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Multiple Scattering of EM Waves by Spheres 
Part I-Multipole Expansion and 

Ray-Optical Solutions 

Abstract-Solution to the multiple scattering of electromag- 
netic (EM) waves by two arbitrary  spheres has been  pursued 
first by the multipole expansion method. Previous  attempts  at 
numerical  solution  have been  thwarted by the complexity of the 
translational  addition  theorem. A new recursion  relation is derived 
which reduces the computation effort by several  orders of mag- 
nitude so that a  quantitative  analysis for spheres as large as  lox 
in radius at a spacing as small as two spheres in contact  becomes 
feasible. Simplification and approximation for  various cases  are 
also given. With  the availability of exact  solution, the  usefulness 
of various approximate solutions  can be determined quantitatively. 
For high  frequencies, the ray-optical solution is given for two 
conducting spheres. In addition to the geometric and creeping 
wave rays pertaining to  each  sphere alone, there  are  rays  that 
undergo  multiple reflections, multiple creeps, and combinations 
of both, called the hybrid rays. Numerical results show that  the 
ray-optical solution can be  accurate for spheres as small as x/4 
in radius is some cases. Despite  some shortcomings, this ap- 
proach provides much physical insight into the multiple scattering 
phenomena. 

~. 

INTRODUCTION 

T HE  SIMPLEST realistic  problem of multiple  scat- 
tering  by finite bodies appears to be that. by two 

spheres. Many works [l>[9] on  this  subject  can be 
found  in the literature,  but most  either  deal  with’ general 
formulation  or  are confined to specific cases, and prac- 
tically  none  give  numerical result,s. Even  the limited 
amount. of experimental works by Mevel [a] and Angelakos 
and  Kumagai [5] are  in need of independent. verificat.ion 
and extension. 

It is not  the  intent of this  paper to include  a  general 
survey of all the works on  this  subject, for which the 
readers are referred to the excellent reviews by  Twersky 
and  Burke [lo], [ll] and also [E] .  Here  citations Kill 
be  made only to closely related works. 
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I n  1935 Trinks [l] considered scattering by t,nro iden- 
t.ical spheres of radii  much  smaller than wa,velength, which 
was later extended to small unequal  spheres and  arbitrary 
a.ngle of incidence by Germogenova [4]. More  recently 
Liang  and Lo [7] and  Crane [9] reformulated t,he prob- 
lem using a newly derived  translational  addition  theorem 
by  Stein [13] and  Cruzan [14] whereas  Tmersky [SI 
considered a. more general problem  with  many  scatterers, 
using dyadic Green’s function  approach.  He also obtained 
a,pproximate  solutions  under  various conditions. 

More  recently  Levine and Olaofe [lj] extended  Trinks’ 
work to  arbitrary  orientation of t.wo small part.icles and 
also considered the  effect of t.he electric  quadrupole. Even 
with the help of several  previous  theoretical works and 
the availability of modern  high speed computers,  Liang 
and Lo [7] found that  their numerical  evaluat.ion  had to 
be limited to spheres of radii less than 3h/4  and wide 
spacings, due  to t,he  complexity of the addition  theorem. 
This suggests that  the numerical aspect. of t.he problem is 
by no means  trivial. 

In  this  paper t.he additiona.1 theorem as applied to  the 
present  problem is reexamined from  a  numerical point. of 
view.  -4n important recursion relation is introduced which 
permits  a  routine  calculation of t,he t,ranslation coefficient,s 
without. resort.ing to  the t,ime-consuming computation of 
Rigner’s 3-3’ symbols [7]. In  doing so, the comput,ing 
effort  can  be reduced by several  orders of magnit,ude. As 
a  result,  quant.it,ative  analyses  for  spheres as large as 1OX 
in  radius, of arbitrary  materials, even in contact be- 
come feasible. Closed form  approximate solut.ions under 
various  conditions are also given for the purpose of deter- 
mining their  validity by comparing them  with exact. ones 
numericaIly. 

Like all other scat.tering problems, a  multipole  expan- 
sion solution loses its effectiveness a t  high frequencies. 
Therefore, in  that. case, a  ray-optical  solution  is  very de- 
sirable.  Furthermore,  this  type of solution offers much 
physical insight. into the complex multiple  scattering 
mechanism. The ray-optical  solution is based  on the 
classical geometric optics  and creeping  wave t.heor;. With 
t.he except,ion of endfire incidence, t.he numerical  results 
are  in excellent. agreement  with  those  obtained  by mu1t)i- 
pole expansion for  conducting  spheres as small as h/4 
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in some cases. It is grat,ifying to see that  there exists z 

such  a  large overhpping region (X/&lOX) between  two 
types of solutions which gives us  ample latitude  for cross- 
checks of the results. The confidence on t,hese solutions 
is further strengt,hened by observing  amazingly close 
agreement, with the experiment.al results which are dis- 1 

cussed in [a;]. 

