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MULTIPLE SCATTERING BY SPHERES

Abstract

Multiple scattering of electromagnetic or acoustic waves by two
or three spheres is studied in great detail using three different
approaches: the multipole expansion, ray optics, and experimental
measurements. The first method requires a translational addition
theorem, the comple%ity of which has till now severely restricted its
numerical usefulness. In this connection an important recursion relation
is derived which allows routine calculation of the required translation
coefficients., Incorporating this with other simplifications has decreased
computation times by several orders of magnitude and has increased the
usable range of the solution so that multiple scattering can be accurately
computed for spheres of any material as large as 10 wavelengths in radius
at any separation (even in contact). ‘Particularly simple forms are pre-
sented for the special cases of Rayleigh scattering and far multiple
scattering. Extensive numerical results are presented and compared,
whenever possible, with the experimental results; the agreement is re-
markably good in all cases, Multiple scattering by two spheres usingrthis
method is also discussed from the point of view of depolarization.

The ray optical approach is formulated in terms of pure geometric
optics rays, creeping wave rays, and hybrid rays. This approach is
basically restrictive to large spheres, but it is shown to yield excellent

results even for spheres as small as 1/2 wavelength radius, This method

(at present limited to perfectly conducting spheres) provides a simple
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physical picture of the scattering mechanism and can be used to predict

cussed with the aid of a large number of examples.
Acoustic scattering by two spheres is treated using the modal

expansion and incorporates many of the simplifications used in the electro-

magnetic problem. A closed form for far multiple scattering is derived

and a unique correspondence to the electromagnetic problem is noted. This
problem is discussed with the aid of numerical results. Finally the three

[“ many interesting phenomena. The limitations and applications are dis-
{ sphere problem is formulated and numerical and experimental results are

presented for a few special cases.
‘ : General remarks concerning the various approaches are summarized

and suggestions for future research are made.
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1. INTRODUCTION

Over the past century scattering by a sphere has been one of the

most widely studied problems in diffraction theory. The widespread

-interest in this problem, aside from its practical value, stems from the

fact that the sphere is one of the very few bodies for which the complete
scattering behavior is known. This makes the sphere an ideal candidate
for testing approximate solutions to more complex scattering problems.

The more difficult problem of multiple scattering, the scattering by
many objects, has interested investigators for an equally‘long period of
time, but progress has been slower., The reason for this is that one must
know not only the solutign for the component scatterers (when isolated),
but how the presence of each object affects the scattering by all the
others (i.e., coupling effects). Theré is a great body of literature on
the subject which has recently been surveyed by Tweréky (1960) and Burke
and Twersky (1964).

The motivation for extensive research in this area has been the better
understanding of problems associated with: propagation through rain, the
study of sols, air polution, meteorology, to name only a few.

It seems only natural that together with some very general
formulations for rigorous and approximate multiple scattering theory
(Twersky, 1962, 1967; Zitron and Karp, 196la and 1961b) there must also be
a thorough investigation of some very basic problems in multiple
scattering; i.e., one that plays an analogous role to the isolated sphere

in single body scattering theory. Such a fundamental problem in two

dimensions is the scattering by two parallel circular cylinders. This has
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been studied by Twersky (1952) and Row (1955). The very simplest three

1

dimensional multiple scattering problem involving the scattering by bodies
of finite extent is the two sphere scattering problem. Certainly then,
this very fundamental multiple scattering problem deserves a thorough

investigation.

In 1935 Trinks presented the solution to the boundary value problem

of electromagnetic scattering by two spheres. His solution employed an r

eumpity 0 ety pumeety,  aeleag

"addition theorem" which allowed him to expand the field of each sphere

about the spherical coordinate origin of the other and thereby satisfy the

Sy

boundary conditions on each sphere in the presence of the other., Due to
the extreme complexity of the addition theorem, he was able to give
explicit results only for spheres of radius much less than a wavelength.
His solution was later reviewed by Mevel (1960) and Lillesaeter (1964) but
with no attempt made for solution (numerical or otherwise) beyond the

Rayleigh region. While Trinks' results were presented only for plane wave

i
l
l
i, incidence on two identical spheres from the endfire and broadside directions,
l Germogenova (1963) extended his results to the case of an arbitrary angle
of incidence and spheres of unequal size. More recently, Liang and Lo
! (1967), and Crane (1967) reformulated the two sphere problem using a newly

derived form of the addition theorem given by Stein (1961) and Cruzan

1 (1962). While Crane gave no numerical results, Liang and Lo presented
numerical results for a few special cases of metallic spheres. They in- -
dicate their method to be applicable for spheres of radius less than 3/4
wavelength at wide spacing. Bonkowski, et al., (1953), using geometric

optics, found the backscattered field from a pair of identical metallic

spheres at broadside incidence. Angelakos and Kumagai (1964) extended

—




their results to an array of spheres and gave some experimental results,

None of these treatments are unified to the extent that multiple
scattering by spheres of arbitrary size can be computed. The modal ex~
pansion solution of the problem is, in pricipal, exact for spheres of all
sizes, but the complexity of the problem has thwarted even the most recent
attempt at numerical solution on a high speed digital computer for spheres
larger than a wavelength in radius. The advent of the computer has allowed
us to solve, numerically, many problems that have not been possible any
other way. This has forced us to view theoretical analysis in a somewhat
new light. 1In other words, the value of a theoretical solution must now
also be judged on the basis of its ability to yield to numerical solution.

The objective of this thesis is to present a complete investigation
of the problem of multiple scattering by two spheres. The problem is
studied using the multipole expansion technique, a ray optical formulation,
and scattering experiments.

In Chapter 2 the classical multipole expansion technique is introduced
and the aﬁpropriate addition theorem is given. With this, the boundary
conditions on each sphere in the presence of the other are satisfied.
Numerous simplifications are noted in the analysis, particularly for
special geometries. Additionally, when the sphere separation is large,
the form of the addition theorem is shown to reduce to a particularly
simple form. This gives rise to the far multiple scattering approximation.
The Rayleigh approximation for small spheres is given in closed form.

Chapter 3 is concerned with the problem of the numerical analysis of

the modal expansion solution. The various functions involved are dis-

cussed in terms of efficient techniques for generation in this particular
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problem. Then an important recursion relation is introduced which allows
routine calculation of the coefficients involved in the translational
addition theorem. With the introduction of this and previously referred

to symmetries, calculation times have been reduced by several orders of .

)magnitude, and the range of sphere sizes to which the method is applicable

has been extended to spheres nearly 10 wavelengths in radius. Furthermore,
the sphere materials are arbitrary.

In Chapter 4 the basic structure of the computer programs is discussed
and some computer times are given. These programs are used to compute
radar cross-sections of many different cases which are compared with
experimental results obtained using the methods discussed in Chapter 7.
These results include radar cross-sections for spheres of different sizes
and materials for the following three basic configurations:

Endfire incidence—variable separation

Broadside incidence-—variable separation

Variable angle of incidence—fixed separations.
The agreement between experiment and theory in all these cases is
remarkably good. Numerical results are also obtained for bistatic cross-
sections and backscattering from two spheres in contact for fixed

orientations and variable sphere size. Multiple scattering is also dis-

cussed in the context of depolarization with illustrative numerical examples.

Chapter 5 discusses the fundamentals of geometric optics and creeping
wave theory and introduces hybrid rays. Numerous examples are considered
using this ray optics method for two perfectly conducting spheres and

comparison is made with the modal expansion approach. Although this is

a high frequency approach, it is shown that results can be quite




accurately predicted even for spheres as small as 1/2 wavelength in
radius. The advantages, limitations and extensions of the method are
discussed.

In Chapter 6 the modal expansion technique is applied to cover the
--additional case of acoustic scattering by two spheres. Refinements
made in the addition theorem for the vector problem are also applicable
to this scalar case. 1In addition to the scalar character of the problem,
the solution may be simplified further in cases involving symmetries.

The scalar addition theorem, when applied to widely separated spheres is_
shown to yield a closed form solution for two spheres involving only
scattering functions of .the individual spheres. A unique connection
between this problem and the electromagnetic problem is cited for
particular configurations. Numerical results are given for equal spheres
at broadside and endfire incidence for soft and hard spheres at ka = 2

and 10. Chapter 6 is concluded with a brief dggcussion of the three sphere
problem with a few numerical results and experimental verifications.

The experimental measurement technique is discussed in detail in
Chapter 7. There the problems associated with supporting two spheres and
making dynamic radar cross-section measurements are discussed and several
techniques are described and evaluated.

General conclusions are drawn in Chapter 8 and recommendations for

further research are made.
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2. MODAL OR MULTIPOLE EXPANSION APPROACH TO THE TWO
SPHERE BOUNDARY VALUE PROBLEM

The solution of the problem of scattering of scalar or vector waves

by two or more spherical bodies requires the satisfaction of appropriate -

‘boundary conditions on the surfaces of all scatterers simultaneously.

