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Abstract- Two fficient ways of calculating the vector addition theorem are presented.
One is obtained i - relating the coefficients of the vector addition theorem to that of the
scolar addition theorem for which an efficient recurrence relation exists. The second way
is to derive recurrence relations directly for the coefficients of the vector addition theorem.
These new ways -  calculating the coefficients are of reduced computational complexity.
Hence, when the number of coefficients required is large, the present methods are many
times faster than the traditional method using Gaunt coefficients and Wigner 3j symbols.

1. INTRODUCTION

The translational addition theorem is of vital importance in the scattering theory
of waves by multiple scatterers [1-10]. Even though the addition theorem is rather
simple in two dimensions, the coefficients for the addition theorem are unusually
complex in three dimensions [10-16]. The coefficients for the addition theorem
are usually expressed in terms of summations over Gaunt coefficients. The Gaunt
coefficients are in turn expressed in terms of Wigner 3] symbols involving a large
number of factorials. Consequently, the complexity of calculating the addition
theorem coefficients becomes a bottle neck in many scattering calculations. Re-
currence relations have been derived for the Gaunt coefficients but they do not
reduce the complexity of the calculation. Elegant formulas have been derived for
these coefficients in terms of differential operators in [16], but the author just
stops short of deriving recurrence relations.

Recently, recurrence relations for scalar addition theorem coefficients have been
derived [17]. The recurrence relations reduce the computational complexity of cal-
culating for the coefficients. Hence, when the number of coefficients is large, the
recurrence relation method is a lot faster than the conventional means of calcu-
lating the coefficients. However, in many wave scattering theory, e.g., involving
electromagnetic waves and elastic waves, the use of the vector addition theorem
involving the vector wave functions is indispensable.
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The vector addition theorem is [10,12,13,15]

Mum(r) = Z Z [Mup(rl)Auy,nm + Nup(rl)Bup,nm] (1)

v=1p=-v

where r = ' + 1", and the vector wave functions are defined to be [10, 18]

Mpm(r) = V X tpm(r), (2a)

Num(r) = 79 % Mam(®), (2b)
which are divergence free, and

Yam(e) = jnlkr)Yam(8,6), (2¢)

where

Ynm(as ¢) = (___1)m E:_:—-%!T‘%T:];P'T(cose)eim(» (3) )

and Yp —m(8,6) = (-1)"Yym(6,¢) [19]. The scalar wave function, ¥nm(r) sat-
isfies the following addition theorem

[ o] v
Yam(r) = Z Z d)up(l’l)ﬂup,nm- 4)
v=0 p=-v
Efficient recurrence relations have been derived for Byynm such that it can be
derived from Byu00 [17)-

The traditional method of calculating Ayynam and Bupnm is to express them
in term of Gaunt coefficients, but this manner of computing them is extremely
inefficient. However, if Ayynm and Byunm can be related to Byu,nm (which
can now be efficiently calculated), then, they too can be efficiently calculated. We
shall seek to establish this relationship in the next section.

2. RELATIONSHIP TO THE SCALAR ADDITION THEOREM

The vector addition theorem can be efficiently computed if it can be related to
the scalar addition theorem for which an efficient recurrence relation exists. To
this end, we make use of (4), and the definition (2a) to establish that

Mam(r) = 3, Vuu(r') x (¢ +1")Buynm

v
=3 Myu(t)Bopnm + 3, Vbuu(r') x 1" Bypnm. (5)
vp vy

The operator V, written in Cartesian coordinates, is invariant under coordinate
translation. It remains to express the second term in (5) in terms of M,,(r') and

Nyu(r').
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More explicitly, the second term in (5) is related to

Vipou(r') x 1 = 2"V x dhuu(r’) + 4"V x §uu(r) + 2"V x 2pyu(r').  (6)
It can be shown that [Appendices C and D] for k=1,

V' x :i:zp,,,,(r') =-"-';;Mu—1,p+l(r,) + zt;j-Mu+1,p+l(r,) + zg—;‘;—Nu,u+l(r’)
+ z;p_Mu—l,p-—l(rl) + 3?;;4_Mv+l,p—-1(r’) + xgsz,p—l(",)
(Ta)
v x f/'f’uy(rl) =y;;;+Mu—l,p+l(r’) + y;/’-;fMu+1,p+l(rl) + ygsz,pi-l(r’)
+ y;y-MV—l,;l—l(r,) + y:-y_MV+l,y—-l(r,) + y?/;Nv,p—l(r')
(Tb)
V' x 29uu(r’) =25, My_1,,(r') + Zh My () + z,‘),,N.,,,(r’). (7c)

