to ua, the  RCS 
of sphere A alone  for ka = 4.19 a.nd k a  = 6.246. The 
agreement  is  remarkably good w-it.h the exception of 
an a,ppa.rent scale shift  near  contact.  This  is a.n experi- 
mental  error associated  with one of the suspension 
techniques a.nd is  explained elsewhere [13]. The coupling 
which is ma.nifested by  the oscillat,ions about  the line 
4 ~ ,  (6 dB)  is  nearly negligible for d/a  > 6. This  has a 
simple  interpretat.ion in  terms of geometric opt.ics as 
explained in [SI. Similar  results were calculated and 
measured  for a pa.ir of dielectric  spheres and a.djacent 
dielectric and  metal spheres, but  the coupling i s .  in 
general  much  weaker because of t.he low reflect,ance, 
in  the  optical sense, of an air dielectric interface. 

Endjire  Incidence-Variable  Separation 

RCS calculations and  experimenhl measurements  for 
the endfire cases are  shown in Figs. 3 a.nd 4. As in t,he 
ot.her cases, experiment,al and t.heoretica1 results are 
normalized  t,o t.he RCS from t.he front,  sphere  alone. 
Fig. 3 shows the cases of identical  metallic  spheres  for 
ka = 7.41 a,nd 11.048; the former  case was  chosen for 
comparison with the experiment.al result.s of A4ngela.kos 
and  Iiumagai [14] which are  indicat,ed by  the squares. 
These  resuks  indicate  very lithle coupling for d / a  > 5. 

The  RCS of two  identical dielectric spheres a t  endfire 
is shown in Fig. 4(a.) for ka = 7.44. Here we see that  the 
interact,ion  between the spheres  persists  for  larger  values 
of kd t,han  for the case of meta.llic spheres  nearly  t,he 
same size as in Fig. 3(a).  The  stronger coupling in  this 
case may be  due to  a. focusing  effect, from  t,he front 
sphere. In  the  adjacent curve,  Fig. 4(b), we have  a 
metallic  sphere  behind  a dielectric sphere, both  about 
the same size. The large  ret,urn at  and  gear  contact  may 
be  interpreted  as  due to ra.ys focused by  the front. dielec- 
tric sphere, reflected by  the metallic  sphere a.nd refocused 
by  the dielectric  sphere  back to t,he  observer,  analogous 
to placing  a  mirror  behind  a  lens  near its focal point. 
The same  enhancement  for this geomet.ry and  the sa.me 
spheres was also observed b0t.h experiment,a.llg a.nd theo- 
ret,icallg at  several other frequencies. It. is  interesting 
to n0t.e that t.he optical para.xia1 focus of the dielectric 
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(b) 
Fig. 2. KCS of two equal metallic spheres at broadside incidence. 

(a) ka = 4.19. (b) ka = 6.246. Modal approach (-) and ex- 
periment ( - - - ) .  

sphere  is positioned a.t a dista.nce of 0.3a  from t.he back 
surface of the sphere. 

Variable  Angle of Incidence-Fixed  Separation 

In Fig. 5, the aspect angle, or angle of incidence N 
is the independent,  variable while t,he spacing  remains 
fixed. In  these  two cases t,he  spheres are  in  contact  as 
the aspect changes. Recall  t.hat at contact, the coupling 
is strongest.,  requiring t.he most  iterations. Again, t.he 
difference between  measured and experimental  resuks 
is  extremely  small. We note also, as previously  mentioned, 
t.he large  enhancement of the  radar  return when the 
dielect.ric sphere  is in  front of t,he metallic one,  even 
though  t,he sizes are different from  those  in Fig. 4(b). 