Unfortunately there is no separable coordinate system for the wave

equation whose coordinate surfaces coincide with all the surfaces in
question. The modal or multipole expansion for the scattered field of each
sphere in the presence of the others can still be made to satisfy the
boundary conditions on each sphere provided we have an appropriate 'addition

theorem."

The required .translational addition theorem relates the scalar
or vector wave functions with respect to one origin in terms of those with
respect to another. By imposing the boundary conditions on each sphere
there results a set of simultaneous equations. 1In the case of two
dimensional problems involving circular cylinders, the translational
addition theorem is elementary and there involves no coupling between the
TE and TM waves. 1In the case of the three dimensional problem involving
spheres, the theorem becomes so complicated that it is difficult to render
even numerical solution, despite the many theoretical analyses that have
appeared over the past thirty years. Even recently available numerical
results were restricted to relatively small ;pheres at large spacings.

In this chapter the classical multipole expansion technique is re-

viewed and the vector spherical wave addition theorem is introduced,

Several special cases of interest are considered and as a result, great

simplification can be achieved. Later, an important recursion relation




is discussed, from which the scattering can be accurately and economically
computed from spheres of diameters as large as fifteen wavelengths and as
close as physical contact. With this recursion relation, the computational

effort is reduced by several orders of magnitude.

2.1 Multipole Expansion Technique

Consider two spherical bodies A and B of arbitrary material of radii
a and b whose centers lie at the origins of two spherical coordinate
systems 0 and 0' separated by a distance d. With no loss in generality
one may assume 0 and 0' to lie along the z-axis, with a point in space -
having the coordinates (r,8,¢) and (r',9',p) with respect to the two
systems respectively. fﬁrther let there be incident on these two spheres
a uniform plane wave of unit strength whose propagation vector k lies in
the xz plane and makes an angle a with the z axis as shown in Figure 2,1.
The incident electric field is assumed to be plane pélarized at an angle
¥ with a line in xz perpendicular to k. The problem is then to find the
scattered electromagnetic field everywhere in space after satisfying the
boundary conditions on each sphere in the presence of the other.

The electric and magnetic fields in a source free homogenous medium

satisfy Maxwell's equations

iwuﬁ

=1
I

vV X
(2.1)

- iweE

<
x
=] |
I

and hence the vector Helmholtz equation

VXV XA-KA=0 (2.2)
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Figure 2.1 Geometry of Two Sphere Problem.
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where k2 = wzps and A is the vector field E or ﬁ:f
Stratton (1941) shows that there are two independent vector solutions
to equation (2.2):
73 2 gD X T
mn mn
and (2.3)
S 1oy 75D

n EVXM

where T is the position vector for the spherical coordinate system O

with coordinates (r,0,¢) and the scalar potentials uéi) e characteristic

solutions of the scalar wave equation
Vzu + k2u =0 (2.4)
and are given by:

(J) = z(J)(kr)P (cosB)e m¢’ 0<n<o, |m\ < n. (2.5)

mn -—

zéJ) represents the appropriate spherical Bessel function j hél),

n’ Mn’
or héz), to be denoted respectively by the superscripts j = 1,2,3, and 4;
P: is the associated Legendre function as defined by Stratton. From (2.3)

and (2.5) can be written the explicit forms for the vector spherical waves:

—(J) = 2!

(J)(kr) P" (cos@)e ™

t . . ~iwt |,
A harmonic time factor e is assumed throughout this work and is
suppressed hereafter.
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ﬁ(j) - L (J)(kr)n(n+1)P (cosB)e m¢h (2.6)

mn kr

+ L -

el [rz(J)(kr)] é@ P:(cose)eim¢é

P oy

+ i g [r z(J)(kr)] P (cosf)e m¢¢

oy

Clearly M(J) has no radial component and hence all radial fields

must be represented by N(J) alone. Therefore, H modes (TE) which have

. _

only a magnetic radial component, have H represented by N(J)and E by
I ﬁéi); for E modes (TM), the opposite is true. An arbitrary electromagnetic
field, which generally involves both types of modes, can then be written

as (Stratton, 1941):

I

I

!

I

I

|

I

I

L I
| EDIPICICRRNS |
I

!

!

I

I

I

!

I

I

AN

n=1 m=-n

. (2.7)
ik 5(3) 7
Wy ZE: :g: (AmnNmn + an mn )

j This is usually referred to as a multipole, modal, or partial wave

=l
I
1

—— ytn i

expansion. From (2.6) it is clear that the n = 0 term vanishes and hence
this is omitted in (2.7). The unknown coefficients Amn and an and the
superscripts (j) are determined by the boundary conditions and the incident

field.

2.2 Vector Spherical Wave Addition Theorem

In the case of two spheres, in order to satisfy the boundary conditions
on each sphere in the presence of the other, an "addition theorem" is

needed so that all the multipole fields about O can be expressed in terms

of multipole fields about 0' and vice versa. For example, to satisfy
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the boundary conditions on sphere B at 0', outgoing spherical waves from
0 must be expressible in terms of standing spherical waves about 0'. The

addition theorem for this case is a specialization of the more general

rigid translation discussed in the Appendix. Here translation is confined

to the z axis with no loss in generality and is given by:

¥ -
4 :ﬁ(3)l _ jg: (Amnﬁ(l) + anﬁ(l))

mn my my mV my
;: \)=£°l,m) (2,8)
) 3 :E: (Amnﬁ(l) + anﬁ(l))_
s mn my mv my my
; v=(1l,m)

Here (and everywhere in the text) the prime indicates only association with
the coordinate system with origin 0', and (l,m) symbolizes the larger of 1
and m. . As implied above, the radial dependence on the LHS of (2.8) is
hél)(kr') and jv(kr) on the RHS. For translation from 0' to O the theorem

corresponding to (2.8) is given by:

3) - Z (_l)nW(Amnﬁ(l)' ) anﬁa)')
mn my my m my
Vigl’m) (2.9)
) =(3) _ Y, mn=(1) " moe= (1) '
. N = z D5 AN T Bty )
v=(1l,m)

This simple relationship between translation in opposite directions has
not been noted by previous authors. The form of the translation coefficients
- mn

Amv and st is very complicated and hence is left to the Appendix (see

equations (A8), (A28), and (A.29)). Their computability is discussed

in Chapter 3,
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2.3 Expansion of the Incident Field

Before the boundary conditions can be applied to the spheres, the

P —-

incident field must also be cast into a multipole expansion form. For

an incident plane wave of unit strength with the geometry shown in

T aya—

“Figure 2.1 we have

(2.10)

s .

where

- cosq cosy X + siny y + sindt cosy 2

|y
m>
]

(2.11)

=2
n
N2

- cosa siny X - cosY ¥ + sina siny

and ﬂo is the impedance of free space. Using the scalar plane wave

i expansion for the incident vector k in the xz plane (Stratton, 1941):
® n
i ik-T _ n (n-m)! _m (1)
_ e :E: :E: i (2n+l) (o) ¢ Pn(coscx.)umn s (2.12)
n=0 m=-n
z one can find the multipole coefficients of the expansion:
@ n
T = (D (1)
L E; Z z Lp(m,o)N_ 7 + q(m,m)M 7] (2.13)
n=1 m=-n
§ by using the orthogonality properties of the vector spherical wave functions

and the trigonmetric functions with the results:

N
provmm— [r— e P —y - pr— [ . R . S e - i N b ] R ]
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p(m,n) =- in-i?;il) E2;$§E [Tmn(a)siny + iﬁmn(a)cosY]
(2.14)
q(m,n) = in i?;il) Eg;g;g [ﬂmn(a)sinY + iTmn(a)cosY]
where
Ton &) = s?nc, P:(Cosc‘)
(2.15)
mo_@ = - g—a P‘:(cosa).

The coefficients for the case of an infinitesimal dipole soﬁrce lying in
the xz plane, at a finite distance from the spheres, may also be found
from (2.14), however, in this case the functions in (2.15) contain an
additional factor relatéd to the distance to origin 0. This case is cited
only for completeness and will not be discussed further. For details

see Jones (1964).

The expansion (2.13) of Ei was made about 0 and we also need an
expansion about 0'., For the latter case, all quantities on the right of
(2.13) become primed where the coefficients p'(m,n) and q'(m,n) (for a
plane wave source) differ from those in (2.14) only by the multiplicative

phase factor elkd cosa.