Substituz:ng (7) into (6) and hence (5), and gathering terms of the same kind, we
have

Mnm(l') = Z Mup(r,)ﬂup,nm + Z {m;:Buy,anV—l,u+l(rl)
vy vy

+ mﬁ;ﬁvu,anu+l,p+l(r,) + m;y—/Bl/;l,anu—l,p—l(r’)
+ mj;ﬂuy,anu+l,p—l(r') + m;;?ﬂVﬂ,ﬂva—l,p(r’)

+ mtoﬂw‘,ﬂme—l,ﬂ(r’) + "?/+ﬂVy,nmNu, +1(r,)
p " p

+ n?;;ﬂup,nmNu,p—l(rI) + ng?;ﬂup,nmNup(rl)} (8)
Rearranging the indices, we obtain

Mflm(r) = ZMV“(r’) [ﬂuﬂrnm + m;:l,[l—lﬂ”*'lyl‘_lvnm
vps

++ -- +-
+ m,,_l,#_lﬂu—l,p—l,nm + my+1,“+1ﬂu+l,p+1,nm + m,,_l,#+1ﬂu—l,p+l,nm

+m;.?.1,“ﬂu+l,y,nm + mjgl’pﬂll—l,#,ﬂm] + Z NV/‘(rl)
vy

0—
[ngj,_lﬂu,p—l,nm + n,,,,H.lﬂu,p-{-l,nm + ng?;ﬂuy,nm] . (9)
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The above coefficients could be further simplified as follows:

— = =t + oy _ 2" iy _
M1 =% Togip—1TY Yodiu—15 7 5 Totlu—1(+)
e
"_: /le—w5 1 (v—p+2)v—p+1)
= 0
' sin 5 V+1\[ ot D@ +3) (10a)
++ gt 4yttt -y
my, _\u-17 vl =1 TV Vi p1 = 75 el p-1(+)
S Y (U VD)
— g elle -1 [ [ b
rsin == @ - Dev +1) (10b)
_ o —- 5o _ x"+iy" -
My 4l =8 Tolptl TY Yorlpd1 = 75 Tt u+l(-)
: 41
"._. "61¢ -1 (V+#+2)(V+l‘+1)
= é , 10
et iV v+ )(2v +3) (10c)
"oy
4= e ", 4— _T twy oo
My _{u+l = T T, 1+l ty Y1 u+1 ™ 2 ny_1,#+1(_)
i¢" 1 (v—p—-1)(v—u)
_ M one 1 M u d
TSN @ - D2v+1) (10d)
-0 _ - o no 1 (V+#+1)(V—#+1)
My =2 Zh1u =T cosb u+1\f v+ 1)(2v+3) (10e)
+0 M+ _ M 0”-1— (v+u)v—n) 10f
M-t = 2 Fr-tu =T ST O @ - ) (2v +1) (10)
0 0 _ L
n,,?‘ = z”,.,,# = T COS 0”——1/(1/ ) (11a)
—i¢” .
0+ _ .m0+ no+ 1 i€ 1\%""#"’“(”"‘#)
M1 =% Typu-i Y Y1 =T sin 6 5 OEEY) ,(11b)
'¢II .
0—  _ .nm_0-— " o0— M ne' 1\/(7"'#'*‘1)(”—#)
NSl = T Ty TV Yy =7 sin6 =5 (v +1) - (11e)

Consequently, we reduce the Ayynm and Bypnm in (1) to be

g" =" (V—#+2)(V—p+1)ﬂ
2(V + 1) (21/ + 1)(2V + 3) V+1,[J—1‘nm

—ig" —1( " )
M n@"E (v+pu—-1)(v+u o
7 s1n oy \/7(2”_1)(2114_1) By lL,u=1,nm

"o
Avpnm = Byppam + 7 S0
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e [wrutwtptl),
3w+ D\ (v +D2v+3) | orthethem

"o il
—r'sinf

i¢’l 1
"gn @& (v—p)v—p-1)
s e Ty 1) v lwlom

1 Jv+p+lv-—p+l)

n gll
trocost o (2v +1)(2v + 3) By+1,unm

1 [ (v+p)(v—un)
" ¢~
trest o o - e + 1)ﬂ”‘1v"”‘""

(12a)

. M 1
n__H ir’ sind
BVP,'"" =r" cos 8 _——V(V n l)ﬂup,nm + ———2”(,/ ) [\/(l/ - y)(V +p+1)

Byt am A VT F W@~ A+ D By tom] . (120)

The results for k # 1 are obtained by replacing "/ by kr". The above formulas
relate the coefficients for the vector addition theorem, Ayynm and Byynm, to the
coefficients for the scalaraddition theorem, Byu nm , for which an efficient method
of calculation exists [17]. Equations (12) are similar to the results of Stein [12]
and Wittmann [16] but they are derived quite differently here.