STATEMENT O F  PROBLEM AiiD MULTIPOLE EXPANSIOK d 
SOLLTIOW 6 

Consider two spheres A and B of arbitrary  materials 
and radii a and b, respectively. Without loss of generality, x !  

their centers 0 and Of ,  separa.t.ed by a dist,ance d, can  be 
assumed to lie on  the z a.xis, as  shown  in Fig. 1. Any 
point  in  space ca.n be  represented by (r,e,4) or (r’,0’,4) 
with respect, to t.he coordinate  system  with origins a t  0 
or a.t. 0’, which is related  to  t,he  former  through a t,ransla- 
tion d along the z axis. i n  t.he follo\+<ng, we  sha.11 adopt 
the convent.ion that all unprimed  quantities  are referred 
to t.he 0 system whereas all primed  are referred t.0 the 0‘ 
system. Let. there  be  an incident  plane  wave of unit 
st,rengt,h a.nd chara.cterized by  a wave vector k, an inci- 
dent, angle a witith respect to t.he z axis, a.nd a  polalization 
angle y between E and t.he projection of 00’ on t*he incident 
wavefront. as shown in Fig. 1. Then, following Strat,ton’s 
notations [lG] for  vector  spherical  wave  functions,  t,he 

Fig. 1. Geometry of two-sphere problem. 

NmnfJ’),Mmn(j) are vector  spherical wave functions 

total electric field expanded  with respect to 0 [7]-[9], 
[l2]  can be  written as,‘ for T 2 a, 

Mmn(J’) = z,(j) ( k r )  (exp im4) 

Y 

where p (m.,n) and y (m,n) are mult.ipole c0efficient.s  of -[ ag~ ,m(cos  e)  6 + - p,m(cOs e)  4 
t.he incident  plane  wave 

iV1 

sm 8 

p (m,n) = in+‘ 
2n + 1 (n  - m )  ! 

n(n + 1) (n + m ) !  

where z,(j) is the  appropriate  kind of spherical Bessel 
funct.ions j,, f2n, hn(l), and hnc2), for j = 1, 2, 3, and 4, 
respectively; AE,AH,BB,BH are “mult.ipole coefficients” of 

-C7rmn(a) cos Y + irmn(a) sin r] (2) E and H waves scat.tered, respectively, by spheres A and 
B in t,he presence of each other; a.nd AmPmn,Bmymn are 
“t,ransla,t,ion coefficients” of the vector  spherical  wave 
functions  from 0‘ to 0. (See the Appendix for  det,ails). 

There is a  similar expression for ET’ wiiith respect to  the 
0‘ system,  for which the muhipole coefficient of t.he inci- 
dent.  plane wave p‘( m,n) and p‘(7r1,n) differ from p (m,n) 
and p(nz,n) by a  factor exp ikd cos a, a.nd A‘,,”” 

Xmn(a) = daPnm(COSa), Trnn(a )  = 7 Pnrn(cOSa) (4) and Bfmvmn differ from Ampmn and Bmvmn by  (-1)“+, 
and ( -  l)n+v+l, respectively. The  total magnetic field HT 
is obt.ained by intercha,nging N,, and M,, in (1) and 

2n + 1 (12 - m )  ! 
n(n  + I)  (n. + m )  ! 

q(nz.,n) = in+’ 

- [ ~ , ~ ( a )  cos Y + irmn(a) sin Y] (3) 

m 
sin a 

Time  variation exp ( - i d )  is assumed. a, = a/aa. mukiplying the result. by - i k /wp .  
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By applying  the  appropriate  boundary conditions and  vantage.  Thus, for the t,wo principal  poIarizatiom 
using the  orthogonality  properties of the Legendre  func- 
tions, we arrive at  four  sets of coupled, linear,  simultaneous 
equations  in  the  unknown coefficients: 

The coefficients v,(kl,ka),  u,(kl,ka), vn(k2,kb), and 
u,(k?,kb) are, respectively, the classical elect.ric and mag- 
netic  mukipole coefficients of the  external field of spheres 
A and B in isolation. k ,  kl, and h.2, are  the xmvenumbers 
in the surrounding  medium,  sphere A ,  and  sphere B, 
respectively. 

I t  should  be  emphasized that,  the syst.em (7) is valid 
for  determination of t,he mukipole coefficients for the 
scattering  by  any  pair of spheres, equal or unequal  in size, 
of the same or different. ma.teria1 as long a.s the  appropriate 
single sphere coefficients un and L',, for each  sphere a.re 
known.2 

It. is clear from (7) that  there  is no coupling  among the 
azimuthal modes (i.e., modes 1vit.h different index ~ n ) ;  
hence, this  system of equations  may  be  solved  independ- 
ent.ly  for ea.ch nz where -n 5 m 5 n, and  represents  in 
general, 2n + 1 sets of equations. As shov-n later,  there 

: are  several  important special cases in which the  form of 
(7) can  be simplified considerably. 

SCATTERED FAR  FIELD .4hr~ VARIOUS  APPROXINATE 
SOLUTIONS 

Of pract,ical interest' is the scat.tered field in  the  far 
zone of the ensemble of two  spheres  which  may,  neverthe- 
less, be  in  the  near field of each  other. This is obt.ained 
from  the  asymptotic forms of t.he vector  spherical  wave 
functions  for r ,  T' >> d. By observing the  symmetry in- 
herent. in  the c0efficient.s and t,he wave  functions,  all 
previous field expressions can  be t.ransfornled into series 
involving  only  nonnegative  values of the index m if the 
incident field is  decomposed inta it,s horizonta.1 a.nd ver- 
tical  components which yields a grea,t comput.ationa1 a.d- 

posed of several concent.ric layers of different materials [13] or 
* The precise form for u.,, and vn is also known for  spheres com- 

concentric layers of nonuniform dielectric constant. [24]. 

e (tn,n) = AE: (?~t,n) + B ~ ( m , n )  exp ( - ikd cos a) 

h (,tn.,n) = AH(m,n) + BH (nz,n) exp ( -iM cos a). (9) 

Note  that e (m,n) and h (m,n) are also dependent  on y 
by  virtue of (a), (3), and (7).  