2.4 Expansion of the Total Field

Before boundary conditions on the spheres can be satisfied, the
incident and scattered field from both spheres must be expressed alter-

nately in the two coordinate systems. About O the scattered field of

sphere A in the presence of sphere B is (for r > a):
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) ) n
=A _ <(3) =(3)
Eg = Z Z [AE(m,n)Nmn + AH(m,n)an] (2.16)
n=1 m=-n

and the scattered field about 0' of sphere B in the presence of sphere A

is (for r' > b):

® n
Eg' = Z [BE(m,n)ﬁéi)l + BH(m,n)ﬁnEi)'] (2.17)
n=1 m=-n

where AE(m,n), AH(m,n), BE(m,n) and BH(m,n) are respectively the unknown
multipole coefficients for the E and H modes of spheres A and B. With
(2.8), (2.9), (2.13), (2.16), and (2.17), the total field about O and 0'

can be written. About O the result is:
ET = ZE: [p(m,n)ﬁéi) + q(m,n)ﬁéi) + AE(m,n)ﬁéi) + AH(m,n)Eéi)
nm
mre= (1) mrt=—= (1)
+ BE(m,n) jg: (Amvav + Bvamv )
) .
mr=—=(1) mn=(1)
+ BH(m,n) Z (Am\)Mm\) + B NS )] ‘ (2.18)
\Y

Similarly, the total field about 0' is:

3(3)'

E, - Z b mwE D + o' @oE D + 3 @t + B m,mEC
nm

oty , mo= (1) m=(1)"'
+ AE(m,n) 22: (-1) (Amvav - B M )

mv my
+ A (m,n) z (-1)“+V(A$\‘)‘an(§)' - B&Tﬁn(l\f)')] (2.19)
\Y)

The magnetic fields are obtained from above by interchanging the ﬁmn's

and Eﬁn's and multiplying the result by -ik/iu .
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2.5 Application of the Boundary Conditions

For spheres of arbitrary homogeneous composition the boundary
conditions to be satisfied at the surface of each sphere in the presence
of the other are continuity of the tangential electric and magnetic

~fields. Points interior to a sphere must of course be characterized by

the vector wave functions ﬁ(l) and ﬁ(l)

since the field quantities are
mn mn

finite there; the radiation condition requires that we choose Eéi) and
ﬁéi) for points exterior to both spheres. Lastly it is understood that
in equations (2.16) through (2.19) the coefficients AE(m,n), AH(m,n),
BE(m,n) and BH(m,n) are different depending respectively on whether T

and ' lie inside or outside of spheres A and B. With this in mind, the

required continuity conditions are:

r X ET + =r X ET -
a a
ExH| L, =T xH|
a a
' X E! =%'XE"
+ -
T'b Ty
' X H' =%‘xﬁ'|
+ -
le Tib

where the superscripts + and - indicate respectively outside and inside the
surface of the spheres. Applying these conditions to (2.16) through
(2.19) and using the orthogonality relation

m ., m »
m ,dP" dp 2 ,
I ( n £ m PmPnl) sinfde = 2n(nt+1) (n+m)!
o

2nt+1 (n-m)! “4n

38 a6 T Sind ‘n's (2.20)

gives rise to four sets of coupled, linear, simultaneous equations in

the unknown multipole coefficients:




[T TeN

where

v, (P)

u_ (@)

and p =

AE(m,n)
AH(m,n)
: BE(m,n)

BH(m,n)

16

v (ka){p(m,m) +Z [A™VB, () + B8 (m,v)7)
un(ka){q(m,n)-FZEZEAEEBH(m,v) + BgiBE(m,v)]}
v (2.21)

v )Pt @y + ) (DT VLATL (1.0) By (m0)])
v

u_(kb){q' (m,n) +Z DTVLATA (m,v)-BrAL m,w)]]

by (p) 5 LNpj () ]- uzN i, (Np) [pJ ]

Wy él)(p) 35 [Npj (eI - uzN in (Np) [ph(1)<9)]

(2.22)

Wi (Np) %5 Lei (P 3-mydy (p) 5 Lo, ()]

4

by dn (M0) 35 Eph(1)<p)] -poh <1)(p) 5 [Npj, (Np) ]

2ix/A; x = a or b, the radius of the sphere. Wy and W, are

N2 is complex.
The above coefficients are the well known coefficients for the
external field of a single homogeneous dielectric sphere which have been

tabulated as early as 1908 (Mie).
At this point it should be emphasized that the expressions in
- equation (2.21) are valid for determination of the multipole coefficients

of any two spheres, equal or unequal in size, having the same or different

material as long as the appropriate single sphere coefficients un(p) and

the permeabilities of the surrounding medium and the sphere material
. 2, . , .
respectively and N~ is the relative dielectric constant of the sphere

material with respect to the surrounding medium; if the material is lossy,
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vn(p) for each sphere are known.T In the case of a perfectly conducting

sphere, the coefficients (2.22) reduce to
j_(P)
u (p) = .
NP
(2.23)
j— Lei ()]
(D 03

n

vae) = - 3
'd—p'[.Ph
The computation of the coefficients (2.22) involves some special con-
siderations which will be elaborated upon in a later section.
Returning momentarily to the coupled sets of equations (2.21), it
is clear that there is no coupling through the azimuthal modes (i.e.,
modes with different indéx m), hence, this system of equations may be
solved independently for each m where -n < m < n, which represents in
general, 2n+l sets of equations. As shown below there are several
important special cases in which the form of (2.21) can be simplified

considerably.

2.6 The Far Field Approximation

Of practical interest is the scattered field in the far zone. This

can be obtained from (2.21), (2.16) and (2.17) and the asymptotic forms
tt

of the vector spherical wave functions when r,r' >> d. The vector

The precise form for un(p) and vn(p) is also known for spheres composed

of several concentric layers of different materials (Aden and Kerker,
1951) and even concentric layers of non-uniform dielectric constant
(Levine and Kerker, 1963).
tt 5 i i

It is assumed that d > a + b, the case of coalescing spheres is not
considered here.
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spherical wave functions (2.6) in this case reduce to:

ikr ~ PR |
ﬁrﬁ) m it S (8)8 - irrmn(ems]e1m¢
(2.24)
ikr ~ Al
ﬁéi) ~ 17" EE;_ [4Tmn(9)9 + iTmn(9)¢]elm¢

where the functions ﬂmn and Ton have been previously defined in (2.15).
. ' =(3)' 3"

Since r' = r-dcos@, an and Nmn differ from (2.24) only by the

phase factor e-lkdcose' With the above, (2.16) and (2.17) are combined

with the result:

— eikr = - -n_imp A
Eq ® =7 :E: ZE: ie (-[e(m,n)ﬂmn(e)-h(m,n)'rmn(e)]e

n=1 m=-n
+ i[e(m,n)Tmn(Q)'h(m,n)ﬂmn(e)jé) (2.25)
where
e(m,n) = AE(m’n) + BE(m,n)e'ideOSG
(2.26)

h(m,n) = A (m,n) + B (m,mye” 9059,

By using the symmetry properties of the addition theorem coefficients,
which in turn are obtained from the properties of the associated Legendre
functions, the series (2.25) can be transformed into one involving only
non-negative values of the index m if the scattered field is produced
by a source whose E vector is polarized either parallel or perpendicular

to the common axis of the two spheres,f i.e., y =0 orf/2, Then for

This same transformation could of course be applied to (2.16) through
(2.19). Liang and Lo (1967) considered only the polarization y=T/2 but did
not note the symmetry in the functions for positive and negative m.




0
y = s, (2.25) becomes:
n/2
_ eikr z Z -n
Eq ® z Zi Em(—l:e(m,n)ﬂmn(e)-h(m,n)Tmn(G)]
n=1 m=0
o N
cos mp |
x| @ + ile(m,n)r_ (@) -h(m,n)m_ (8)]
sin m¢
rsin m¢— "
X ¢>) (2.27)
| cos m¢4

where Em = 1if m=0and 2 if m > 0. It should be stressed, however,
that the scattering coefficients e(m,n) and h(m,n) are different for the

two polarizations by virtue of (2.14) and (2.21).

2.7 Analytical Simplifications for Special Geometries

There are several configurations that deserve special consideration
as these all lead to some simplification in the analysis.
2.7.1 Endfire Illumination
Perhaps the greatest simplification results when the direction of
propagation of the incident wave coincides with the axis of the two
spheres (@ = 0,T). 1In this case (say & = 0) the coefficients of the'
t

incident wave become from (2.14):

.n 2nt+1

p(m,n) = q(m,n) = -1 m m, 1 (2.28)

Equation (2.27) demonstrates that we need consider only non-negative
values of m hereafter, since an arbitrarily polarized incident field
can be synthesized from two orthogonal linear polarizations,
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? This means the system (2.21) need be solved only for m = 1, which in

turn means that only the translation coefficients A:E and B:§ form=1

E AT

need be calculated. Furthermore, in this case, the coefficients can be
Z reduced to simple forms (see (A28) and (A36)).
- 2.7.2 Broadside Illumination - Identical Spheres

When the source impinges upon two identical spheres at broadside

o el

incidence (@ = T/2) with either parallel or perpendicular polarization

o - vl

(y = 0,7/2) another simplification results. For perpendicular polar-

ization

n+m
B (m:n) = ("1) A (mxn)
E E (2.29)

! _ n+m
BH(m)n) —'('1) AH(m)n)

: and (2.21)’becomes:

V+m

vn<ka>(p<m,n>+ Z (-1
v=(T,m)

.