3. THE RECURRENCE RELATIONS

Alternatively, recurrence relations can be derived directly for the coeflicients of
the vector addition theorem, similar to that of the scalar addition theorem. To
do so, we operate (1) with 8/9z = 8/07' . First, similar to [17], it can be shown
that 5

=Mnm(r) = a'—r*z-mMn+1,m(r) + a;mMn-l,m(r) + V X 2nm(r) (13)

0z
where . .
+ o (n+m+1)(n-—m+1)|? - = (n+m)(n-m)|?
dnm = [ (2n +1)(2n +3) ] Lo [(2" +1)(2n - 1)] - 19

Using the result (C.9) for the expansion of V x 2¢nm(r), we arTive at

7} _ v
- Mumn(r) = MinMas1m(8) + XmMo—1,m(5) + MomNrn(). - (15)
where
n
’\:m = a:m + zrfm = :l—+—1 a:m s (16a)
- _ - n+1 _
Apm = Gam + Znm = Cnm s (16b)
0 i (16¢)

)\ L E—
nm n(n+1)
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Consequently, equation (1), after operating on by 8/8z = 8/87', becomes

’\-r‘;mM'n+l,m(r) + ’\;mMn—l,m(r) + /\(r)menm(l')

o v
=3 X {M"*‘('I) [Aj—l.uA"—h#,nm + A 41 v+l pnm + ’\?fuBW"""‘]

v=1p=—v
+Nup(rl) [’\j_l,”BV—l,p,nm + /\;+1,,‘Bv+l,p,nm + '\gpAvu,nm] } . (17)
Expanding the left-hand side of (17) using addition theorem again [17], and equat-
ing like terms, we have
MmAvun+lm + AamAvpn-1m + ’\gmBuy,nm

= X Ave Ly + A At L + A Buuam - (182)

’\jl-mBlly,n+l,m+’\r_xrnBu[J,n—l,m + /\gmAuu,nm
= ’\j-l,va-—l,y,nm + ’\:+1,pBV+1,u,nm + ’\?/uA”#v"m :
(18b)

Next, we need to operate on equation (1) by Ct = 36; + i-‘%. 1t can be shown
similar to [17] that

CtMpm(r) = b;m(:k)Mn—l,m:hl(r) + b:m(:t)Mn+l,m:tl(r) +V x (& £ i§)¥nm(r)

(19)
where
- _ [(n:Fm)(n:Fm—-l)]%
nm(x) (2n+1)(2n - 1) ’
_ (ntm+2)(ntm+1) 3
bam(z) = [ @nt 1)(2n + 3) ] ' (20)

Using the result of Appendix D for V x (£ 4 i9) ¥nm(r), we obtain

C+Mnm(r) = 7;mMn—l,m+l(r) + 'YrTmMn+1,m+1(r) + 72mNn,m+1(r) (21)

where

_ntl,.- + " g+ 0o _i/(n=-m)n+m+1)
Yam = T nm(+) 0 Tam T G Tam() Tom = n(n+1) '

(22)



Efficient Ways to Compute the Vector Addition Theorem 657

Consequently, operating on (1) by C4 , we arrive at

v

0o
7;mMn—1,m+l(r) + 77TmMﬂ+l m+1(r) + ’Ynm n m+l Z Z

! - +
{Myﬂ(r ) [7y+1,#_1AV+1,[J—1,ﬂm + 7!/—1,[.1—1‘4"’_11#_117‘"3 + 7'9,“—1311,[1—1,1"11]

+Nyu(r') ["/;+1,p—1BV+1,u—1,nm + 73-—1,;1—131’—1,#—1,"7" + ‘Yg,p—lAv.u—l,nm]}
(23)
Expanding the left hand side of (23) by the addition theorem again, we obtain

- 0
'7nmAup,n-—l,m+1 + 71-1*-mAV;4,n+1,m+l + "/ntuu,n,m+1

- 0
= ’7,,+1’,,_1Au+1,p—1,nm + 71‘/{.—1,;1—1‘4”—1,/4—1,'"" + 7u,p—lBV,l1-1,nm
(24a)