There  are several insta.nces in which t.he analysk  may 
be simplified further  by imposing  certain  additional re- 
strict.ions. 

1) The  fmt involves the case of axial symmetry, i.e., 
when the propa.gation direction of the incident field  coin- 
cides with  the axis of the two  spheres (endfire incidence 
a = 0). As a  consequence, t.he coefficients ( 2 )  and (3) 
of the incident field become 

p (n2,n) = q ( n w )  

where 6 m , ,  is t.he Kronecker  delta..  This  means that  the 
system (7) need  be  solved  only  for ? n  = 1, where t.he 
coefficients and Blvln assume a pa,rticularly  simple 
form [12]. 

2) Another simplification involves  identical  spheres  at. 
broadside incidence ( a  = b, a = r / 2 )  where it may  be 
shown  tha.t the coefficients of the  spheres  bear  the simple 
rela,tion 

B ~ ( v L , ~ )  = F ( - 1 ) n + r n - 4 ~ ( ~ ~ , n )  

BH(.nt,n) = f ( - 1) , + ' A H  ( n 2 , n ) .  (11) 

The upper  and  lower signs refer, respectively, to  the inci- 
dent,  polarizations y = 0, ~ j 2 .  With  this simplification, 
(7) reduces to two  coupled sets of equat.ions [12]. 

3) The Ra.yleigh approximation gives rise to  a  partic- 
ularly  simple  form, since this  situation is characterized  by 
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the assumption that. ka. and kb are so small that on ly  the 
terms  for n = 1 contribute,  the ot.hers being t.a,ken as 
zero. This case has previously been considered by several 
authors using Trinks’  formulation [l], [2], [4], [SI. The 
explicit low-order translation coefficients are  simply in- 
serted  into (7), which is then solved algebraically [la]. 

4)  Lastly, a  very useful approximation is obtained  for 
the case where ea.ch sphere is situated  in each others’ far 
field. This is satisfied when d / z  > 0 (kz) , where z is t,he 
larger of a. and b. In  t.his case, it-  can  be  shown  t.hat the 
addition  theorem  takes a very  simple  form [12]. From 
t.his, we find tha.t. the system  may be uncoupled and solved 
analytically.  This is accomplished by successive subst.it.u- 
tion  and not.ing t,hat in the process me are genera.t.ing 
geomet,ric series which can  be  summed  (after a. consider- 
able  amount, of bookkeeping) in closed form. For illustra- 
tion, consider the  vertical polarizat.ion ( y  = n/2)  , and 
smttering  in  the  plane r#J = n. Wit.h t,he identificat>ions 

s,A = 
@SQb(d,n - ajo) + S+a(d,a,g)S@b(d~n;g) 

1 - S+~(d,7r,7r)Xpyd,*,7r) 

and 

m 

[ U n ( k d x l n ( e )  + u,(kz)nn(e)] cos 4 

(13) 

n=l 

we arrive at [12] 

E,A+B = S + a ( T , e  + a , ~ )  + S,b(r,e + a , ~ )  exp is 

+ sOBSOa(~ ,n  - e,o) + s+AS+b(r,O,n) exp is 

(14) 

where 6 = kd(cos a - cos e). Inspection of (12)-(  14) re- 
minds us that we ha.ve a  result composed only of single 
sphere watering a.mplitudes. Furthermore,  this result. was 
obtained only by using the  far field form of t.he addit.ion 
theorem. 

The scattering  amplitudes s+* and sgB have  an enlighten- 
ing  interpretation  with  the aid of Fig. 2.  sQA, for example, 
is the st.rength of a. field incident on B from A .  Its ampli- 
tude is composed of the first-order field scattered  by B 
toward A : @SQb(d,n - a,O) and a field scattered  by A to- 
ward B and  then backscat.t.ered by B :  S+a(d,a,n)Sgb(d,n,n). 
The  term [l - SQa(d,n,n)SQb(d,n,n)]-’ multiplying  tlhe 
aforementioned  a,mplitudes is the effect of all higher  order 
“bounces” of these two amplit.udes, which we note is t,he 
sum of a  geometric series in powers of the  term 
Spu(d,n,~)S+b(d,a,n); its convergence is assured by  the 

. 
0 -  

\ 

Fig. 2. InterpreCation of multiply scattered fields in (12) and (14). 

initial  assumption of each  sphere being in t.he others’ 
far field. For two  identical  spheres a.t. broadside incidence, 
(14) becomes ( y  = n / 2 )  

(15) 

It is  interesting to note  tha.t t.his approximat,ion yields 
surprisingly good results  even  for t,wo spheres in contact.. 
This is shown in Fig. 3, where the normalized radar 
cross sections (RCSs) for  various sizes of conduct.ing 
spheres are plott.ed, the solid curves  being  obt,ained  from 
the exact solut.ion. 

