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Multiple Scattering of EM Waves by Spheres
Part I—Multipole Expansion and
Ray-Optical Solutions

JOHN H. BRUNING, MEMBER, IEEE, AND YUEN T. LO, FELLOW, IEEE

© " Absfract—Solution to the multiple scattering of electromag-
netic (EM) waves by two arbitrary spheres has been pursued
first by the multipole expansion method. Previous attempis at
numerical solution have been thwarted by the complexity of the
translational addition theorem. A new recursion relation is derived
which reduces the computation effort by several orders of mag-
nitude so that a quantitative analysis for spheres as large as 10A
in radius at a spacing as small as two spheres in contact becomes
feasible. Simplification and approximation for various cases are
also given. With the availability of exact solution, the usefulness
of various approximate solutions can be determined quantitatively.
For high frequencies, the ray-optical solution is given for two
conducting spheres. In addition to the geometric and creeping
wave rays pertaining to each sphere alone, there are rays that
undergo multiple reflections, multiple creeps, and combinations
of both, called the hybrid rays. Numerical results show that the
ray-optical solution can be accurate for spheres as small as /4
in radius is some cases. Despite some shortcomings, this ap-
proach provides much physical insight into the multiple scattering
phenomena.

INTRODUCTION

HE SIMPLEST realistic problem of multiple scat-
tering by finite bodies appears to be that by two
spheres. Many works [1]-[9] on this subject can be
found in the literature, but most either deal with general
formulation or are confined to specific cases, and prac-
tically none give numerical results. Even the limited
amount of experimental works by Mevel [2] and Angelakos
and Kumagai [3] are in need of independent verification
and extension,
It is not the intent of this paper to include a general
_survey of all the works on this subject, for which the
readers are referred to the excellent reviews by Twersky
and Burke [107, [11] and also [12]. Here citations will
be made only to closely related works.
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In 1935 Trinks [1] considered scattering by two iden-
tical spheres of radii much smaller than wavelength, which
was later extended to small unequal spheres and arbitrary
angle of incidence by Germogenova [4]. More recently
Liang and Lo [7] and Crane [9] reformulated the prob-
lem using a newly derived translational addition theorem
by Stein [13] and Cruzan [14] whereas Twersky [8]
considered a more general problem with many scatterers,
using dyadic Green’s function approach. He also obtained
approximate solutions under various conditions.

More recently Levine and Olaofe [15] extended Trinks’
work to arbitrary orientation of two small particles and
also eonsidered the effect of the electric quadrupole. Even
with the help of several previous theoretical works and
the availability of modern high speed computers, Liang
and Lo [7] found that their numerical evaluation had to
be limited to spheres of radii less than 3XA/4 and wide
spacings, due to the complexity of the addition theorem.
This suggests that the numerical aspeet of the problem is
by no means trivial.

In this paper the additional theorem as applied to the
present problem is reexamined from a numerical point of
view. An important recursion relation is introduced which
permits a routine calculation of the translation coefficients
without resorting to the time-consuming computation of
Wigner’s 3- symbols [7]. In doing so, the computing
effort can be reduced by several orders of magnitude. As
a result, quantitative analyses for spheres as large as 10A
in radius, of arbitrary materials, even in contact be-
come feasible. Closed form approximate solutions under
various conditions are also given for the purpose of deter-
mining their validity by comparing them with exact ones
numerically.

Like all other seattering problems, a multipole expan-
sion solution loses its effectiveness at high frequencies.
Therefore, in that case, a ray-optical solution is very de-
sirable. Furthermore, this type of solution offers much
physical insight into the complex multiple seattering
mechanism. The ray-optical solution is based on the
classical geometric optics and ereeping wave theory. With
the exception of endfire incidence, the numerical results
are in excellent agreement with those obtained by multi-
pole expansion for conducting spheres as small as /4
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in some cases. It is gratifying to see that there exists
such a large overlapping region (A/4-10A) between two
types of solutions which gives us ample latitude for cross-
checks of the results. The confidence on these solutions
is further strengthened by observing amazingly close
agreement with the experimental results which are dis-
cussed in [25].