7;mBVp,n—l,m+l + 7:vap,n+1,m+l + 79;mAup,n,m+l
= 7;+1,#-1Bv+1,/1—1,nm + 7:_1,#_1Bu—1,p-1,nm + ‘73,,‘_1Au,p—l,nm
(24b)
Another recurrence relation can be obtained by using C- .
By letting m = n in (24a) and (24b), we get

71TnAup,n+l,n+l = ’7,,_+1,,,_1Au+1,;4—1,nn + 7:_1’“_1AV—1,p—1,nn + ’7’8,“_1By,;4—1,nn
(25a)

‘7:nBup,n+1,n+1 = 7;+1,,,_1Bu+1,p—1,nn + 7,-,"_1,,‘-1Bu—1,p—1,nn + 73,,,_1Au,p—l,nn
(25b)

Equations (18) and (25) can be used as in reference [17] to find the coefficients
of the addition theorem from A, 10, Byu,10- In other words, (18) and (25) are
difference equations with which the values of Ayynm and Byynm can be found
from their boundary values A, 19 and By, 19. A detailed description of such a
procedure is described in reference [17].

4. THE VECTOR ADDITION THEOREMS FOR M,o(r) and Mj;(r)

The recurrence relations need A4,, 10 and B,, 10 as initial values. Hence, we

need a simple addition theorem for Mjg(r). To begin, it can be shown that
[Appendix C or (13)].

V x #hoo(r) = -\}——3M10(r)- (26)

Therefore, using the scalar addition theorem,

Mio(r) = V3D (V' x 2)huu(x')Buy,00- (27)
v
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However, from Appendix C, Equation (C9),

V' x 5uu(r) = 25, Myg1u(f) + 25, Mo () + 20, Nuu(®). (28)

Then, using (28) in (27), we have

[o ) v
Mjp(r) = \/52 Z [Muu(f') (z:_l,pﬂl/—l,p,oo + z;+1’#ﬂu+1,u,00)

v=1p=-v

N2 B 0] (29)

Notice that since Mgg(r) = Noo(r') = 0, the above summation starts with v =1.
Consequently,

Ao = V3 (51 uBu-Lu00 + 21 B0 (302)
Bup,lO = \/§ zBprBI/[J,OO‘ (30b)

As Ayy 1y and Byu,11 are needed as initial values as well, we need a simple
addition theorem for Mj1(r). It can be shown that [Appendix D or (19)]

V x (& + if)oo(r) = —\/gMu(r), (31)

or similar to (27),

Mis(r) = —y/3 9 x (& + 6t oo (32)
vy

But from Appendix D, Equation (D.8)

V' x(2+ i@)¢uu(r,) =77;”(+)Mu—l,p+l(r’)
+ Ujﬂ(+)Mu+1,p+l(rl) + 773,,(+)Nu,p+l(r,) (33)

Consequently, using (33) in (32), we have

oo v
My(r) = - \/gz Z [Mup(r’) (n;+1’“_1(+)ﬂu+l,p—l,00

v=1p=-v

+ﬂ;*’_1,,,_1(+)ﬂu-1,p—1,oo) + Nup(r')ng,,,_1,(+)ﬁu,p-1,00] (34)

Therefore, we conclude that

3/ _
Auy,ll = “\/—'2: ('7,,+1,ﬂ_1(+)ﬂu+1,;4—1,00 + 77:_1'#_1(+)ﬁu—1,p—1,00) , (352)

3
Byp,ll = "\/;ng,#_l(q.)ﬁu,ﬂ—l.oo- (35b)
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The above yields the initial values for the recurrence relations, and By 00 is {17]
ﬂup,OO = (—1)#+V Vv 47rYV,—/1(9”7 qS”)j,,(kr”)‘ (36)

Alternatively, Ayy 10, Buu10, Avpll and B,, 11 can be obtained from Equa-
tions (12a) and (12b).

5. RESULTS AND CONCLUSION

The above formulas have been tested against the conventional ways of calculating
the vector translational addition theorem. For most applications, Ayumn and
Byy,mn are needed for n = 1,...,nmaz, and v = 1,...,Vmgz with m and pu
assuming their proper values. In other words, arrays of Ayymn and Byymn are
needed. Due to the reduced computational complexity [17], the speed is about
100 times faster in finding these arrays when nmaz = Ymez = 5, and about 400
times faster when nmaz = Vmaz = 10, compared to the method using Gaunt
coefficient and Wigner 3j symbols. The difference is even larger when nmqaz is
larger, because of the reduced complexity of this method. Even if an efficient
method is available to calculate the Gaunt coefficients, the method described in
this paper will eventually be more efficient when nmaz and vmar become large.