RAY-OPTICAL SOLUTION 

Levy and Keller [17] elegantly  extended  Franz’s creep- 
ing  wave  theory [18] for the  sphere  to sca.t.tering by a.n 
arbitra.ry  smooth convex body. Ray  paths associated  with 
the creeping waves obey  Fermat,’s  principle and hence, 
lie along geodesics of the surface. While their  approach 
to  the elect.romagnetic (EM) problem  makes use of t.wo 
scalar acoust.ic problems, here we are concerned specs- 
cally  with the behavior of t.he vector  problem of t,he 
sphere. Senior and Goodrich [19] expressed the single 
sphere  scattered field in  a  form which makes  ident.%cation 
of the a.ppropriate  diffraction a.nd attenuation coefficients 
an easy matter. 

The  rays which contribut,e  to t.he scattered field of the 
t.wo sphere ensemble fall int>o three  categories: 1) reflect,ed 
rays  arising  from  direct and mult.iple reflect.ions, 2) creep- 
ing wave  rays  bound to a single body, and 3) “hybrid 
raysJJ [E], [20]. The rays fa.lling into  the  last category 
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OT Field calculabions employing the geometric optics ap- 

0: e ,  - proximation are carried  out, using Snell's Law and  the 
conservation of energy. If E ( A )  is the value of the incident 
field at a point. A ,  then  the reflected field a t  some  point a j  k o i k b i  1 0  <,=- 

0 $:I -. - 3 6376 P, a distance S from A ,  is given by 

I f s ' o 2  j 
I .  P I P 2  exp ikX (16) 

where p1 and p2 are  the principal  radii of curvature of the 
wavefront reflected from A. The bracketed term is desig- 
nated  the divergence factor A. If more than one reflection 
is involved, t,he preceding procedure is repeated;  the field 
a t  some point P after N reflections will then assume t.he 

E ( P )  = - E ( A )  [(, + S) (pz + S )  1 \- 
i 
i 

9 

1 

8:m Lljm : sjm : , ~ m  : 1b.m : A m  ' A.m ' zS.m ' d.m ' form 

8.. 

'. For simp1icit.y we will consider t.he scatt.ered field at 5.. 

k o = k b = 2 . 0  E ( P )  = ( - l ) N E ( A )  A, exp ikS,~. 
kd 

hr 

~ = l o o s l  
T O 2  

.. '. 
-1 

N ' s 
8:,f0!_26 7y \ t.he point in t.he plane of incidence as shown in Fig. 4, where 

only t,he  member R2 of the  set (Rj}  is drawn. R2 consists 
of the subrays Sos - SE - SZ2. In  genera.1, a member of 

t.0 denote  the length of the  ray between reflection points 
i a.nd i + 1. The angle bet.ween ray Sij and  the normal a t  

4.. 
'. ' (R,} comprises Soj - SU - - - Sjj where Saj is used 

a>:m : A, : I A . ~  : li.m : d m  ' i m  ' 26.m ' A.m ' 4.m ' t.he ith reflect.ion point is denot,ed by qi,. Then,  for  t4he 
kd assumed incident  plane wave, t,he far field due  to one 

8.. k o = k b = 4 1 9  reflection R1 from  sphere A is 
- =  ua 06386 
702 U 

0 R1 = - - exp ik ( R  + r - 2u COS 1/11) (17) 
2r 

where 

7i'- e - Q! 

2 r = S11 + a sin 1/11, 711 = 

D 

k:m ' 1b.m 1i.m ' 1i.m ' &.m ' S.m ' i . m  ' 3v.m ' i . m  ' 
k d  

Fig. 3. RCS of t.wo equal metallic spheres at broadside incidence 
for X-a = 1.0, 2.0, and 4.19 using exact solut.ion (-----) and 

. asymptotic form (15) for large separation (--.--.). 

are t.hose which involve any combination of rays of the 
first two  types. For purposes of further classification, rays 
of the &st type which undergo j reflections are denot.ed by 
Rj; those  rays of the second type which creep over a 
length  equal  to or less than halfway  around the body  are 
denoted by C-; C+ describes the case of a la.rger length. 
Fina.lly, the  third case may be represented by  any com- 
bination of the preceding symbols with its obvious impli- 
cat'ion. For example, a ray which creeps part, way around 
one  sphere, most. of the way  around  the  other,  and reflect.s 
five times  between t.he two  before  reaching the observer 
may  be identified by  the symbol C-C+R5. A particular 
geometry of two  spheres could support  any  number of 
configura6ions of rays; however, generally only  a few  will 
be significant.. 

6 is the polar angle of observation  point P, and R is the 
distance  from  t,he  source  to origin 0. We  have a similar 
expression for sphere B. 

For two reflections, one must first. determine the t,hree 
unknowns ~ I Z ,  vn, and S,  [E]. Once these  parameters 
are  determined, the divergence factors At may be calcu- 
lated. The result analogous to (17) for  two reflections is 
given by [E] 

-exp ikCR - a cos 1/12 

+ SB + r - b cos 1/22 - d COS e] (18) 

where r = SZ2 + b cos 771.2 + d cos 6 and 

ll = a. + SE cos 1/12, L = S12 + a cos w 
l2  = b + 812 COS 1/22, L = SE $. b COS m .  