STATEMENT OF PROBLEM AND MULTIPOLE EXPANSION
SoLuTION

Consider two spheres A and B of arbitrary materials
and radii a and b, respectively. Without loss of generality,
their centers 0 and 0’, separated by a distance d, can be
assumed to lie on the 2z axis, as shown in Fig. 1. Any
point in space ecan be. represented by (r,0,¢) or (+,8,¢)
with respect to the coordinate system with origins at 0
or at 0, which is related to the former through a transla-
tion d along the z axis. In the following, we shall adopt
the convention that all unprimed quantities are referred
to the 0 system whereas all primed are referred to the 0’
system. Let there be an incident plane wave of unit
strength and characterized by a wave vector k, an ineci-
dent angle o with respeet to the z axis, and a polarization
angle v between E and the projection of 00’ on the incident
wavefront as shown in Fig. 1. Then, following Stratton’s
notations [167] for vector spherical wave functions, the
total electric field expanded with respeet to 0 [71-[97,
[12] can be written as,* for r > a,

Er = 3 [p(mn) Npa® + q(m,n) Mypa®

n,m

+ Az(mn) Npp® 4+ Ax(mmn) M, @

+ BE(?ﬂ,n) Z (Amvmﬂva(l) + Bmvmanv(l))
+ Ba(mn) ¥ (Aw™Ms® + By No®)] (1)

where p(m,n) and g(m,n) are multipole coefficients of
the incident plane wave

2n+1 (n—m)!

= gn+1
p(m,n) aln+ 1) (n + m)!
.I:‘ITmn(Ol) coS vy + iTm"(a) sin 7] (2)
g(mm) = "1 2n4+1 (n —m)!

n(n -+ 1) (n+ m)!

[Tun(a) €O ¥ + immn () siny] (3)

T (@) = 3,P4"(c08 @), Twn(@) = —— P(cosa) (4)
Sin @«

! Time variation exp (—iwt) is assumed. 8, = 8/de.
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Fig. 1.

Geometry of two-sphere problem.

Nin' P, M9 are vector spherical wave functions

M., = 2,9 (kr) (exp ime)

[S—:;—% P,(cos 8)8 — 9,P,™(cos 8) ff)] (5)

1
Nppld = o 2, D (kr) (exp esme)n(n -+ 1)P,"(cos 8)r
1 . .
—+ o 3. [12.9 (kr) ] (exp ime)

-[aePn’"(cos b+ ﬂ P.m(cos 0) 43} (6)
sin 8

where z,? is the appropriate kind of spherical Bessel
funections j., 7., h,Y, and h,?, for 7 = 1, 2, 3, and 4,
respectively; A g,Ag,Be,By are “multipole coefficients’” of
E and H waves scattered, respectively, by spheres A and
B in the presence of each other; and A.,™, B..™* are
“translation coefficients’”” of the vector spherical wave
functions from 0/ to 0. (See the Appendix for details).

There is a similar expression for E” with respect to the
0’ system, for which the multipole coefficient of the inci-
dent plane wave p’(m,n) and ¢’ (m,n) differ from p(m,n)
and g(m,;m) by a factor exp tkd cos o, and A’n,,™"
and B’,, differ from A,,”* and B,,” by (—1)**
and (—1)7t*L respectively. The total magnetic field Hr
is obtained by interchanging N, and M., in (1) and
multiplying the result by —dk/wp.
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By applying the appropriate boundary conditions and
using the orthogonality properties of the Legendre func-
tions, we arrive at four sets of coupled, linear, simultaneous
equations in the unknown coefficients:

AE (m,n) = vn(klyka) {p(m:n)
+ Z [Amnm,BE (m;V) + ertm,BH (Tn,y) :l}

Ag(m,n) = un(kyka) {g(m,n)
' + 3 [Awa™Bu(mp) + Bun,"*Bg(mw) ]}

BE (7n7n) D,,(kg,kb) {pl ('m',n) + Z ( - 1)n+w

[An™Az(my) — Buy™Ag(my) 1}
un (k2,kb) {¢ (myn) + 2 (= 1)+

I

A An(my) — Bu™Ag(my) B}, (7)

The coefficients v,(kyka), u.(kn,ka), v,(ks,kb), and
un (ko,kb) are, respectively, the classical electric and mag-
netic multipole coefficients of the external field of spheres
A and B in isolation. k, ki, and ks, are the wavenumbers
in the surrounding medium, sphere A, and sphere B,
respectively.

It should be emphasized that the system (7) is valid
for determination of the multipole coefficients for the
scattering by any pair of spheres, equal or unequal in size,
of the same or different material as long as the appropriate
single sphere coefficients u, and v, for each sphere are
known.?

It is clear from (7) that there is no coupling among the
azimuthal modes (i.e., modes with different index m);
henece, this system of equations may be solved independ-
ently for each m where —n < m < n, and represents in
general, 2n 4 1 sets of equations. As shown later, there
are several important special cases in which the form of
(7) can be simplified considerably.