AE(m,n)

o W oy

X [AzzAE(m,v) - BzzAH(m,v)])
(2.30)

AH(m,n) = un(ka)(q(m,n) - z (_1)v+m
V=(}am)

|
|
|
|
|
_ LA ) - ) ]) |
|
|
|
|
|

™

- For horizontal polarization (Y = 0), a simple sign change is introduced
on the RHS of (2.29) and preceding the summations in (2.30).
2.7.3 Asymptotic Form for Large Separation
In the Appendix a simple asymptotic form for the translation co-

L. mn n . . . . . ' .
efficients A and B:v is derived which is valid when the translatiomal
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)
distance kd is sufficiently large. From the series expansion of the

Hankel function hél)(kd) it is shown that kd > 0(n+v)2 is the required

condition for the asymptotic form where n,v < O(m.':lx{ka,kb}).'r If

, d . .
a > b, this criterion becomes P > 0(ka). It is interesting to note at

'. -this point, that this is also the familiar far field criterion for a
circular aperture of radius a. 1If the above criterion is satisfied,
l. the translation coefficients become (A47):
i ikd m>0
‘ mn _ _mn _ .n-v-1 2w+l e -
I. Ay B ¥ 1 oD D g o (2.31)

d
= > 0(ka)

This says that when the sphere separation is sufficiently large, the
! ‘ only contribution to the'coupling of energy between the spheres is
through the azimuthal mode m = 1. 1In regard to the addition theorem, say

from 0 to 0', which reads:

‘ ’ =(3)' _ mne= (1) mn= (1)
. Mn = Z (Arrwnﬁrw * anﬁw )
\)=°(°l,m) (2.8)
i
( =(3)"' _ mn=(1) mn—(1)
Nmn B :E: (Amvav + Bvamv )
v=(1,m)

- ]
(2.31) says that M;i) (at 0') is constructed only from vector wave

functions of the type Mij) and ﬁij) (from 0) each appropriately weighted

by (2.31). This weighting (for each V) is seen to be the strength of a

spherical wave which originated at O.

' TThis inequality for n and v is based on the truncation point of the

Mie series.
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Another intuitively pleasing'aspect of the above result is that the
Kronecker delta éml in (2.31) selects the only vector wave functions
(ﬁlv and ﬁlv) which have a non-zero value in the direction connecting
the two sphere centers, which in the present problem is the z-axis,

Numerical results employing this approximation are given in Chapter
4 and indicate that in some cases the criterion g > 0(ka) may be relaxed
somewhat.

2.7.4 Rayleigh Scattering by Two Spheres

The preceding analysis to this point may be easily specialized to
the Rayleigh region where we assume that ka and kb are so small that only
the term for n = 1 contributes, the others being taken as zero. Certainly
for this case we must assume ka,kb << 1. This situation, for equal spheres
at endfire and broadside incidence, was considered in detail by Trinks
(1935) and later generalized to arbitragy angle of incidence and dissimilar
spheres by Germogenova (1963). 1In the interest of completeness, the
Rayleigh approximation is presented using the present formulation.

Consider first the coupled equations (2.21) in light of assuming
un(kx), vn(kx) =0 for n> 1, where x = a or b (cf.. (2.22)). For definite-
ness, assume the vertical polarization y =m/2. Equation (2.21) may then

be written explicitly after listing the coefficients Azﬁ and B:z. For the

case at hand only the following are required:’

01 _ iz . 3 01 _
A01 = -3e T (z+ti)/z" | B01 =0
Aii = 3elz[z+i(1-zz)]/223 Bii = -3e1%(1-iz)/22°

where z = kd has been introduced for brevity. For the assumed vertical
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polarization, (2.14) becomes:

1
o

3
p(0,1) = q(0,1) = i 5 sina

q(l,1) = -i % cosQ

lw

p(l,1) =1

Using these results in (2.21) and leaving only one subscript to denote

m =0 or 1 we have:

m=0
AE = BE =0
o o
AH = u(ka)(q0 + AoBH ) : (2.32)
o o
—_ ]
BH = u(kb)(q0 f AoAH )
o o
m=1
AE = v(ka)(p1 + AlBE + BlBH )
1 1 1
A = u(ka)(q, + A,B_ + B.B_ ) .
Hy LobE - TR, (2.33)
= ' -
BE = v(kb)(p1 + AlAE BlAH )
1 1 1
= ! -
BHl u(kb)(q1 + AlAHl BlAEl)

The problem then reduces to solving two sets of equations with at most
four unknowns. A simple case for illustration occurs for a pair of
identical spheres at broadside incidence, where we may use the result

(2.30) and obtain for (2.32) and (2.33)
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LR

; [e]
3i -1
¢ b7 2 u(ka)(1-u(ka)a ]
g ) (2.34)
31 u(ka)v(ka)B)

} by =g vl v A + e
] -1

AH1 = -u(ka)BlAE1[ L1-u(ka)A,]

[L e

The results for horizontal polarization are obtained similarly. Further

gy

approximations may be made if restrictions are placed on kd. The fields

may then be simply calculated using the previous. results.

[T P v Prasgtal oy
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3. NUMERICAL ANALYSIS

The possibility of obtaining accurate numerical results for the
scattering by two spheres beyond the Rayleigh region using the multipole
expansion technique requires much more than just the availability of a

“large scale computer; it requires the most efficient computational
techniques available. This means maximum use of recursive and iterative

techniques.

3.1 Special Functions

Inspection of the functionsin the various multipole expansions -

(e.g. (2.5) and (2.6)), and the expansions themselves, indicates that any
field calculation involves series of functions in which is required the

summation of many orders of functions which have the same argument,

As is well known there is a large class of special functions of

mathematical physics which satisfy three-term recurrence relations of

|. 2 the form:

. | Vol +aw + bnwn-l =0 (3.1)

l. ) where n = 1,2,..., and a and bn are known c9nstants. The Bessel and
Legendre functions which appear in the analysis here are members of this
class. Recursion formulas for these or any other functions must not,

N however, be used indiscriminately since each cycle of a recursive process
not only generates its own rounding errors, but inherits those committed
in all previous cycles. This aspect of recursion relations — stability —
must be known for each of the cases for which they are to be used. This

. , will be discussed in what follows with respect to the functions used in
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this analysis. An excellent review of the computational aspects of three-

term recursion relations is given by Gautschi (1967).

3.1.1 sSpherical Bessel Functions

The spherical Bessel functions zéJ)(x) satisfy the recurrence

-relation:
(3) _ 2ol (3) (3) _
¢l T x Zn + Zn-1 T 0 (3.2)
where z(J) may be j_ , n_, h(l), or h(z) referred to respectively as
n n’ n’ n n

spherical Bessel functions of the first, second, third, and fourth kind

(j = 1,2,3,4). The first two are linearly independent solutions to (3.2),.
Consider the case of generating jn(x) with the computer using (3.2) for
fixed x and n = 0,1,2,..., given jo(x) and jl(x) as starting values.

jo(x) and jl(x) can of course be given only to a finite number of

significant figures. If we now try to obtain jn(x) from (3.2), starting

with the approximate values jo(x) and El(x), after recursion with infinite

precision to some n = N > x, the result EN(x) will bear no resemblance to
the correct value jN(x). This is because any error made in either of the
starting values (due to the finite number of digits carried) may be re-
garded as a component of the other linearly independent solution nn(x).
This is then carried along at every cycle and hence the error becomes
arbitrarily large as n becomes infinite since nn(x) does., Gautschi (1967)
shows that this disastrous accumulation of error can be anticipated
whenever one tries to calculate by straightforward recursion the solution
fn of the pair of linearly independent solutions fn and g, which satisfies

(3.1) and has the property

f
lim =2 - o.
&n

n-— o
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The solution f in this case is termed minimal at infinity. For SO
this trouble can be obviated by using backward recursion in (3.2) by

starting at some sufficiently large n = N 2 jN+l(x) ~ 0. Then letting

2N+1
X

EN(x) equal some constant C, (3.2) implies EN_I(X) = C. By

~
continuing recursion backward to n = 0, we arrive at jo(x). Comparing

this with jo(x) = 20X uniquely determines C which then determines jn(x),
n=20,1,2,...,N. The proper choice of the starting point N for a given
relative error € in jn(x) for the largest n of interest has been deter-~
mined by Carbaté and Uretsky (1959). It has been pointed out by Logan
(1965) that Lord Rayleigh in a paper published in 1904 was the first to _
realize the necessity of reversing the direction of recursion for Bessel
functions of the first kind (when the order is larger than the argument)
in order to control the propagation of error.

In summary then, jn(x) must be generated by backward recurrence;

nn(x) may be generated in either direction. Once jn'and n are generated

b g D
n n

and follow by linear combination. To get fromn = 0 — N or

from N - 0, all intermediate values of zéJ) are generated (and saved in

storage) — this is the principal advantage in recursion techniques.

3.1.2 Associated Legendre Functions

The associated Legendre function P:(x) is defined by:

2. m/2 n+m

il _ (1l-x7) d 2.n
Pn(x) = o, o (1-x7) (3.3)

: One would not, however, dream of using this definition for calculation

purposes.
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For the general case, x is fixed and the set of functions P:(x)
is needed for degrees n = 0,1,2,...,N and orders m < n. These functions,
fortunately, do not have the minimal property at infinity (in the range

\x\ < 1) as do the Bessel functions of the first kind. This then permits

. m :
~us to use the well known recursion formulas for Pn(x) in order and degree,

in either direction, without the worry of disastrous error accumulation.
The same applies to recursive generation of the functions ﬂmn and Ton
which can be shown to satisfy nearly identical recurrence relations.