Bistatic Cross Sections 
The mult,ipole coefficients for the two  spheres,  or any 

scatt.erer,  clearly  depend  on  t,he  angle of incidence of 
the plane  wave  and  not the point of observation. Hence, 
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Fig. 3. RCS of two  equal metallic spheres a t  endfire  incidence. (a) ka = 7.41. (b) ka = 11.048. Modal  approach (-) 
and  experiment ( a  a ) .  
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f i g .  4. .Re of spheres at endfire  incidence. (a) Two dielectric. (b) One  dielectxic aud one  metallic. Modal  approach 
(-) and  experiment ( *  e) .  
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ASPECT  ANGLE a ASPECT  ANGLE o 

(a)  (b) 
Fig. 5. RCS of spheres  in cont.act versus  aspect angle. (a) Two metallic. (b) One metallic and one dielectric. Modal 

approach (-) and experiment ( -  - -). 

Fig. 6 .  Normalized bistatic cross section in two principal  planes  for tNo spheres  in contact at endfire illurninn- 
tion using modal solution. (a) ka = 1.0. (b) ku = 2.0. 

once t.he coefficients AE(mn.,n), A~(m.,72), B~(m,?z), B~(w2,n) 
are ca.lculat,ed, it. is a simple matter t.o find the scattered 
field in a.ny direction. TWO such  examples  are  considered 
in Fig. 6 where uo and u+ corresponding to E O  and E,, 
respectively,  have been computed for ka = 1 and 2. 
We see, as expected, that t.hese trwo cross sections coin- 
cide in  the two direct,ions of axial  symmet,ry. 

Depolarizaiion Due to Multiple  Scattering 
From [S, eq. (8) ] we can see t.hat. if the incident EM field 

is linearly polarized in one of the two principal  planes 
(7 = 0, a/2), t.here is no depolarization of t,he  back- 

scatt.ered field regardless of sphere sizes, nmterial, or 
a.ngle of incidence CY. If t.he  incident field is polarized in 
some other  direction, both incident field components 
will be present., each of which in general  scatt,er  a  different 
field, t,hm depolarizing the scatrtered field. Beckmann 
[ 2 ]  defines a polariza.t,ion fact,or (call it P )  as the quotient 
of the horizontal and  vertical  components of the electric 
field under  consideration. Hence a  horizontally  polarized 
field has a polarization  factor of infinity,  a,nd for vertical 
polarization it is zero. AII complex values of P repre- 
sent  elliptical  polarization  in  general,  with n right, r0t.a- 
tional sense if Im ( P )  < 0 and  a  left  rotational sense if 
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Fig. 7. Polarization ellipses of backscattered field of two equal metallic  spheres ka = 2.0 versus separation kd 
from broadside  incident  plane  wave  linearly polarized at 45". 
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Fig. 8. Polarization ellipses of backscattered field of two equal metallic  spheres ka = 2.0 in cont,act  versus aspect 
angle from incident  plane  wave  linearly polarized a t  45'. 
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Im {PI > 0. Circular  polarization is described by the val- 
ues =ti. If now a scattered  wave  has  t,he sa.me polarization 
factor  as  the incident. wave, then  the  scatterer  has  not 
depolarized the incident wave. A depolariza.tion fact,or D 
is t,hen defined as: D = P,/Pi. Hence D = f 1 when 
there  is  no depola.rization. If we  consider only the ba.ck- 
scattered field, then  by  symmetry we know that  an 
isolated  sphere  cannot depola.rize an incident  plane  wave 
regardless of incident polarizat,ion. The  same would also 
apply  to  any  two spheres if t.here were no coupling be- 
tween  them.  Therefore, in  the absence of symmet,ry, the 
depolarization of t,he  backsca.ttered field from two ad- 
jacent  spheres is an indicat,ion of the degree of the coupling 
betxeen t,he  spheres. Consider first the case of two identi- 
cal  spheres at  broadside incidence. As we said previously, 
there will  be no  depolarization at y = h / 2 ,  where 1 is 
any integer. Consider the intermediate cases where y = 
(21 - l)n/4;  then depolarization of the backscat,tered 
field is expected. The depolarizat,ion will be strong for 
close spa.cing and weak for hrge. 