ScATTERED FAR FIELD AND VARIOUS APPROXIMATE
SoLuTIONS

Of practical interest is the scattered field in the far
zone of the ensemble of two spheres which may, neverthe-
less, be in the near field of each other. This is obtained
from the asymptotic forms of the veector spherical wave
functions for r, 7' 3> d. By observing the symmetry in-
herent in the coefficients and the wave functions, all
previous field expressions can be transformed into series
involving only nonnegative values of the index m if the
incident field is decomposed into its horizontal and ver-
tical components which yields a great computational ad-

2 The precise form for u, and #, is also known for spheres com-
posed of several concentric layers of different materials [13] or
concentric layers of nonuniform dielectric constant [247].
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vantage. Thus, for the two principal polarizations

0

/2

the far field scattered by both spheres referred to origin
0 is given by

Ty w7
EA+B oy %ﬁ T e
T n=1 m=0
cos Mo
<1 [e(m,n) Tmn (8) + h(m,7) 71n (6) ] )
. 1 sin me

+ 2[6 (M,n) Tmn (6) +h (m,'n) Tmn (0) :I

7 sin me

¢ (8)

COS Mo
where ¢, is Neumann’s number and
e(mmn) = Ag(mmn) + Be(mmn) exp (—ikd cos a)

h(mmn) = Ag(mn) + Bg(m,n) exp (—ikd cos ). (9)

Note that e(m,n) and h(m,n) are also dependent on v
by virtue of (2), (3), and (7).

There are several instances in which the analysis may
be simplified further by imposing certain additional re-
strictions.

1) The first involves the case of axial symmetry, i.e.,
when the propagation direction of the incident field coin-
cides with the axis of the two spheres (endfire incidence
a = 0). As a consequence, the coefficients (2) and (3)
of the incident field become

p(m,n) = g(myn)
1 0
2n +1
S LI , v = 10
TR VA R TR B

where 8,1 is the Kronecker delta. This means that the
system (7) need be solved only for m = 1, where the
coefficients A4;,'* and By,'* assume a particularly simple
form [127].

2) Another simplification involves identical spheres at
broadside incidence (¢ = 8, « = 7/2) where it may be
shown that the coefficients of the spheres bear the simple
relation

Br(mn) = F(—=1)*mAg(m,n)

Br(mmn) = £ (—1)"""Ag(mn). (1)

The upper and lower signs refer, respectively, to the inci-
dent polarizations y = 0, /2. With this simplification,
(7) reduces to two coupled sets of equations [12].

3) The Rayleigh approximation gives rise to a partic-
ularly simple form, since this situation is characterized by
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the assumption that ka and kb are so small that only the
terms for n = 1 contribute, the others being taken as
zero. This case has previously been considered by several
authors using Trinks’ formulation [17, [2], [4], [6] The
explicit low-order translation coefficients are simply in-
serted into (7), which is then solved algebraically [12].
4) Lastly, a very useful approximation is obtained for
the case where each sphere is situated in each others’ far
field. This is satisfied when d/x > 0(kz), where z is the
larger of a and b. In this case, it can be shown that the
addition theorem takes a very simple form [127]. From
this, we find that the system may be uncoupled and solved
analytically. This is accomplished by successive substitu-
tion and noting that in the process we are generating
geometric series which can be summed (after a consider-
able amount of bookkeeping) in closed form. For illustra-
tion, consider the vertical polarization (y = x/2), and
scattering in the plane ¢ = 7. With the identifications

&8t (d,m — a,0) + 8¢ (d,a,7) St (d,m, )

Spd =
1 — 8o (d,m,7) Ss*(d,m,m)
B _ <I>*S¢,“(a'-,a,7r) + S@"b(dﬂr - oz,O) S¢“(d,7r,7r)
A 11— S¢a<d77'-:7r) Seb(d,m,7)
® = exp (ikd cos a) (12)
and
' exp tkr
87 (r,0,¢) = ——
ikr

. i [t (k) 71,(8) + 0. (k2)71,(8) ] cos ¢
(13)
we arrive at [12]

E¢A+B = S¢a(7',6 + a,7r) + S¢b(r70 + O!,ﬂ') exp 7’5
+ 8882 (r,m — 6,0) + 8,482 (r,0,7) exp 28
(14)

where § = kd(cos @ — cos ). Inspection of (12)—(14) re-
minds us that we have a result composed only of single
sphere scattering amplitudes. Furthermore, this result was
obtained only by using the far field form of the addition
theorem.