It was actually found to be most effective to use only backward re-

cursion in order, using the relation:

(n+m-1)(n-m+2)P:-2 + 2mx p:'l/ 1-x2 - p: =0 (3.4)
with the starting points
Pg(x) =1, P? = x, and Pi(x) - V1-<2

and the auxiliary relations:

Py = 2me1) V1-x2 P (x)

nt+l
(3.5)
P:+1(x) = x P:(x)/ \fl-x2

This then defines an algorithm which generates and stores P: for all
degrees n = 0,1,2,...,N and orders m < n. The derivatives of the
associated Legendre functions are also generated at the same time since

they are related to the same quantities which are used in the calculation

of the P:'s; this avoids redundant calculation.
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3.2 Translational Addition Theorem Coefficients

Unquestionably, the most challenging problem regarding numerical
solution of the two sphere problem is the calculation of the translation

coefficients AES and BES which appear in the addition theorems (2.8) and

"(2.9). For r £ d they are given by (A28) and (A29) as:

- 1 -
Arr:\[: - ('l)miv " T\)ZX(TW 1 p[n(n+1)+\)(\)+1)-p(p+1)]

’ X a(m,n,-m,V )h(l)(kd)
’ ’ ’ ’p p (3-6)
mn _ . . m.V-n 2v+1 .-p . ' (L)
Bmv (-1)'i 5;?;117 i "(-2imkd)a(m,n, m,v,p)hp‘ (kd)
5 -
Fortunately the index p extends only over the range n+v,n+v-2,...,\n-v‘,

which means that the series may consist of a minimum of one term but no
more than 1 + max{v,n} terms. The computational aspects of the spherical
Bessel functions of the third kind was discussed previously; what remains
are the coefficients a(m,n,-m,v,p). These coefficients are defined by

the linearization expansion

PL(x) B (x) =Za<m,n,-m,v,p>1=p<x) (3.7)
P

where from Cruzan (1962) and Liang and Lo (1967)

1/2 [anvplfnvp
n+m) ! (V-m) !
a(m,n,-m,v,p) = (2p+1) [ Enmgngg} (3.8)
) ) 000/ \im-m0
Iy i s
and is the Wigner 3-j coefficient. As shown in the Appendix
S B

each one of these coefficients involves a rather complex summation of
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multitudinous factorials (equation (A8)). If the number of the coefficients
a(m,n,-m,V,p) required for solution of the two sphere problem were small,
then tabulated values (Rotenberg, et al., 1959) could be used and read

: . s n
directly into the computer subroutine for determining the A:v's and

Ly

v s. Such is the case only for very small spheres (considerably less

than a wavelength in radius).
If the scattering by a single sphere of size ka = 2Ma/A is to be

calculated numerically using the multipole expansion technique, the series

must be truncated at some n = N; this value of N, which depends on ka,

is determined so as to insure that the resultant error incurred by this

truncation is less than some €. An empirical formula for this truncation

point for an error of less than .0l1% in the radar cross-section is:

/3]

N~ [1+ ka+ 3(ka)" (3.9)

Senior and Goodrich (1964) state nearly the same result. If we now
consider two spheres, (say both of size ka) the same truncation point for
the index n is applicable when the spheres are not too close to each other,
or touching. Taking this also as the truncation point for the index v, we
may determine the number of coefficients a(m,n,-m,v,p) which need to be
calculated to give an accurate result for the scattered field say. Since
the limits on all the indices n, m, v and p are defined in relation to
each other, and the truncation point N, for n and v, then it is a simple
matter to show that this total number of required coefficients is:

N_ = NOQW1) (W2)/6 + N2 (3.10)

This number is shown plotted in Figure 3.1 vs. ka for N given by (3.9).

For large ka it is clear that Na approaches asymptotically the value
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REQUIRED NUMBER OF COEFFICIENTS a(m,f’t-m,v,p)

T RN N N A A B
I 2 3 45 10 50 100

ka

Figure 3.1 Minimum Number of Coefficients, a(m,n,~m,v,p),
Required for Calculation of Scattering by Two
Spheres of Size ka,
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(ka)4/6. It is also evident that for all but the smallest pair of spheres
the calculation of the required number of coefficients represents a
tremendous expenditure of effort, in view of the complicated definition

of the 3-j coefficients (A9). To give some sort of feeling for the

‘computation involved, consider the case of computation of the scattered

field from a pair of spheres both of size ka = 4. This will require about
10 terms (in n) in the multipole expansion of the scattered field (2.27),
while (3.10) indicates that 2300 of the coefficients a(m,n,-m,v,p) must be
calculated! Furthermore, using Liang's form for the coefficients (3.8)
with (A9) means that for the computation of a single coefficient a(-),
as many as 156 factorials will have to be evaluated with the largest one
being 41!, This clearly demonstrates that if any practical computations are
to be made of the scattering by two spheres in this size range or larger,
the efficiency of the computation of the coefficients a(m,n,-m,v,p) must
be radically improved.

Inspection of the form of the coefficients Azs and BZS in (3.6)

indicates that if recursion techniques can be applied, a recursion relation

for the a(-)'s in which only the index p cycles would be the most desirable,

Such a recursion formula is derived in the Appendix with the results re-

produced below:

q,p_3ap_4 - (ap_z + ap-l - 4m2)ap_2 ; apap =0 (3.11)
where

ap = a(m,n,-m,V,p), p = n+v,n¥v-2,...,ln-v\
and

a, = { (n+v+1)2-p2][p2-(n-v)2]/(4p2-1) : (3.12)
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The recursion relation (3.11) is most conveniently used in the backward
direction since simple starting values result for p = n+v and ntv-2,

These are:

s _ @n-Dyt(v-1) (o)l
v (2n+2v-1)!! (n-m) ! (vim) !
(3.13)
(2n+2v -3)

ez~ TR Ry LV maD e,

The form of (3.11) displays vividly the inherent efficiency of this re-
currence technique — every new coefficient calculated makes use of all
previously calculated quantities and requires only two additional
evaluations of the quantity ap. Furthermore, when generating the set of
coefficients a(*) for all n, m, v, and p, by starting fromv = 1 and

m =0 (3.13) becomes

a =ﬂ . a —J n
v 2n+l * ndv-2 2n+1

All other starting values for the various indices n, Vv, and m are then
found from the above and the obvious recurrent forms implied by (3.13).
The question of stability of the recursion formula (3.11) is trivial since
all quantities involved in (3.1ll1) are rational numbers. That is, if need
be, the recursion process (3.11) could be carried out entirely in integer
arithmetic after rationalization with no attendent loss in accuracy at

any step. If (3.11) is not rationalized, there are several checks which
can be made after the set of coefficients {a(-)] is generated to test

stability. The first is obvious from (3.7), i.e.:

Za(m,n,-m,v,p) = 6m’° . (3.14)

P
/
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Secondly, (3.11) must be applied most often for the cases when v = n.

!

In these cases, the end coefficients a(m,n,-m,n,0) are known explicitly
as simply (~1)m/(2n+1), a very convenient quantity to check with,

There are two special cases of (3.11) which deserve mention, namely,

..the cases for m = 0 and 1. Whenm = 0 (3.11) reduces to
&  qa =0 a 3.15
p-1p-2 “pp ( )

This corresponds to the azimuthally symmetric case in the acoustic two

sphere problem where the incident vector lies along the common axis of
the two spheres (see 6.1). The casem = 1 is the azimuthally symmetric _
case for the electomagnetic problem where the coefficients a(l,n,-1,v,p)

are related to those for m = 0 by (435), i.e.:
a(l,n,-1,v,p) = - 8(0,n,0,v,P)Bp/2V(V+1)

where Bp = n(n+l) + VOW+1) - p(ptl). The m = 1 case then has the two

term recursion formula

04 a = Q& a
p-lsp p-2 po-Z P
which is valid when 8 # 0. 1In casefB = 0, a

p p p-2
as

a
a - . P2
p-2 G-p_]_ p+2

may be found from (3.11) I
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3.3 Solution of the Coupled Equations for the Multipole Coefficients

The possibility of obtaining numerical results of the rigorous
solution of electromagnetic scattering by two spheres rests on the ability
to solve the system of equations (2.21) which is repeated here for

.. convenience:

Ag(m,n) = v_(ka){p(m,0) +:§:[A:ﬁBE<m,n> + BB, m,m]1}

A m,m) = u_(ka){a(m,n) + [ATVB (m,n) + B B (m,n)]]
5 (2.21)

B (m,n) = vn<kb>{p'<m,n>-+:§:<~1>“+V[A$ﬁAE<m,n> - BTvA, (m,n)]]
Vv

s, () (0" @) + ) DA, () - VA (w1
A%

B, (m,n)

It is more convenient to comment on numerical solution of this system
when it is written in the matrix form given below. With the following

identifications (2.21) becomes:

?77 =7—+@777 (3.16)

where 777 is the multipole coefficient matrix

AE (m,1)

AE.(m,Z)

777 - __f—__ (3.17)
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The matrix :; is given by:

F- |- A (3.18)

where

c. = | —-—=—-—- s x =aorb

and

vV = (vl(kx)vz(kx)...>

U = (ul(kx)uz(kx)...) s

p(m,1)
p(m,2)

Finally, the matrix C? , termed the coupling matrix, is given

with wél the incident wave coefficient matrix l




37

|
| A B
0 lCa
| A B
C? = | —_———— N (3.20)
|
A -B
+ I
Ay <8l
where
nV ™ Y
- 1lE). 1)
mn mn

The solution to the system (3.16) is then formally given by:

m a0 3.21)

Equations (3.16) and (3.21) suggest the two modes of solution — iteration
and direct matrix inversion. While the later method can always be applied,
the former requires that all eigenvalues of the matrix (? be of modulus

less than one. Only under this condition does the following expansion for

(T - c )-1 become meaningful:

(I-e)_1=I+C’+ C"Z+...