There is, of course, a companion ray which reflects off of 
sphere B first and  then A before reaching the observer. 
This  may be  calculated  from  t,he preceding by  making a 
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Fig. 4. Geometry of tmo-sphere problem showing ray  that under- 
goes t.wo reflections. 

fern obvious changes. We could carry out, the  same  type 
of analysis  for  a field that  has undergone j reflect>ions 
before reaching the observer, but  the analysis becomes 
rapidly more complicated since t.here will be, in general, 
2 j  - 1 unknowns involved in  the form of simultaneous 
transcendenbal equa.tions. 

It is  quite difficult to describe  a genera.1 hybrid  ray  in 
the sa.me sense as we did  for  the multiple reflected rays 
since it  can assume any  number of forms comprising creep- 
ing  wave  rays  and reflected rays. However, generally, only 
a few contribute significant.ly to t.he scattered field in a 
particular  direction. It. is perhaps more meaningful in 
describing the role of these different. types of multiple 
scatkered rays if  we consider one ca.se in which the domi- 
nant mult.iple scattering mechanism is multiple reflection 
and anot.her in which it. is  hybrid  rays. In  the first case 
we consider t.he backscat.tered field from  a  pair of identical 
metallic  spheres  illuminated  from the broadside direct.ion, 
and,  in the la.tter case, from the endfire direction. 

BROADSIDE INCIDENCE (a = r / 2 )  

Consider first the case of a pair of identical  perfectly 
conduct.ing spheres of radius a. illuminated by a  plane 
wave  perpendicular to their common axis, a = r / 2 .  For 
t.his discussion, we will be  interested  only  in the back- 
scattered field. Some of the rays  appropriate  for  this 
geometry are shown in Fig. 5. The most significant. hybrid 
rays  for  this configuration,  even  though t.here are four, 
( X 2 1  + 2R1C-), contribute negligibly except for  small 
spheres. 

Returning  to  the reflected rays: the contribution  due 
to R1 is  already  given  in (17) wit.h 1/11 = 0. For Ra, since 
TJE = 1/22 = n/4 with SE = d - a@, from (18), 

Fig. 5. Some rays which contribute to bachcattered field of two 
spheres  illuminated from broadside direct.ion. 

where p = d /a  and  the upper and lower signs refer, re- 
spect,ively, to horizontal a,nd vertical  polarization (y = 0, 
n/2).  This result. was also obtained by Bonkowski, et aE. 
[all  using a lengthy  tensor formulat,ion. The expressions 
for  the fields which have undergone three,  four, five, and 
more reflections have also been derived 1121 but. need 
not be written down since t.he expressions become lengthy 
and  the recipe for  obtaining  them  has a.lready been given. 

As one would expect, the cont,ribution of the reflected 
ray decreases with  its order. In  Fig. 6, the modulus of the 
multiply reflected rays R? t.hrough R7 (normalized to R1 
as  in (19)), is shown for several  values of the ratio d/a .  
The general behavior is perha.ps more vividly illust.rat,ed 
by the spot. pict.ures adjacent.  to each curve. These  photos 
were obtained  by photographica.lly recording the light 
int.ensit,y (square of modulus) reflect.ed by tn:o polished 
silvered spheres. The two bright  spots, common t,o a.11 the 
diagrams,  denote the specular returns R1 from t,he front 
surface of each sphere. The remaining spots RZ,R3, - - -, 
(when  they  can be seen)  are identified by  counting  inward 
from the two R1 spots. Each picture was obt.aiced by il- 
luminating the pa,ir of spheres  shown  in the t,op  photo 
by a point source of ordinary  light sit.ua.t.ed close to the 
axis of the ca.mera and recording the reflected intensit.y 
on film when the studio  lights were extinguished. Due  to 
the limited exposure, only those  spots of intensity  greater 
than -30 dB with  respect to R1 can  be seen. From t>his 
figure, we observe that when the spheres are  separated  by 
as  little  as one diameter (d/a. = 4.0), t.he magnit.udes of 
succeeding higher order reflected rays differ nearly by  an 
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Fig. 6. Comparison of relat.ive amplitudes of multiply reflected backscattered rays for  various spacings a t  broadside 
incidence. (a)  Obtained by computation.  (b) 0bt.ained  by photographic  method (see text). 

order of ma.gnitude;  this  is hardly  the case when the spheres 
are  in  contact. It is worth  remembering that  the modulus 
of the multiple-reflected rays is a function of the  ratio 
d/a,  not, the spacing d. 

Using only the rays R1, C- and Rz through Re, xve com- 
pute  the normalized RCSs of pairs of identical  metallic 
spheres  for the tn-o principa.1 polarizations  for ka = 2.00, 
4.19, 6.246, and 10.00. This size range was chosen so that 
the results could be  compared  with  those of the exact 
solution  for the purpose of determining where solutions 
obtained  by  the two a.pproa.ches LLoverlap,”  and also for 
comparison with some experimental  results given in [%I. 
These  results  are  presented in Fig. 7. 