The scattering amplitudes s44 and s48 have an enlighten-
ing interpretation with the aid of Fig. 2. s,4, for example,
is the strength of a field incident on B from A. Its ampli-
tude is composed of the first-order field scattered by B
toward A: ®8,2(d,r — «,0) and a field scattered by A to-
ward B and then backscattered by B: S;2(d,q,n) S,?(d,m,7).
The term [1 — S,%(d,m,x)8:*(d,m,w) ]! multiplying the
aforementioned amplitudes is the effect of all higher order
“bounces” of these two amplitudes, which we note is the
sum of a geometric series in powers of the term
Se?(d,m,m) 84 (d,m,m); its convergence is assured by the
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Fig. 2. Interpretation of multiply scattered fields in (12) and (14).

initial assumption of each sphere being in the others’
far field. For two identical spheres at broadside incidence,
(14) becomes (y = 7/2)

@ & /9
EA+B = 2 [Sq-,“(rﬂrﬂr) _ 8y (r,7m/2,m) 84°(d, 7/ ~;7T):|

1+ S.2(dm,m)
(15)

It is interesting to note that this approximation yields
surprisingly good results even for two spheres in contact.
This is shown in Fig. 3, where the normalized radar
cross sections (RCSs) for various sizes of conducting
spheres are plotted, the solid curves being obtained from
the exact solution.

Rav-OpTICAL SOLUTION

Levy and Keller [17] elegantly extended Franz’s creep-
ing wave theory [18] for the sphere to scattering by an
arbitrary smooth convex body. Ray paths associated with
the creeping waves obey Fermat’s principle and hence,
lie along geodesics of the surface. While their approach
to the electromagnetic (EM) problem makes use of two
scalar acoustic problems, here we are concerned specifi-
cally with the behavior of the vector problem of the
sphere. Senior and Goodrich [19] expressed the single
sphere scattered field in a form which makes identification
of the appropriate diffraction and attenuation coefficients
an easy matter.

The rays which contribute to the scattered field of the
two sphere ensemble fall into three categories: 1) reflected
rays arising from direct and multiple reflections, 2) creep-
ing wave rays bound to a single body, and 3) “hybrid
rays” [12], [20]. The rays falling into the last category
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for ke = 1.0, 2.0, and 4.19 using exact solution (— ) and

asymptotie form (13) for large separation (—-—-).

are those which involve any combination of rays of the
first two types. For purposes of further classification, rays
of the first type which undergo j reflections are denoted by
R;; those rays of the second type which creep over a
length equal to or less than halfway around the body are
denoted by C_; C. describes the case of a larger length.
Finally, the third case may be represented by any com-
bination of the preceding symbols with its obvious impli-
cation. For example, a ray which creeps part way around
one sphere, most of the way around the other, and reflects
five times between the two before reaching the observer
may be identified by the symbol C_C.Rs;. A particular
geometry of two spheres could support any number of
configurations of rays; however, generally only a few will

be significant.

IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, MAY 1071

Field calculations employing the geometric optics ap-
proximation are ecarried out using Snell’s Law and the
conservation of energy. If E(A) is the value of the incident
field at a point 4, then the reflected field at some point
P, a distance S from 4, is given by

p1p2
(o1 + 8) (2 + 8)

where p1 and p» are the principal radii of eurvature of the
wavefront reflected from 4. The bracketed term is desig-
nated the divergence factor A. If more than one reflection
is involved, the preceding procedure is repeated; the field
at some point P after N reflections will then assume the
form

E(P) = —E(A)[ TIZ exp kS  (16)

N
E(P) = (—1)YE(A) I A-exp ikS.x.
r=1

For simplicity we will consider the scattered field at
the point in the plane of incidenece as shown in Fig. 4, where
only the member R, of the set {R;} is drawn. R, consists
of the subrays Sy — S — Sa. In general, a member of
{R;} eomprises Sp; — Sy — -+« — S;; where S;; is used
to denote the length of the ray between reflection points
7 and ¢ + 1. The angle between ray S;; and the normal at
the 7th reflection point is denoted by 7:;. Then, for the
assumed incident plane wave, the far field due to one
reflection R; from sphere 4 is

B= — f)%eXp k(R + r — 2a cos gu) (17)

where

T — 0 —
2

Z

r = Su -+ a@sin nu, m =
8 is the polar angle of observation point P, and R is the
distance from the source to origin 0. We have a similar
expression for sphere B.