When this is not the case, direct matrix inversion must be used. Returning
to the previous example of the calculation of the scattering from a pair

of spheres ka = 4; where for the case of moderate separation 10 terms

are needed in the multipole expansion in n and v, eleven 40 X 40 complex,

non-symmetric, matrices will have to be inverted to obtain a solution
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for one particular choice of parameters (a, b, d, &, and the material of I
each). When conditions are met, the iterative technique is preferable as I

this tends to minimize error accumulation and can take full advantage of

[ all the zero entries in <? .  Furthermore when the spacing is not too

-small, the iteration process should converge rapidly. There are various
iterative schemes available; probably the two best known are the Jacobi

method (method of simultaneous displacements) and the Gauss-Seidel method

(method of successive displacements). In the first method, one does not

r use improved values until after one complete iteration, whereas the

second method uses improved values as soon as they are available. The
latter method is thus more naturally suited for computer application.
Furthermore it can be shown (Todd, 1962) that the Gauss-Seidel process

1 converges exactly twice as fast as the Jacobi method regafdless of initial
values. The "orders of scattering" itération technique employed by
Twersky (1952) and Liang and Lo (1967) is precisely fhe Jacobi method.

The question of where to truncate the matrix or terminate the series
is of considerable practical importance for numerical calculation. This
L is answered by (3.9) for the case of the single sphere. For two spheres
it seems quite unlikely that such a clear cut truncation point can be
specified since this depends on the sphere sizes, separation, composition,
and even polarization. Intuition tells us that the stronger the mutual
coupling the more terms we will need. Crane (1967) shows that the
elements of (? decrease in magnitude with increasing n (or V) as

(4ab/a2y?™ 1,3

, which indicates that the worst case involves two identical

spheres that touch. Generally this is true, however, this does not say
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anything about sphere composition or polarization of the incident wave,
the latter being extremely important near contact. Numerically the
question of how many terms to take is left up to the computer — keep
taking more terms until the result doesn't change within some prescribed
“amount. Numerical results indicate that for all but a very few cases, a
few more terms than given by (3.9) is usually sufficient even at contact.
One exceptional case involves a pair of identical metallic spheres in

contact at broadside incidence for horizontal polarization (b = a,

d=2a, q="/2,y=0).
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§> 4, COMPUTER PROGRAM DESCRIPTION AND NUMERICAL RESULTS

Numerical results have been reported for scattering by two spheres in
the Rayleigh region using the modal expansion technique by several authors,
i _gnd hence will not be repeated here (Trinks, 1935, Germogenova, 1963,
Lillesaeter, 1964). Here the emphasis is on scattering by larger spheres,
of which the only available numerical results appear in Liang and Lo

(1967). Their numerical results, however, are restricted to relatively

small spheres at large separation.

2, and the recursion relations for the coefficients and special functions
described in Chapter 3, very general, fast, and efficient programs may be
written. The basic structure of the programs used for the following

results is outlined below and some computer times are quoted.

4.1 General Program Structure and Description

Nearly all of the programs were written in the FORTRAN IV language

1 By making use of the symmetries in the analysis outlined in Chapter - l
for the IBM 360/75 in single precision arithmetic (about 6 significant

{ figures). The special functions, the coefficients u, and Vo and the co- |

. . my m) . , ' .

efficients Amn and an involving the a(-)'s are generated outside of the I

main program in subroutines which are called, as needed, from the main

program. These subroutines for a particular choice of parameters (a,b, I

d,n,0, and the material of each sphere) when called, return the entire I

- block of functions (for the various orders) and coefficients needed for

the calculation so that only manipulation of these functions and co-

efficients is carried out in the main program. The calling sequence of
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course depends on which parameter(s) change between subsequent cal-
culations. Only those subroutines are re-called which involve a parameter
change.

It was pointed out in Section 2.7 that when the incident electric

*field was polarized in a direction either parallel or perpendicular to

the common axis of the spheres, that only ntl sets of coupled equations
(2.21) for the multipole coefficients had to be solved, since in those
cases the index m assumed only non-negative values. For arbitrary polar-
ization, it is more efficient to simply solve the problem twice for the
above two polarizations, otherwise new coefficients and functions would
have to be calculated which involve negative values of m. This procedure
has the added advantage that with the solutions for these two component
polarizations we then also have the solution for any other incident polar-
ization.

The system of equations (2.21) is solved by iteration only, the Gauss-
Seidel method chosen instead of the Jacobi method because of its more rapid
convergence properties (see 3.3). The initial approximation used in the
iterative solution of (2.21) is most logically chosen as 377(0) = ;EL
where 777(N) = ?—+€?77(N-1). The superscript corresponds to the

1 2o,

iteration number, hence Thus, if the coupling is.small
(i.e., (2 is small) then 777 will not be very different from ‘E; .
Convergence of the iteration for the most part is quite rapid except when
the spheres are in contact for the horizontal polarization. Relaxation

methods (Todd, 1962) were tried in an attempt to alleviate this situation,

however, with no improvement found over the Gauss-Seidel method. The
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iteration process is terminated when the final answer does not change
between successive iterates within some prescribed amount.

With the multitudes of calculations involved, the question of numerical
accuracy arises. This was checked in several ways. First, several programs
were written at different times for different computers, in the FORTRAN II

langugage in one case and FORTRAN IV in the others. There was agreement to
no less than five of the six significant figures carried. Second, the
reciprocity principle was exploited as a check. By illuminating the spheres
at an incident angle 0. and observing the scattered field at an angle 8, we
should obtain the same result as by illuminating at € and §bserving at af
This also allowed checking the endfire incidence program (m = 1) with the
general and broadside incidence programs. In all these cases tested there
was agreement to no less than four of the six places carried. Finally,

the excellent agreement between the coﬁputed and experimental results
places additional confidence in the results,

Before proceeding to the numerical results, some typical computer
times are quoted and compared with the technique reported by Liang and Lo.
It is difficult to make a direct comparison of the computation times between
the present method and the one reported previously since in the latter case
only the first iteration toward the solution to the system of equations
(2.21) was considered, whereas the present results were obtained by
iterating as many times as necessary to obtain convergence to the true
solution. The number of iterations required in some cases is very large;
for example, in the case of large spheres (ka ®> 15) in contact at endfire

illumination, the required number exceeds 40. For comparison, calculation

of a single point for spheres of radii about 2/3 of a wavelength (ka = 4.19)
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took about 11 minutes using the previous method and only 1 second with

the present method (the present method having performed an average of
about six iterations — more near contact, less at large separation). The
time factor between the two methods becomes rapidly larger as the sphere )
"size increases. Calculations with the present programs have been made for
two spheres in contact at endfire incidence for ka = 30. At this value,
the computer time is still quite reasonable being only 40 seconds for a

single point after performing about 50 iterations. The upper limit for

sphere sizes depends on the price one is willing to pay for each point.

4.2 Radar Cross-Sections

It would be a difficult task to give a truly representative set of
numerical results for scattering by two spheres because of the large number
of parameters involved. To illustrate this, recall that for backscattering
by a single sphere we have only the size and material to specify, whereas
for two spheres we must specify not only the size and material of each,
but also the separation between centers d, the incident wave vector k and
its polarization.

Since measurements of radar cross-section can be made with relative
ease (see Section 7), this will constitute the major body of the numerical
results., 1In the backscatter direction @ =T-0 and ¢ = T, hence the

scattered field from the two spheres in the far zone is given by (2.27),

for horizontal polarization (y = 0):

e

_ ikr 2, &, A
B, = - S Z z "€ Le(m,n)T_ @)-h(m,n)r_ (@)]8 4.1
n=1 m=0
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For the vertical polarization (¥ = T/2) the result is the same upon
interchanging ﬂmn and Tmn and replacing ] by -ia. Note also that e(m,n)

and h(m,n) are functions of @ and y. We see immediately that the

--the horizontally polarized field, regardless of sphere sizes or material,
{ The same applies for the other polarization. 1In other words there will be
)
no "depolarization'" (Beckmann, 1968) for an incident polarization in these
two directions. 1In any other direction, however, (y # nfM/2, n an integer)
there will be a depolarizing effect. Results showing this effect will be
presented shortly. -

i Using (4.1) we compute the radar cross-section (referred to hereafter

as RCS) from the definition:

8 vertically polarized field cannot backscatter any energy associated with
| I

0 = lim lﬂ'l'rzlES/Eilz (4.2)

r °®

Figures 4.1 through 4.9 employ this result for variods configurations, but
we will discuss them separately. With the exception of Figure 4.3,
experimental results are also shown here (as dotted curve) for comparison
although the experimental procedures are not discussed until Section 7.