Fig. 7 shows pola.rization ellipses of the broadside 
backscattered field from  two ident,ical perfectly con- 
ducting  spheres ka = 2, illuminated by a  plane  wave 
stit.h y = ~ / 4 ,  (Pi = 1). ??he number  under  each ellipse 
is the cent,er separation kd and  the 1et.ters L and R in- 
dicate the  seke of polarization.  At cont.a.ct (M = 4), 
strong  depolarization  is  evident. As the sphere sepa- 
ration increases, the ellipse orientation oscillat.es about, 
the direction of the incident E vector; t.he ellipse itself 
contract,s and expands,  undulating  and  changing t.he 
sense of polarizat.ion in t.he process, and  eventually con- 
verging to  a 45" line corresponding to no depolarizat.ion. 
It. is ra.t,her fascinating to portray such  a complex sca.t- 
tering process through the use of depolarization. 

The depolarization effects are perhaps  even more 
vividly seen in Fig. 8 where polarization ellipses are 
shown  for t.he backscattered field of the same  two  spheres 
this  time  as  they  rotate  in contact, (CY = 0 + 87"). Here, 
starting a.t endfire where there is no depolarization (be- 
cause of symmet.ry), we see that  the major  axis of t,he 
ellipse swings from +45O t,o about. 190" and t.hen  back 
to approximately 90" with wide variations in t,he ampli- 
tude.  Several  other cases of t.hk  type were investigated 
for  different ka, with the interest.ing  result that some 
cases exhibited  a  backscattered field at  particular angles 
with  nearly perfect. circular  polarization (D M hi). 
As final examples,  we compute the cross-polarized 

RCS normalized to S U ~  for t.he t.m-0 examples  considered 
previously. The  transmit.ted (incident) field is polarized 
at  y = 45" and  the received at. 135". Hence, if t,here were 
no coupling, we would receive nothing at  t.his orthogonal 
polarization as  with  an isolated  sphere.  Results of this 
type  for  the broadside case are shown in  Fig. 9(a).  The 
decrease in the cross-polarized RCS  is  quite  rapid  as 
kd is increased. This  is tlo be expected since the coupling 
is generally related to  the ratio cl/a svhich  changes  more 
rapidly  for small spheres  for the same  interval  in kcl. 
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Fig. 9. Cross-polarized KCS of two equal metallic spheres ka = 2.0. 
(a) Versus separation. (b) In cont.act versus  aspect angle. 

For large spheres, this behavior mag  be  very simply 
predicted by geometric optics as shown in [SI. 

The  crowpolarized  RCS for two  equal  spheres  in 
contact  as  their aspect angle  changes is shown in Fig. 
9(b). As we expect, there is no cross-polarized return 
for the aspect, angles 0 and S. It. n7a.s suggested by  Knott 
[3] t,hat t.wo  spheres in  eit,her of these configurations 
might  serve  as  a new means of ca.libration for cross- 
polarized RCS measurements. dnother applicat.ion would 
be the calibmtion of circularly polarized radars which 
transmit  and receive the same sense of circular polari- 
zat,ion and  as such reject, the  return from  symmetrica.1 
targete,  such  as rain  clutter (which  assumes no  multiple 
scattering).  The large number of pammeters  in the 
two-sphere system would  allow calibrat,ion of such  a 
radar  over  nearly  any desired dynamic  range. 
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Fig. 10. RCS of t,hree equal met.allic spheres in contact versus aspect angle. Modal solution (-) and experiment ( - a  .). 