For two reflections, one must first determine the three
unknowns 7nm, 72, and Sp [127]. Once these parameters
are determined, the divergence factors A; may be calcu-
lated. The result analogous to (17) for two reflections is
given by [12]

ab €OS 712 COS 722
Rz =

1/2
(11 cos 122 + b cos n2) (b + Zz)]
cexp tk[R — a cos np
+ Sw-r —beosyn — dcosd]

or

(18)
where r = Sy + b cos m2 + d cos 8 and

I =a-+ Spcosqe L= Sw-+ acosne
I =0+ Spcosngs L= Sw-+ bcosne.

There is, of course, a companion ray which reflects off of
sphere B first and then A before reaching the observer.
This may be calculated from the preceding by making a
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Fig. 4. Geometry of two-sphere problem showing ray that under-
goes two reflections.

few obvious changes. We could carry out the same type
of analysis for a field that has undergone j reflections
before reaching the observer, but the analysis becomes
rapidly more complicated since there will be, in general,
27 — 1 unknowns involved in the form of simultaneous
transcendental equations.

It is quite difficult to describe a general hybrid ray in
the same sense as we did for the multiple reflected rays
since it ean assume any number of forms comprising creep-
ing wave rays and reflected rays. However, generally, only
a few contribute significantly to the scattered field in a
particular direction. It is perhaps more meaningful in
describing the role of these different types of multiple
scattered rays if we consider one case in which the domi-
nant multiple scattering meehanism is multiple reflection
and another in which it is hybrid rays. In the first case
we consider the backseattered field from a pair of identical
metallic spheres illuminated from the broadside direction,
and, in the latter case, from the endfire direction.

BroapsipE INCIDENCE (o = 7/2)

Consider first the case of a pair of identical perfectly
conducting spheres of radius o illuminated by a plane
wave perpendicular to their common axis, « = /2. For
this discussion, we will be interested only in the back-
scattered field. Some of the rays appropriate for this
geometry are shown in Fig. 5. The most significant hybrid
rays for this configuration, even though there are four,
(2C_R1 4+ 2R,C_), contribute negligibly except for small
“spheres.

Returning to the reflected rays, the contribution due
to Ri is already given in (17) with #; = 0. For Rs, since
M2 = 122 = w/4 with Sp = d — aV2, from (18),

Ry = &

2 = m exp tha(u + 2 — 2V2) (19)
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Fig. 5. Some rays which contribute to backseattered field of two

spheres illuminated from broadside direction.

where 4 = d/a and the upper and lower signs refer, re-
spectively, to horizontal and vertical polarization (y = 0,
7/2). This result was also obtained by Bonkowski, et al.
[217] using a lengthy tensor formulation. The expressions
for the fields which have undergone three, four, five, and
more reflections have also been derived [127] but need
not be written down since the expressions become lengthy
and the recipe for obtaining them has already been given.

As one would expect, the contribution of the reflected
ray decreases with its order. In Fig. 6, the modulus of the
multiply reflected rays R» through R; (normalized to £
as in (19)), is shown for several values of the ratio d/a.
The general behavior is perhaps more vividly illustrated
by the spot pictures adjacent to each curve. These photos
were obtained by photographically recording the light
intensity (square of modulus) reflected by two polished
silvered spheres. The two bright spots, common to all the
diagrams, denote the specular returns 2; from the front
surface of each sphere. The remaining spots R, Rs -,
(when they can be seen) are identified by counting inward
from the two R, spots. Each picture was obtained by il-
luminating the pair of spheres shown in the top photo
by a point source of ordinary light situated close to the
axis of the camera and recording the reflected intensity
on film when the studio lights were extinguished. Due to
the limited exposure, only those spots of intensity greater
than —30 dB with respect to B: can be seen. From this
figure, we observe that when the spheres are separated by
as little as one diameter (d/a = 4.0), the magnitudes of
succeeding higher order reflected rays differ nearly by an
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Fig. 6. Comparison of relative amplitudes of multiply reflected backscattered rays for various spacings at broadside
incidence. (a) Obtained by computation. (b) Obtained by photographic method (see text).

order of magnitude; this is hardly the case when the spheres
are in contact. It is worth remembering that the modulus
of the multiple-reflected rays is a function of the ratio
d/a, not the spacing d.

Using only the rays Ry, C_ and R, through Rs, we com-
pute the normalized RCSs of pairs of identical metallic
spheres for the two principal polarizations for ka = 2.00,
4.19, 6.246, and 10.00. This size range was chosen so that

- the results could be compared with those of the exact
solution for the purpose of determining where solutions
obtained by the two approaches “overlap,” and also for
comparison with some experimental results given in [25].
These results are presented in Fig, 7.