In  the interest of comparing the two solutions as accu- 
rately  as possible, Fig. 7 (and ones to follow) mere drawn 
by a computer-controlled  digital  plotter. A large number 
of data.  points  for each curve mas fed to  the plotting 
program and  intermediate  points were calculated by a. 
piecewise cubic interpolation scheme. Curves  comparing 
the two solutions were plotted at  the same  time on  the 

same grid-the dashed  curves  always  representing the  ray 
optical  solution and  the solid curves, the exact solution 
unless otherwise stated. 

With  the exception of the case of horizontal polariza- 
tion at ka = 2.0, the agreement is surprisingly good. From 
these figures, we a.lso see that as d;a becomes large (and 
hence the coupling small),  the normalized cross section 
settles down to 4u,l/Ta3 as expected, ua being t.he RCS 
of a single sphere. 

A further example is given in Fig. 8, involving the  RCS 
of a  pair of spheres in conta.ct as  they  both grow in size 
for  vertical  polarization. Again, the same set. of rays k 
considered as was used for computation  in  the previous 
example. The creeping wave influence for  this  example is 
apparent for ka 2 10 and  can be identified with  the local 
maxima  in  this  range since me know the creeping wave 
C- to  add  in phase  with R1 (for the single sphere) at, 
ka M 2naj ( 2  + T) , where n is a positive integer, and  with 
a period in La of roughly %r/ ( 2  + a). Beyond this point, 
the RCS is almost. completely  dominated by  the geometric 
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Fig. 7. RCS of t.wo equal perfect.ly conducting  spheres at broadside incidence as spacing is varied for ka = 2.0, 
4.19, 6.246, and 10.0, comparing ray-optical solution (- - -) with  exact solution (-). 
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Fig. 9. (30s-polarized RCS from pair of equal perfectly conducting  spheres ka = 20.0 as spacing  is  varied using 
rays F&, R,, and Rs. T and R indicate  polarizations of incident and received E vectors, respectively. 

optics  components alone. The normalized RCS of the  pair 
will not., however, settle down to some consta.nt  value  for 
hrge ka as it. does for the single sphere. This is because the 
rat.io d/a  is constant,  and as a result, the normalized re- 
turn is made  up of components which are  constant  in 
magnitude; only the relative  phases change with ka. 
Norma,lly, we associate ray met,hods with problems in 
which characteristic dimensions are much larger  tha.n a 
wavelength.  Here we find excellent agreement with the 
exact  solution  for a. pair of spheres in contact: even when 
the radii a.re as sma.ll as i/4. 

There is a.not.her codguration which, because of its 
practical  application and simplicit.y, wa.rrants  mention. In  
this case, a.n identical pa.ir of metallic spheres is illumi- 
nated from t.he broadside  direction  with a. plane wave 

whose polarization  vector  makes an angle of 45" wit.h 
the common axis of the two  spheres (y = r / 4 ) .  Due to 
symmetry, only the even components, R ~ , R ~ , s - - , R ~ ~ ,  con- 
tribute  to  the cross-polarized radar  return. A sample com- 
putation for a large pa.ir of spheres (ka = 20.0) is shown 
in  Fig. 9 where the effect. of some of the higher  order rays 
is readily seen. The simplicity of the analysis  and con- 
figumtion  makes this  an  interesting  method  for cross- 
polarized RCS calibration. This is discussed more gen- 
erally  in [25 ]  with  further results. 

EKDFIRE INCIDENCE (a = 0)  
In the case of endfire incidence, as shown in Fig. 10, 

t.he sphere 3 may lie wholly in the geomet,ric shadow of 
A if b 5 a ;  hence, the only purely geometric return  is  the 
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specular reflection from  sphere A .  Some rays  to consider 
for t.his geometry when b = a a,re RI, C-, C-RPC-, 
CIzlC-, G-R3-YC-, C R s C - ,  C-C+C-, etc., where Rj" means 
that of j mult,iple reflections, one is a  normal reflection. 
Strictly speaking, geometric optics  dictates t,ha,t the shad- 
owed sphere will never see directly t.he incident, field which 
we know it. should  eventually at very  large  spacing. 
As a result, the backscattered field of two  identical  spheres 
should eventually  approach  the single sphere d u e  times 
the  array  factor 1 + exp (2 i kd ) .  

The backscattered field due  to t.he first t.wo dominant 
hybrid  rays for arbit,rary a and b is 

r d l  
--OQ RI A B 1.0 C. 

mm C.R,C- C-R: C- 

Fig. 10. Most significant rays for backscattering a t  endfire in- 
cidence and close spacing. 

.exp i2ka[1 + ((p - T)' - l)L!2 1 
ilr + CSC-1 ( p  - T)] - - - 2LUoac~c-~ ( p  - T )  
4 

(21) 

where r = b / a  and p = d/a.  (Do4/a)  is t.he product. of 
four  surface diffraction coefficients and a. is  the a.ttenu- 
ation coefficient associated with  the normal  component 
of the field t.hat creeps around  the sphere [E]. 