In conclusion, an efficient way of solving for the coefficients of the vector addi-
tion theorem is derived. This method will have a significant impact on methods
of calculating vector wave scattering solutions where the addition theorem has to
be invoked.

APPENDIX

In this Appendix, we derive Equations (7a) to (7c). Before that is done, we
develop some identities in Appendices A and B.

Appendix A: What is r-V x V x Z¢pmp(r) ?

Letting
I=r1-V XV X3nm(r)=r-[VV:2dnm(r) — 3V2¢nm(r)] (A1)
where )
bnm(r) = PM(cos8)e™®j,(r) (A.2)
and assuming that k = 1. Then, (A.1) becomes
0 0
I = r5;5:¢"m(r) + 7 cos Ognm(r) (A.3)
But from previous work [17],
0 n-m+1 n+m
E‘ﬁnm(r) = —W%H,m(r) + -2'n+—1¢n-1,m(1') (A4)
Therefore,
n—-m+1 0 n+m 08
I= ——2—n—-_{_1——r-6—r¢n+1,m(r) + mrg;tﬁn_l’m(r) -+ r cos 0d>nm(r). (A.5)
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It can be shown, using the appropriate identity, that

rZ gt ml®) = Pa(e0s )™ rin(r) = (14 i1 m(s) . (A6)
r L brim(t) = ~ P (c088)e ™ rin(r) + (0 = 1éntm(®) - (A6D)
Therefore.
2ot D e EEEE T () 4 ()™
cosOP,'ln(cose)——-%n-_:_—-:—lP,','_‘._l(cosO)— ;::;P,T_ 1(coso)] (AT

The last term in (A.7) can be shown to be zero. Therefore,

(n+2)(n-m+1) (n-1)(n+m)

.V xV 2 =
r-VxV x 2gnm(r) 2n+1 o2n+1

¢n+1,m(r) + én—1,m(r).

(A.8)
Using the normalized wave function defined in (2), then,
r-V xV x 2tppm(r) = CrTm¢n+l,m(r) + C;m¢n—l,m(r) (A.9)
where
+ _ _ + (n+m+1)(n-m+1)
G = —(n+ D)t = (n+2)y| TR
TV — (n+m)(n—m)
Cnm - (n 1)anm - (n 1)\/(2"1 + 1)(2n _ 1) 9 (A'lo)

where af,, are defined in Equation (14).

Appendix B: What is -V x V x (£ £ i§)¥nm(r) ?
First, let
I = r-VxVx(8+i§)gnm(r) = r-[VV-(2+i§)énm(r) ~(2—i§)V2$nm(r)], (B.1)

where ¢nm(r) is as defined in Appendix A. Then, (B.1) becomes

I = T?%C+¢nm(r) + rsin0e® gnm(r), (B-2)
where
o , .0
Ci=Z+il (B.3)

Using previously derived result for Cy¢nm(r) (17}, we have

1 o 1 17} . ;
L = —mr-a—rqbn_l'mﬂ(r) - 51_+—1r5:¢"+1’m+1(r) + rsin Oe'd’qﬁnm(r).

(B.4)
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Using identity (A.6), we have

n—-1 n+2
5T 1¢n——1,m+1(r) + m¢n+1,m+l(1‘)

Iy =—

P,;"_'*il(cos 6) P':'_’;*il(cos 6)

. i(m+1)¢ _
+rin(r)e on + 1 on + 1

+ sin §P*{(cos )| (B.5)
The last term in (B.5) can be shown to be zero. Hence,
. o n+2 n—1
r-V x V x (& +i§)énm(r) = 57 ¢n+1,me1(r) = 31 tn-1m41(r). (B.6)

By using the normalized wave function, it can be shown that

r-V x V x(&xif)¢nm(r) = P:m(i)¢n+l,m:!:1(r) + P;m(i)’/)n—l,m:tl(r) (B.7)

where

(ntm+1)(ntm+2)