In the interest of comparing the two solutions as accu-
rately as possible, Fig. 7 (and ones to follow) were drawn
by a computer-controlled digital plotter. A large number
of data points for each curve was fed to the plotting
program and intermediate points were calculated by a
piecewise cubic interpolation scheme. Curves comparing
the two solutions were plotted at the same time on the

same grid—the dashed curves always representing the ray
optical solution and the solid curves, the exaect solution
unless otherwise stated.

With the exception of the case of horizontal polariza~
tion at ke = 2.0, the agreement is surprisingly good. From
these figures, we also see that as d/a becomes large (and
hence the coupling small), the normalized cross section
settles down to 4e¢,/7ma® as expected, o, being the RCS
of a single sphere.

A further example is given in Fig. 8, involving the RCS
of a pair of spheres in contact as they both grow in size
for vertical polarization. Again, the same set of rays is
considered as was used for computation in the previous
example. The ereeping wave influence for this example is
apparent for ka < 10 and can be identified with the local
maxima in this range since we know the creeping wave
C_ to add in phase with B; (for the single sphere) at
ka = 2n7/(2 + =), where n is a positive integer, and with
a period in ka of roughly 2x/(2 + =). Beyond this point,
the RCS is almost completely dominated by the geometric
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Fig. 7. RCS of two equal perfectly conduecting spheres at broadside incidence as spacing is varied for ka = 2.0,
4.19, 6.246, and 10.0, comparing ray-optical solution (— — —) with exact solution (—).
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Cross-polarized RCS from pair of equal perfectly conducting spheres ka = 20.0 as spacing is varied using

rays Ry, Ry, and Re. T and R indicate polarizations of incident and received E vectors, respectively.

optics components alone. The normalized RCS of the pair
will not, however, settle down to some constant value for
large ka as it does for the single sphere. This is because the
ratio d/a is constant, and as a result, the normalized re-
turn is made up of components which are constant in
magnitude; only the relative phases change with ka.
Normally, we associate ray methods with problems in
which characteristic dimensions are much larger than a
wavelength. Here we find excellent agreement with the
exact solution for a pair of spheres in contact even when
the radii are as small as A\/4.

There is another configuration which, because of its
practical application and simplicity, warrants mention. In
this case, an identical pair of metallic spheres is illumi-
nated from the broadside direction with a plane wave

whose polarization vector makes an angle of 45° with
the common axis of the two spheres (y = 7/4). Due to
symmetry, only the even components, Ry, Ry,++ +,Ron, cOn-
tribute to the cross-polarized radar return. A sample com-
putation for a large pair of spheres {ka = 20.0) is shown
in Fig. 9 where the effect of some of the higher order rays
is readily seen. The simplicity of the analysis and con-
figuration makes this an interesting method for cross-
polarized RCS calibration. This is discussed more gen-
erally in [25] with further results.

ENDFIRE INCIDENCE (o = 0)

In the case of endfire incidence, as shown in Fig. 10,
the sphere B may lie wholly in the geometric shadow of
A if b < a; hence, the only purely geometric return is the
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specular reflection from sphere A. Some rays to consider
for this geometry when b = a are Ry, C_, C_R~C_,
C_RiC_,C_RH~C_, C_R:C_, C_C,C_, ete., where E;¥ means
that of 7 multiple reflections, one is a normal reflection.
Strictly speaking, geometric opties dictates that the shad-
owed sphere will never see directly the incident field which
we know it should eventually at very large spacing.
As a result, the backseattered field of two identical spheres
should eventually approach the single sphere value times
the array factor 1 -4 exp (2¢kd).

The backscattered field due to the first two dominant
hybrid rays for arbitrary a and b is

lﬁ‘ [ rrka

1/2
ek 3

a

- 8Xp {z’Qka[l — 74+ (¢ — DV2 4 esclu]

i
i 2a0a €8¢ 1 #} (20)

- . D¢t wka ]"”
C_R,.C_ = Ri(—7) 2 [((# ) — 1)

-exp {i?ka[l + ((p—7)2 = 1)t

+eset(p—17)]— % — 2apa cse™ (p — T)}
(21)

where 7 = b/a and u = d/a. (D¢*/a) is the product of
four surface diffraction coefficients and o is the attenu-
ation coefficient associated with the normal component
of the field that creeps around the sphere [127.