Using the rays RI, C-, C-Rl"C-, and CAIC-, shown 
schematically in Fig. 10, we c0mput.e the normalized RCS 
of two  identical meta,llic spheres for ka = 7.41, 11.048, 
and 20.0. These  results are shown in Fig. 11 toget.her  with 
the exact solution  for compa.rison. In  t.he absence of cou- 
pling, the normalized RCS will oscillate between 0 and 
4a,/m2 as kd is  varied;  this 1att.er value  is  indicated by 
the dashed line on  the  ordinate  for each case. The agree- 
ment  gets better  (for small to  moderate d / a )  with  in- 
creasing ka as we would expect, a.nd is best for kn = 20.0. 
The results  even  for ka = 7.41, however, are not, very 
satisfactory. The discrepancy  can be a,ttribut.ed, at least 
in  part, to the inaccuracy in  the canonical creeping wa.ve 
problem  near a. sha.dow boundary. 

Let, LIS consider computing the  normdized RCS of two 
identical  metallic  spheres in  contact at. endfire incidence 
as  they  both grow in size using only the rays R1 a.nd 
C-EZPC-. I t  may be recalled that  the creeping wave in- 
fluence on the backscat.tering from a single sphere is nea.rly 
a.bsent at values of ka greater  than  about 10-15 due  to 
its large attenuation. Placing an ident.ica1 sphere  directly 

k d  

i ha = k b =  11.048 

4.1420 

kd 

ha: h b . 2 0 . 0  

kd 

Fig. 11. RCS of t.wo equal perfectly conducting  spheres at end- 
f i e  incidence as spacing  is  varied for ka = 7.41, 11.048, 20.0, 
comparing rayoptical solut.ion (- - -) and exact solut,ion (-). 
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ka 

(b) 

Fig. 12. RCS of two equal perfectly conducting  spheres a t  endfire incidence in contact as sphere size increases. 
(a) Exact.  solution. (b) Ray-opt.ical solution. 

behind a previously isolat.ed sphere drast.ically alters  the 
situation, since the hybrid  wave C R P C -  overwhelms any 
single sphere  creeping  wave C-, and  its a.ssociated creeping 
pat.h  length is only  a total of one  sixth of the circumference 
of the  first sphere, implying that  the oscillations about. RI 

' will persist  for  a  much  larger  value of ka than for  the 
single sphere. In  Fig. 12 (a)  the normalized RCS of a  pair 
of identical  spheres in  contact  is shown,  computed by 
t,he mult.ipole expansion  approach as ka covers the  range 
0 to 24. It. is clearly seen that.  there is considerable oscil- 
lation  about R1 even for ka as large as 24. It becomes 
somewhat  costly  to  carry  out comput,at.ions much  beyond 
this  value using the modal  approach.  Therefore, we must 
resort  to  ray optics. Fig. 12(b) shows t.he rayoptical solu- 
tion to the  same problem plotted logarithmically in ka 
to ka = 150. If we compa.re  these t.m-0 curves, we find 
excellent agreement  in t.he locat,ion of the  peaks  and nulls 
after ka M 10 and also in the  amplitude  after ka M 16. The 
period of oscillation can  be  very  simply  determined.  Know- 
ing that these oscillat,ions are caused  only by  the  inter- 
ference of R1 and CRI1VC-, the period P ,  in ka, of the 

oscillation can  be shown from (20) to  be simply 
a/(a/6 + ~) M 1.39, with  peaks at  ka = nP and nulls 
at ka = (2n - 1) P / 2  where n is a positive integer.3 

It is interesting  to  note from the geometric  optics point 
of view that eventually  the  front  sphere  can "hide" t.he 
back  sphere at sufficiently high  frequency. In  fact,, the 
front  sphere  may  even  hide  a  sphere  that. is larger  t.han 
itself. Since the  attenuation of the  hybrid  rays C_Rlh'C- 
is proportional  to  exp (- 2aoa csc-' ,.t) , ka must, be  larger 
in  order  to  hide  a bigger  sphere ( b  > a )  than  to  hide a 
smaller  one ( b  < a ) .  

COWLUSION AND DISCUSSION 

The problem of electromagnet.ic scattering by t.wo 
spheres has been  solved t,hrough two  approaches:  multi- 
pole expansion and  ray optics. Numerical  results show 
that  the former solution is useful even for spheres as  large 
as 10X in  radius whereas the 1at.ter is useful for  spheres as 

curve for a single sphere which is 2 ~ j ( 2  + T) = 1.23. 
Note  this is longer than  the period of oscillations in the RCS 
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small a.s X/4 in radius in some cases. The former solut.ion 
is very general and applicable to spheres of any mate- 
rial, but t,he latter is so far confined t.o conducting  spheres. 
The ray-optical  solution  agrees  very closely with  that, of 
t,he  multipole expansion for  rehtively small  spheres in 
the case of broadside incidence, but for  much  larger 
spheres in t.he endfire incidence case. Even for  broadside 
incidence, the accuracy of the ray-opt,ical solution of small 
spheres may be good for  one  polarization while poor  for 
anot.her  polarization.  This  simply  illust<rates  t.hat  care must 
be exercised in using the ray-opt,ica,l approach. Despihe 
this,  it  often gives us much  physical  insight into  the 
problem. 