Miscelluneous Results 
The extinction  or total  scattering cross section  is a 

frequent,ly discussed quantity  in single  body  scattering 
theory since it is so simply  related to  the forward  scat- 
tered field of the object [4]. In  the case of scathring  by 
a single lossless sphere, the normalized  extinction cross 
section  approaches asymptotica.Uy the value 2 as ka 3 co ; 
i.e., the cross section  approaches  twice its geometric  area. 
We  would expect that in the absence of mult,iple  scat- 
tering, the  total scattering  by  two bodies would be the 
sum of the  total  scattering  by each,  regardless of orient,a- 
tion.  With  multiple  scattering it is no  surprise that  the 
total cross sect.ion varies v&h changes in t,he confrgu- 
ration of t.wo spheres. As separation is increased,  t,he 
tot.al cross section  oscillates about  and  eventually con- 
verges to  the va.lue which is the  sum of the  total cross 
sections of the tmo isolated  spheres. No such  general 
statement.s  can be made  concerning  other  pa,rameter 
changes. 

The  rather  interesting phenomena of resonance  scat- 
tering  by isolated  dielectric  spheres a.lso deserves some 
attention  in relat.ion to  multiple  scattering.  When ~ , 1 / 2  >> 
1, one  finds  very  strong  peaks in the scatt.ering by a 
single  sphere [SI. The h t  peak occurs quite  reliably 
at ka = ~ ( l  - ~ , - ~ ) / e , ~ ’ ~  and is due  to  the very  small 
value  .in  the denominator of the first magnet,ic  dipole 
coeEcient [4]. Now consider Rayleigh  scatt.ering  for 
two sma.ll spheres. I n  t,his case, one  may  solve  for the 
multipole coefficients explicitly. If, however, the spheres 
are  in close proximity,  t,he  resonant  phenomena  can  be 

drastically  altered. This  can be  understood in  terms of 
the matrix  representation of (1). In the case of one  or 
both spheres  near  resonance, C? will be  large,  implying 
t.hat 5cI is not  given  by  a sma.11 perturbation of 5. This 
also indicates  tha.t (1) cannot  be  solved  by  iteration. 

One such case of “resonant  multiple  scatt,ering”  was 
investigated  numerically  for t.wo identica.1 lossless dielec- 
t,ric  spheres  with er1j2 = 50. The first, resonance  for the 
isolat.ed sphere occurs at. ka = 0.0628068. The normalized 
RCS of one of these  spheres a t  this value of ha is 2280! 
As indicated  earlier,  multiple  scatt.ering effect. by t.wo 
spheres is usually  small when the spheres are separated 
by  several  diameters (d /a > 6) ; however,  for this case, 
the interact,ion  considerable  even  for d / a  M 50. It 
would indeed be interesting t.0 invest,igat,e  t,his experi- 
ment,ally,  even  for  a  single  resonant  sphere. 

There  are  many  ot.her  results  t,hat could be  cited but 
t.hey  are too numerous to  be included  here. They may  be 
found in [13]. 

It is curious that t.he  history of the problem does not 
include  (to the aut.hors’  laowledge)  t,he  solution to  the 
simpler  problem of scalar  or  acoustic  scathering  by two 
spheres. This problem  has been solved [13] and it will 
appear  in  a  future  publication. 

Three-Sphere Problem and Some hTumerical Results 

The generalization of the results  for  electromagnetic 
scattering  by  two  spheres to t,he case of three [13], [15] 
is quit,e  straightforward  but  tedious. ATo att.empt was 
made to obta.in  numerical  results  for the  very general 
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Fig. 11. Suspension technique for all orientations of two spheres. 