Using the rays B, C_, C_R/¥C_, and C_RiC_, shown
schematically in Fig. 10, we compute the normalized RCS
of two identical metallic spheres for ka = 7.41, 11.048,
and 20.0. These results are shown in Fig. 11 together with
the exaet solution for comparison. In the absence of cou-
pling, the normalized RCS will oscillate between 0 and
doq/wa? as kd is varied; this latter value is indicated by
the dashed line on the ordinate for each case. The agree-
ment gets better (for small to moderate d/a) with in-
creasing ka as we would expect, and is best for ka = 20.0.
The results even for ka = 7.41, however, are not very
satisfactory. The discrepancy can be attributed, at least
in part, to the inaccuracy in the canonical creeping wave
problem near a shadow boundary.

Let us consider computing the normalized RCS of two
identical metallic spheres in contact at endfire incidence
as they both grow in size using only the rays B; and
C_E~NC_. It may be recalled that the creeping wave in-
fluence on the backseattering from a single sphere is nearly
absent at values of ka greater than about 10-15 due to
its large attenuation. Placing an identical sphere directly

387
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Fig. 10. Most significant rays for backscattering at endfire in-
cidence and close spacing.
=~ OO
8 ka=kb=741 —a —

e e e e

o,

46.0)

ka=kb=11.048

gl --- a.1420

31 ka=kb=20.0
[-—=— 38654

3.00

2.00
>

1.00
S

kd

Fig. 11. RCS of two equal perfectly conducting spheres at end-
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behind a previously isolated sphere drastically alters the
situation, since the hybrid wave C_R,*C_ overwhelms any
single sphere creeping wave C_, and its associated creeping
path length is only a total of one sixth of the circumference
of the first sphere, implying that the oscillations about R,
" will persist for a much larger value of ka than for the
single sphere. In Fig. 12(a) the normalized RCS of a pair
of identical spheres in contact is shown, computed by
the multipole expansion approach as ka covers the range
0 to 24. It is clearly seen that there is considerable oscil-
lation about R; even for ka as large as 24. It becomes
somewhat costly to carry out computations much beyond
this value using the modal approach. Therefore, we must
resort to ray optics. Fig. 12(b) shows the ray-optical solu-
tion to the same problem plotted logarithmically in ka
to ka = 150. If we compare these two curves, we find
excellent agreement in the location of the peaks and nulls
after ka = 10 and also in the amplitude after ka ~ 16. The
period of oscillation can be very simply determined. Know-
ing that these oscillations are caused only by the inter-
ference of By and C_R,¥C_, the period P, in ka, of the

oscillation can be shown from (20) to be simply
w/(x/6 + V3) =~ 1.39, with peaks at ka = nP and nulls
at ka = (2n — 1) P/2 where n is a positive integer.?

It is interesting to note from the geometric opties point
of view that eventually the front sphere can “‘hide” the
back sphere at sufficiently high frequency. In fact, the
front sphere may even hide a sphere that is larger than
itself. Since the attenuation of the hybrid rays C_R;¥C_
is proportional to exp (—2aoa csc! k), ka must be larger
in order to hide a bigger sphere (b > a) than to hide a
smaller one (b < a).

CoONCLUSION AND DISCUSSION

The problem of electromagnetic scattering by two
spheres has been solved through two approaches: multi-
pole expansion and ray optics. Numerical results show
that the former solution is useful even for spheres as large
as 10X in radius whereas the latter is useful for spheres as

* Note this is longer than the period of oscillations in the RCS
curve for a single sphere which is 27/(2 + =) = 1.23.
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small as A/4 in radius in some cases. The former solution
is very general and applicable to spheres of any mate-
rial, but the latter is so far confined to conducting spheres.
The ray-optical solution agrees very closely with that of
the multipole expansion for relatively small spheres in
the ease of broadside incidence, but for much larger
spheres in the endfire incidence case. Even for broadside
incidence, the accuracy of the ray-optical solution of small
spheres may be good for one polarization while poor for
another polarization. This simply illustrates that care must
be exercised in using the ray-optical approach. Despite
this, it often gives us much physical insight into the
problem.

Extension of the solution to scattering of acoustic waves
by two spheres is straightforward. Interested readers are
referred to [12]. It is perhaps of interest to point out that
in the ease of endfire incidence, the solution converges
considerably slower than that for the case of EM waves
due to stronger creeping wave coupling. It is also possible
to extend these solutions to three or more collinear
spheres. This, as well as many other theoretical results,
are discussed in [25] where an unusually good agreement
with the experiments will be seen.