+ - _ + -
Pam(z) = ~(n+ Dby = F+ DN o Y an v )
- _ - _ (nFm)nFm-1)
Pz, = (0~ Voomeay = £ =" en - 1) (B:8)
where bfm( +) are defined in (19).
Appendix C: What is V X 2¢nm(r) ?
First, let us expand
V x 21/’nm(l') = Z[mnm,upMup(r) + nnm,uuNVp(r)]' (C-l)
vp
It can be shown that (assuming k =1),
r-Noyu(r) = v(v + 1)puu(r). (C.2)
Hence, dotting (C.1) with r, we have
r-V x 2am(r) = Y nomupv(v + Douu(r), (C.3)
vy
since r- Myu(r) = 0. But
s g .
r- V X Z"/’nm(r) = 6_¢¢nm(r) = zmd)nm(r). (C.4)
Comparing (C.3) and (C.4), we have
Namypy = 671!16771[[;'(_1'1"3.—1')'- (C.5)

Similarly, taking the curl of (C.1) and dotting with r, we have

1oV x VX 2am(r) =Y mamupv(v + Dwu(r) (C.6)
vp
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after making use of the definition (2) and (C.2). But from Appendix A,

£V XV X 2um(®) = Gbnetm(®) + Gombnotm(). (CT)
Comparing (C.6) and (C.7), we have
+ —
Mpmyp = 5u,n+15um‘m—+§—')'(r!::2'3 + by n—16um n(inT 0 (C.8)
Consequently,
V X 2pm(r) = ermMn+1,m(r) + 2pmMp—1 m(r) + ngNnm(r) (C.9)
where '
= (i - _ afm
T (n4+1)(n+2) n+1’
2= = Cam — Gnm
" a(n — 1) n ’
L o _im
" a(n+ 1)
(C.10)
Appendix D: What is V X (% £ i§)¢nm(r) ?
First, we let
V x (& + i§)$nm(r) = D [PuuMyp(r) + quuNu(r)]. (D.1)
vp
Then, assuming k=1,
r-V x (& +1§)Pnm(r) = Z QV;tV(V + 1)‘1’1/;:(")- (D.2)
vi
But
-V x (£ 4 i)$nm(r) = (& +i§) - T X Vipnm(r)
. [2 O -1 0
= (l’ + Zy) . [ %d’nm(r) - Gm%zﬁnm(r)]
i[O mcos b
—iei® [ 2 pm(r) -
e [69'/’""‘(’) sin 6 d’"’"(')]
=iy/(n — m)(n + m + 1)Yn m+1(r)- (D.3)
Comparing (D.2) and (D.3), we have
qup = tonpby m+1 V(n—m)(n+m+1)/n(n+1). (D.4)
Next, taking the curl of (D.1) and dotting with r, we have
r-V x V x (% +i§)nm(r) = > popv(v + 1)tuu(r). (D.5)

vy
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But from Appendix B, we have

r-VxVx (-’E + if/)'/’nm(r) = P:m(+)¢n+l,m+1(r) + P,-,m(+)¢n—l,m+1(r)~ (D-G)

Comparing (D.5) and (D.6), we have

+ -
Pvy = 5u,n+15p,m+l'(‘ﬁr'g"(‘%2_) + 6u,n—16u,m+ln(_’:2£—1)) . (D-7)

Finally, we have
V x (i‘ + lf])l/’nm(l')) =7l;m(i)Mn—l,m:i:l(r)

+ n:m(j:)Mn+l,m:t1(r) + ngm(t)Nn,mil(l‘) (D.8)

where
- Pamx) _ Pam)
Tam(x) = an-1)" n '’
+ +
n+ _ Pom(x)  _ _bnm(:i:)
nm(t) — (n 4 1)(n +2) n+1 "’
0 _iy/(nFm)(ntm+1)
nnm(:i:) - n(n + 1) (Dg)

With the avove identities known, it is easy to show that
V X ZPpm(r) =z;r-:Mn-1,m+1(") + x:r:Mn+1,m+l(r) + Ig)u-r*-nl\ln,m—l(l')
+ ZamMn—1,m=1() + T Mnt1,m—1(r) + 25N, m-1(r)
(D.10)

where

-z _ 1 _ +x_ 1 4 0+ _1lgog
Inm = 577,""(:!:)7 Inm = §nnm(:t)’ Tnm = Ennm(i)- (D.11)

Similarly,
V X §%rm () = vt Mac1m+1(5) + ¥ Mnt1,m41(F) + Yo Nn ma1(r)

+ y;r;Mn—l,m—l(r) + err;Mn+l,m—1(r) + yg—n-an,m—l(r)

(D.12)
where
-3 _ *1 _ ++ X1 4 0+ 1 g
Ynm = _QTnnm(:t)’ Ynm = Ennm(:l:)’ Ynm = E‘nnm(i) (D.13)
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