Extension of the solut.ion to scattering of acoustic waves 
by two  spheres is straightforward.  Interested  readers  are 
referred to [l2]. It) is perhaps of interest  to point out tha.t. 
in  the case of endfire incidence, t,he solution converges 
considerably slower than  that  for  the case of E M  waves 
due  to  stronger creeping  wave coupling. It, is also possible 
to extend  these solut.ions to t.hree or more collinear 
spheres. This,  as well as  many  other t,heoretica,l results, 
are discussed in [25 ]  where an unusually good a,greement 
m<t.h t.he experiments mill be seen. 

APPENDIX 

TRANSLATIONAL ADDITION THEOREM FOR VECTOR 
SPHERICAL WAVE FUNCTIONS 

In  order  to express vector spherica.1 wave functions 
about a displaced origin 0' in  terms of wave  functions 
about, another origin 0, we employ the addit.ion theorem: 

m 

Mmn(J'' = [A,,mnMm,(l) + Bm,mnNmp(l)]  
v=(l.m) 

m 
Nmn(i)' = [Am,mnN,,(l) + Bm"mnMmp(l)]. (22) 

v=(l.m) 

This applies  to  a t.ranslat,ion along t.he z axis a  distance d 
a5 in Fig. 1. When  translating  from 0' to 0, A,,"" and 
B,,"" are preceded by  the fact,ors ( - l)m+y and ( -  l)m+y+lJ 
respect.ively. For translat.ion in  any  other direction, the 
theorem  is somewhat. more complicated a,nd mag be found 
elsewhere [E]-[14]. The wave  funct,ions are defined in 
( 5 )  and (6), and t.he  Oranshtion coefficients are  given by 

The  summation over p is finite covering t,he range 
I n - v I,/ n - v I + 2,--.,(n + v), and includes 1 + 
max { v , n ]  terms. The preceding c0efficient.s are fur- 
t.her complica.ted by  the presence of the coefficients 
a(nt,n,   -m,v,p) which are defined by t.he linearization 
expansion 

Pnm(~)P.-m(z)  = a(m,n,-nz ,v ,p)P,(x) .  (24) 

These lat,t.er coefficients may  be ident.ified with  a  product 
of two 3-j symbols [13],  [14], [22] which are associ- 
ated  with  the coupling of two  angular  momentum eigen- 
vectors: 

P 

!(v - m ) !  1'2 
a(nz,n,-m,v,p) = ( 2 p  + 1)  (n - n7.)!(v + nt) ! 1 

The factor 

is the Wigner 3-j symbol of which t.here are several 
definitions, all involving  summations of multit.udes of 
factorials. As a result,  straight.fon.ard calculat*ion using 
(25) is  very inefficient. I n  sea,rch of a better represents.- 
tion, inspection of the  form of the coefficients A,,"" and 
B,,mn in (23) reveals that a recursion rela,t,ion for  the 
a ( .) in which only the index p cycles would be highly 
desirable especially for  machine  computation. Just such 
a  relation  exists and is given by [12] 

a P 4 a d  - (ap--2 + aP-1 - 4m2)a,,-2 + = 0 (26) 

where 

a, a.(m,n,-nz.,v,p),  p = n + v,n + v - 2,.**,1n - v I 
and 

[ ( n  + v + - P T P 2  - (n  - v)21. (27) 
ap = 4p2 - 1 

We need not, be concerned with the question of st.ability 
of t.his recursion relation since all quantit.ies a,re rat.iona1 
numbers. 

The recursion relation (26) is most  conveniently em-. 
ployed in t.he backward  direction  since we can find simple 
st.arting  values  for t.he coefficients a t  p = n + v a.nd p = 
n + v - 2. By matching coefficient.s in highest. powers of 
the argument  in (24), we find 

(2n + 2v - 3) 
(2n - 1) (2v - 1) (n + v) an+,-? = 
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[3] N. R.. Zitron and S. N. Karp, “Higher-order  approximations in 
multiple  scattering: I-two-dimensional scalar case, and II- 
three dimensional scalar cases,” J .  Math. Phws., vol. 2, 1961. 

where(2p- l ) ! ! =  (29-  1) (2q-3 ) . - . 3 -1 ; ( -1 ) ! !=  1. 
Note  t.hat in (26) every new  coefficient makes use of all 
previously calculat.ed quantities  and only requires  two 
additional  evaluations of the quantit.y ap. The sta.rting 
values (28) a.re, of course, not calculated  directly  from 
(28), since the recurrent. form of the factorials  may be 
ut,ilized by generating  these  in the proper sequence (with 
regard to n, v, and m) starting  from n = v = 1, nt = 0, 
where t.he coeEcients (28) are 2/3 and 1/3, respectively. 
We see that nowhere ha.ve we had to  calculate a single 
3-j coefficient.. 

Special  F o r m  

When 7n = 0, ( 2 6 )  becomes a two-term recursion for- 
mula which leads to a closed expression for a(O,n,O,v,p) 
[lZ]. The properties of the associated Legendre  funct,ions 
allow us to obtain  a closed expression for m = 1 also, but 
no higher: 

a n , -  l,V,P) 

- _ -  2 p  + 1 n(n + 1) + Y ( V  + 1) - p ( p  + 1) 
2v(v  + 1 )   n + v + p + l  

( - n + ; + p ) ( n - ; + p ) ( n + ; - p )  

- n + v + p  n - - v + p  n + v - p  

This expression is particularly useful as it corresponds to 
the case of endfire incidence. 
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