APPENDIX

TRANSLATIONAL ADDITION THEOREM FOR VECTOR
SrHERICAL WAVE FUNCTIONS

In order to express vector spherical wave functions
about a displaced origin 0’ in terms of wave functions
about another origin 0, we employ the addition theorem:

Z [Amvmanv(l) + Bm y”mva(l)]

p=(1,m)

an(ﬂ' =

> [Aw™Nn® + BymeM,,P].  (22)

»=(1,m)

N,

This applies to a translation along the z axis a distance ¢
as in Fig. 1. When translating from 0’ to 0, 4.,™ and
B,.,m are preceded by the factors (—1)™t" and (—1)™++,
respectively. For translation in any other direction, the
theorem is somewhat more complicated and may be found
elsewhere [127]-[147]. The wave functions are defined in
(5) and (6), and the translation coefficients are given by

[12]

- 2+ 1
Apm = (= 1)7d (v 4+ 1)
Xirnn+ 1)+ + 1) —plp+1)]
2,9 (kd)
~a(myn,— m';V;p)
Jo(kd)
mn — (. 1ymir—n ﬁ_—f__l_ y—2( — Qemk
Bmw = ( 1) 21}(” + 1) % 2 ( 2kad)
2,9 (kd) r<d
sa(m,n,—nry,p) , for . (23)
Fo(ked) r=>d
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The summation over p is finite covering the range
ln—vjn—»|+ 2,+-+,(n+»), and includes 1 4
max {y,;n} terms. The preceding coefficients are fur-
ther complicated by the presence of the coefficients
a(m,mn,—m,v,p) which are defined by the linearization
expansion

P (2) Py (x) = 2 a(mn,—mp,p)Pp(z).  (24)

These latter coefficients may be identified with a produet
of two 3~ symbols [13], [14], [22] which are associ~
ated with the coupling of two angular momentum eigen-
vectors:

a{mm,—my,p) = (2p + 1) ’:(n + m)l (v —m) !]1/2

(n—m)!(» 4+ m)!
n v p\/n v P

(25)

0 0 O/\m —m O

The factor
o g 7
my Ma mgy

is the Wignér 3-j symbol of which there are several

_definitions, all involving summations of multitudes of

factorials. As a result, straightforward calculation using
(25) is very inefficient. In search of a better representa-
tion, inspection of the form of the coefficients A,,”” and
B,/ in (23) reveals that a recursion relation for the
a(+) in which only the index p eyecles would be highly
desirable especially for machine computation. Just such
a relation exists and is given by [12]

Ay g0yt — (po+ 0py — 4m2)aps + a0, = 0 (26)
where
ap = a(m,n,—my,p),

p=n+vntv—2-.0]n—v|

and

_ Lty 12— pp® — (0 — )]

2
4 — 1 (20

Qp

We need not be concerned with the question of stability
of this recursion relation since all quantities are rational
numbers.

The recursion relation (26) is most conveniently em-
ployed in the backward direction since we can find simple
starting values for the coefficients at p = n 4+ » and p =
n 4+ » — 2. By matching coefficients in highest powers of
the argument in (24), we find

(2= D2y — D (n+ »)!
It = o ¥ 2% — DI (n—m) v+ m)!
(2n+ 2» — 3)
Appp—o =

2n— 1) (2 — 1) (n+ »)

Jnv — m2(2n 4+ 20 — 1) Ja.q  (28)
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where (2¢ — D!1= (2¢ — 1)(2¢ — 3)--:3:-L;(—)N =1L
Note that in (26) every new coefficient makes use of all
previously caleulated quantities and only requires two
additional evaluations of the quantity «, The starting
values (28) are, of course, not calculated directly from
(28), since the recurrent form of the factorials may be
utilized by generating these in the proper sequence (with
regard to », », and m) starting fromn =» =1, m = 0,
where the coefficients (28) are 2/3 and 1/3, respectively.
‘We see that nowhere have we had to calculate a single
- 3+ coefficient.

Special Forms

When m = 0, (26) becomes & two-term recursion for-
mula which leads to a closed expression for a(0,n,0,7,p)
[127. The properties of the associated Legendre functions
allow us to obtain a closed expression for m = 1 also, but
no higher:

a(Ln:—l,”;P)

_ 2+l ale+ 4+ —plp+ 1)
(v + 1) nt+rv+p+1
—n+v+p n—v+p ntv—p
—ntv+p n—v+p n+v—p

2 2 2
) n+tv+p
n-t+v+p
2

L

This expression is particularly useful as it corresponds to
the case of endfire incidence.
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