The solid curves were computed using the modal expansion (exact) technique.

At this point, a few words about the preparation of the graphs are

perhaps in order. In view of the oscillatory behavior of the RCS curves,
.
and for the sake of presenting the results as accurately as possible (not
L to mention the savings in time to the writer), all theoretical scattering
curves throughout this thesis were plotted by computer (Calcomp plotter).
~ This was almost a necessity when comparison was made to experimental
results since the scale on the chart recorder paper used in the measurements
.
—
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did not match that of any available graph paper. The theoretical results
(punched by the main program on data cards) were read into the plotting
program and plotted to the same scale as the chart paper — this explains
the somewhat unusual vertical scale as the plotting routine writes the
-axis values only at inch intervals. By having the theoretical curves
plotted to the same scale as the experimental results (which were on chart
paper), the latter could be transferred accurately simply by tracing.
Generally for the broadside results, points were calculated at intervals of
.5 in kd and .3 in kd for endfire results. Points between these were cal-
culated by a piecewise cubic interpolation scheme which maintains continuity
of the fitted curve and its slope at all points. Hence, no human guesswork
was employed between rigérously calculated points.

4.2,1 Broadside Incidence — Variable Separation

Figure 4.1 shows the broadside RCS of a pair of identical metallic
spheres for ¥y =1/2, normalized to 9, the RCS of sphere A alone for
ka = 4.19 and ka = 6.246. The agreement is remarkably good with the
exception of an apparent scale shift for the 4.19 case. This is an exper-
imental phenomenon which is explained in Section 7. In Figure 4.2 the same
configuration is shown except for dielectric spheres with relative dielectric
constant 2.56 and size ka = 4.209. The mutual coupling for this case is
nearly negligible for d/a > 6. Eight more cases involving this same geometry
are shown in Figures 5.8 through 5.10 for comparison with the ray optical
approach. They will be discussed later.

4.2.2 Broadside Incidence — Large Separation Approximation

When the asymptotic form of the translational addition theorem given

in 2.7.3 is used, we obtain the results shown by the dot-dash curves in
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Figure 4.3 for ka = 1, 2, and 4.19. The exact modal solution is shown
for comparison. The criterion for the validity of the asymptotic solution
was d/a > 0(ka), but for ka = 2 and particularly 4.19 it is seen that this

restriction may be relaxed somewhat. The analogous approximation for the

*scalar problem is discussed in 6.1.1.

4.2.3 Endfire Incidence — Variable Separation

RCS calculations and experimental measurements are shown in Figures
4.4 through 4.6. 1In these cases both experimental and theoretical results
were normalized to the return from the front spheres. In Figure 4.4(a) and
(b) is shown the cases of identical metallic spheres for ka = 7.41 and
11.048 respectively, the former case being chosen to compare with the
experimental results of Angelakos and Kumagai (1964) as indicated by the
squares. These results seem to indicate very little coupling for d/a > 5.
Ih Figure 4.5(a) and (b) is plotted thé endfire RCS of two metallic spheres
of different size normalized with respect to the return from the larger
sphere. Here we see, as explained in terms of ray theory in the next
section, that the larger sphere can more easily shield or "hide" a smaller
sphere at close spacing than in the reverse situation. Eventually, however,
at values of kd > 45 the two curves will oscillate between the same two
upper and lower limits. A larger discrepency in these experimental results
than in the previous cases was anticipated since it is more difficult to
visually align two spheres of different size.

The RCS of two identical dielectric spheres1~ at endfire is shown in

Figure 4.6(a) for ka = 7.44., Here we see that the interaction between the

The relative dielectric constant used for these calculations was 2.56-
i0.0. 1Inclusion of the actual loss term of -i.0005 in the material used
in the experiment made negligible difference. At values of ka > 10,
however, this does become significant.
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spheres persists for larger kd than for the case of metallic spheres

nearly the same size (cf. Figure 4.4(a)); however, in the broadside case

for the same two dielectric spheres (Figure 4.2) the interaction was
negligible for a much smaller value of kd. Perhaps this is due to some
focusing action from the front sphere to the rear sphere. A focusing
effect is clearly evident in the adjacent curve, Figure 4,6(b), where we
have a metallic sphere behind a dielectric sphere, both about the same size.

The quite large return at and near contact might be interpreted as due to

rays focused by the front dielectric sphere, réflected by the metallic
sphere and refocused by the dielectric sphere back to the observer —
analogous possibly to placing a mirror behind a lens neér its focal point.
This same enhancement for this geometry and the same spheres was also
observed both experimentally and theoretically at two other frequencies.

4.2.4 Variable Angle of Incidence — Fixed Separation

In Figures 4.7 through 4.9 the aspect angle or.angle of incidence &
is the independent variable. Figures 4.7(a) and (b) show the RCS of the
previously discussed pair in contact, normalized to the dielectric sphere

vs. &, for the horizontal and vertical polarizations respectively. The

enhancement when the dielectric sphere is in front is again apparent.
When the metallic sphere is in front, the return is considerably smaller
than for an isolated metallic sphere of that size. The basic character
. is similar for the two polarizations. Note that the single sphere return
for the dielectric is considerably higher than for the metallic sphere.
In Figure 4.8(b) we have the same configuration as in 4.7(b) except for
lower frequency. In this case we obtain large enhancement of RCS at the

same place even though the RCS of an isolated dielectric sphere at this
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frequency is smaller than its metallic partner. 1In 4.8(a) is shown the
RCS of a metallic pair in contact for comparison. In all these curves the
agreement is nearly perfect with only very few exceptions. Two more

miscellaneous examples are shown in 4.9(a) and (b).

4.3 Bistatic Cross-Sections

The multipole coefficients for the two spheres, as is clear from
(2.21), depend on the angle of incidence of the plane wave and are completely
independent of the point of observation. The boint of observation enters
into the calculation only in equations (2.26) and (2.27). Hence, once ;he
coefficients AE(m,n), AH(m,n), BE(m,n), BH(m,n) are calculated it is
relatively easy to find the scattered field in any direction. Two such
examples are considered in Figure 4.10(a) and (b) where the normalized
and ¢

bistatic cross-sections @ corresponding to Ee and E, in the planes

6 ® ¢
¢ = 0 and /2 respectively have been computed for ka = 1 and 2. We see,

as expected, that these two cross-sections coincide in the two directions

of axial symmetry.

4.4 Depolarization Due to Multiple Scattering

As remarked previously, there is no depolarization of the back-
scattered field when the incident polarization is horizontal or vertical
(¥ = 0,M/2) regardless of sphere sizes, separation or angle of incidence
o (see (2.27)). This is certainly obvious in cases of symmetry, as for
example, @ = 0, and @ = /2 with identical spheres. The more general
cases are not so obvious. Beckmann (1968) defines a polarization factor
(call it P) as the quotient of the horizontal and vertical components of

the electric field under consideration. Hence a horizontally polarized
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incident field has the polarization factor of zero, and for vertical
polarization it is infinite. All complex values of P represent elliptical
polarization in general, with a right rotational sense if IH{P} > 0 and

a left rotational sense if Im{P} < 0. Circular polarization is characterized
by the values + i. If now, a scattered wave has the same polarization
ééctor, then the scatterer has not '"depolarized'" the incident wave. The
depolarization factor D is then defined as: D = Ps/Pi' Hence, D = + 1

when there is no depolarization. If we consider only the backscattered
field, then from symmetry we know that an isolated sphere cannot depolarize
an incident plane wave regardless of incident polarization. The same would
also apply to any two spheres if there were no coupling between them.
Therefore, in the absence of symmetry, the depolarization of the back-
scattered field indicates the degree of the coupling between the spheres.
Consider first the case of two identical spheres at broadside incidence. As
we said previously there will be no depolarization at ¥y = £M/2, where 4 is
any integer. Consider the intermediate cases where y = (24-1)T/4. Here

we see that since the two spheres scatter the two incident polarizations
differently, depolarization of the backscattered field is therefore expected.
The depolarization will be strong for close spacing and weak for large
separation. Figure 4.1l shows polarization ellipses of the broadside
backscattered field from two identical perfectly conducting spheres ka = 2,
illuminated by a plane wave with ¥ =T/4 (P = i). The number under each
ellipse is kd and the letters L and R indicate the sense of polarization.