case of €bee  spheres, but it is relatively  simple to con- 
sider a c o h e a r  array of three  spheres of equal size, 
equally  spaced. For this case, two  sets of t.ranslation 
coefficients are  needed,  namely, Amnmu(d), BmnmP(d) 
and AmnmV(2d), BmnmV(2d). When  these a.re used and the 
boundary  condit,ions  satisfied, we are led to a system 
of six coupled  sets of equations of a form  similar t.0 
[S, eq. (7)]. Fig. 10 shows numerical  and  experimental 
results  for  three  equal met.allic spheres  in  cont.act, a.s the 
aspect.  angle a is  changed. The agreement  is excellent 
except near endtire. Further numerical  results and meas- 
urements wit.h va.rious combinations of three  spheres 
(dielectric and metallic) showed a generally high sen- 
sit,ivity to sphere  alignment at  and near  endfire. &&- 
alignment, of sphere A or C could be easily  detected  as 
an asymmet.ry  in the recorded scatter  pattern; however, 
if the  center sphere were positioned  slightly  high or low 
1vit.h respect t o  the ot.her  two, then  the  pattern would 
still  retain its symmet,ry.  This type of misalignment (if 
indeed  there was any)  could not be  detected at the time 
of t.he measurement. 

CONSIDERATION AND PROCEDURE IN EXPERIMENT 

In view of the complexity of the solut,ion, it is  desirable 
to have  experimental  verification of the theoretical re- 
sults. A practical quantity for  measurement  is the RCS, 
Through an inter-univemity  cooperative  organization, 
(CIC), we  were fortunate  to  have  the permission to  
use the excellent scattering  measurement  facilities of 
the Radiation  Laboratory,  University of Michigan. A 
detailed  description of the range  may  be  found in 

In contrast to  the experiment  reported  in [14], [lS], 
the present  measurements were made  for  continuously 
varying  sphere  spacings or incident  angles by means 
of servos. To keep the unwanted  background  scattered 
energy to a  minimum, it was decided to support the 
spheres  with  t,hin  suspension lines. This was possible 
only if the spheres were not excessively heavy. For this 
reason, the following different  kinds of spheres were used: 
3-in a.nd 5-in hollow aluminum, 3-in Rexolite, and less 
than l+in copper-plated steel (ball  bearing). The 

[SI- 
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Fig. 12. Suspension technique showing spheres. (a) In lowered 

ready for measurement. 
position for balancing of chamber. (b) In raised aligned position 

commercially available monofilament line St.ren@ was 
used;  it  has  a high tensile strength before plastic  stretch- 
ing. The 2 lb line is 0.005-in in  diameter; it was found 
to introduce  a signal 40 dB below that from the  two 
spheres  under  test. [7]. Several suspension techniques 
were actually used [13], but only one is described in 
the following. 

It, is obviously desirable t.o have  the capability of 
making  all  adjustment.s  and  alignment of t.he  spheres 
from  outside t.he anechoeic chamber,  including a. nlet,hod 
for  wit.hdraning  the spheres to balance the system. To 
t,his  end,  a  system was constructed, as shown schemat4i- 
cally  in  Fig. 11. As seen, the  rotmg  table provides for 
aspect angle changes; another  motor  and servo allow t,he 
spheres to be  separated  at. will, and small motorized 
pulleys allow both spheres to be  moved up  and down 
independently. All these  motions  can  be contxolled from 
out.side the cha.mber. The  unit is covered with mi- 
crowave absorbing  material to minimize ext,raneous 
scattering. 

0 Registered trade mark of E. I. duPont  De Nemours. 
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iL1easurement.s for any of the configurations could be 
made quite rapidly with  this syst.em. Since a variable 
rat,io drive  mechanism was  used for sepa,rat.ion of the 
spheres, a horizontal scale expansion or compression 
feature  for the recorded RCS  pat.tern was available. 
Fig. 12(a) shows the  two spheres  withdrawn below the 
absorbing  barrier in position for the balancing of the 
system,  and Fig. 12(b) shows the same  spheres  raised 
and aligned in position for the  start of a  measurement. 

The results  consistently showed excellent agreement 
with the theory,  indicating  t,hat  t,he  return  from sup- 
porting  structure a.nd suspension lines was indeed small. 
This of course must. also demonst,rate an overall  superb 
qualit,y of the microwave equipment  and  the  chamber 
it.self at   the Radiation  Laboratory. 
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