At contact, (kd = 4) strong depolarization is evident. As the sphere
separation increases, the ellipse orientation oscillates about the

incident E vector direction; the ellipse itself contracts and expands,

undulating and chénging sense of polarization in the process, eventually
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converging to a 45° line corresponding to no depolarization. It is rather
fascinating to portray such a complex scattering process through the use
of depolarization.

The depolarization effects are perhaps even more vividly seen in
Figure 4.12 where the '"depolarization ellipses' are shown for the back~
scattered field of the same two spheres as they rotate in contact
@ =0- 870). Here, starting at endfire where there is no depolarization,
we see that the major axis of the ellipse swings from +45° to about 190o
and then back to approximately 90° with wide variations in the amplitude.
Several other cases of this type were investigated for different ka, with
the curious result that some cases exhibited a backscattered field at
particulaf angles with nearly perfect circular polarization,

As final examples, we compute the cross-polarized radar cross-section
normalized to ﬂa2 for the two examples considered above. The transmitted
field is polarized at y = 45° and we receive at 135°. Hence, in the
absence of coupling we would receive nothing at the orthogonal polarization
as with the isolated sphere. The results for the broadside case are shown
in Figure 4.13(a). The decrease in the cross-polarized RCS is quite rapid
as kd is increased. This is to be expected since the coupling is generally
related to the ratio d/a which changes more Fapidly for small spheres for
the same interval in kd. For large spheres, this behavior may be very
simply predicted by geometric optics.

The cross-polarized RCS for two equal spheres in contact as their

aspect angle changes is shown in 4.13(b). As we expect there is no

cross-polarized return for the aspect angles 0 and M. It was suggested
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by E. KnottT that two spheres in either of these configurations might

serve as a new means of calibration for cross-polarized RCS measurements.

4.5 Miscellaneous Results

The extinction or total scattering cross-section is a frequently
discussed quantity in single body scattering theory since it is so simply
related to the forward scattered field of the object (Jomes, 1964). In
the case of scattering by a single lossless sphere the normalized
extinction cross-section approaches the asymptotic value of 2 as ka — «,

or the cross-section is twice its geometric area. As explained by -

and the other half from the shadow boundary of the sphere. The latter
part is necessary to recover the incident field at a large distance from
the sphere in the forward direction which was removed by the shadow created
by the area ﬂaz

We would expect that in the absence of multiple scattering, the total
scattering by two bodies would be the sum of the total scattering by each,
regardless of orientation. With multiple scattering it is no surprise that
the total cross-section varies with changes in the parameters. As
separation is increased, the total cross-section oscillates about and
eventually converges to the value which is the sum of the total cross-
sections of the two isolated spheres. No such general statements can be

made concerning other parameter changes.

Private communication (December, 1968).

Van de Hulst (1957), half of this comes from scattering by an area ﬂaz I
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The rather interesting phenomena of resonance scattering by isolated
dielectric spheres also deserves some attention in relation to multiple
scattering. When /E: >> 1, one finds very strong peaks in the scattering
(Kattawar and Plass, 1967). The first peak occurs quite reliably at

" ka = ﬂ(l-Er_z)//g: (Jones, 1964) and is due to the very small value in

the denominator of the first magnetic multipole coefficient ul(ka) (dipole).
Hence, if ka << 1 then the scattering may also be called Rayleigh scattering
and we need take no more than the first term in the Mie series for a single
sphere. 1If we consider the case of Rayleigh séattering by two spheres, one
or both of resonant size, we may use (2.32) and (2.33) to solve explicitly
for the multipole coeff%cients. Clearly if one of the spheres is of
resonant size and the two spheres are spaced such that there is little or

no coupling, then the resonant phenomena is undisturbed. If however the

spheres are in close proximity the resonant phenomena can be drastically
altered. This can be understood in terms of the matrix representation of
(2.21) which reads nY = :}-+C?%7. In the case of one or two spheres at
resonance C? will be large, implying that)7z is not given by a small
perturbation from t:}. This also indicates that (2.21) cannot be solved
by iteration.

One such case of '"resonant multiple scattering' was investigated
numerically for two identical lossless dielectric spheres with /E; = 50.

The first resonance for the isolated sphere occurs at ka = ,0628068. The

normalized RCS of one of these spheres at this value of ka is 2280!
Multiple scattering by two spheres is usually small when the spheres are

3 ‘ separated by several diameters (dfa > 6); however, for this case, the




t interaction is considerable even for d/a = 530.
It would indeed be interesting to investigate this experimentally,

i even for a single resonant sphere,
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5. RAY OPTICAL APPROACH TO SCATTERING BY TWO SPHERES

It is quite evident from the previous work that the multipole
expansion technique ceases to become useful when the spheres become very
large in terms of wavelengths due to the slowness in convergence of the
series and the large number of the coefficients a(m,n-m,Vv,p) which must
be calculated. It is generally believed that the series solution for the.
single sphere cannot be efficiently used when the sphere radius exceeds
several wavelengths; however, extensive calculations have been carried
out using the Mie series for ka as large as 3000 (Fahlen and Bryant,
1968). The computation of the scattering by two spheres of this size,
however, is out of the question since this would require in general about
1.4 x 1013 of the coefficients a(+). We need not cite quite so dramatic
an example to make the point that eventually the series representation
loses its usefulness, and that an alternative solution is needed for the
case of scattering by two electrically large spheres. Such an alternative
solution for the single sphere was initially provided by White (1922);
he transformed the slowly converging series into a residue series by a
modified Watson transformation which enabled him to separate and identify
the reflected and diffracted components of the field. Later, Franz and
Depperman (1952), independently,T recognized that the diffracted part

could be interpreted as 'creeping waves," i.e., waves that creep around

the sphere (or cylinder). 1In view of the fact that, for the two sphere

TLogan (1962, 1965) has given an excellent historical account of this
and other aspects of single sphere problem.
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problem, we do not have an explicit series solution (due to the coupling
of the coefficients in (6.21)), it does not appear possible to apply an
3 analogous '"Watson transformation" to the ensemble of two spheres. The

1 alternative would then seem to be the application of the creeping wave

"theory developed for the single sphere and classical geometric optics.

There are very few scattering problems which possess exact solutions

with which we can gauge the effectiveness and applicability of various

approximate or asymptotic methods. Since we have an exact solution to

the two sphere problem; including numerical results, we are in a good
position to comment on several approximate methods for it§ solution — in
particular, the following creeping wave theory and geometric optics, and
the method discussed previously in 2.8.3. Application of the former
method can be analyzed critically with regard to the two sphere problem
and from this we may also form some coﬁclusions regarding its applicability
to other problems. There has apparently been no preQious attempt to apply

the creeping wave theory to a multiple scattering problem.

5.1 Creeping Wave Theory and Geometric Optics

Levy and Keller (1959) have elegantly extended Franz's (1954) creeping
wave theory for the sphere to diffraction by an arbitrary smooth convex

body. The canonical problems of acoustic diffraction by soft and hard

cylinders provide the appropriate diffraction coefficients and decay
{ exponents associated with the waves (or rays) that creep around the
diffracting body. The ray paths associated with the creeping waves obey

l Fermat's principle, and hence, creep along geodesics of the surface. The

diffraction and attenuation coefficients associated with the impact and
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launch points are dependent on the nature of the surface at these points;
and the exponential decay associated with the creeping waves is due to

the continuous shedding of rays along the geodesic. The case of electro-
magnetic scattering by a general body is treated by appropriately combinipg
" the results for the two scalar problems (acoustically hard and soft).

The above method has been shown to be asymptotically valid when the
radius of curvature of the body is sufficiently large in terms of wave-
lengths. When applied to the vector problem of the sphere it is found
that the results are inaccurate for moderate ké. This does not mean,
however, that the creeping wave concept breaks down, only that the
diffraction coefficients and attenuation factors for the acoustically hard
and soft cylinders (or spheres) do not accurately describe the situation
for electromagnetic scattering by a sphere for moderately small ka. If
instead, we use the vector problem of Ehe sphere as the canonical problem,
the results are considerably improved. Senior and Goodrich (1964) ex-
pressed the single sphere scattered field in a form which makes identifi-
cation of the appropriate diffraction coefficients an easy matter.

With the above, the scattered field from two perfectly conducting
spheres can be considered to be composed of essentially three types of
rays (Bruning and Lo, 1967, 1968): 1) geometric optics rays, i.e., those
arising from direct and multiple reflections; 2) creeping wave rays bound
to a single body, and 3) '"hybrid creeping wave" rays. The rays falling
into the last category are those which may involve any combination of the
first two types. For purposes of further classification, rays of the
first type which undergo j reflections are denoted by Rj; those rays of

the second type which creep over a distance equal to or less than
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halfway around the body are denoted by C_; C+ describes the case of a
larger distance. Finally the third case may be represented by any
combination of the above symbols with its obvious implication. For
example, a ray which creeps part way around one sphere, most of the way

“around the other, and reflects 5 times between the two before reaching the
observer is given the symbol C_C+R5. A particular geometry of two spheres
could support any number of configurations of rays, however, generally
only a few will be significant.

All these rays obey Fermat's principle and, as a result, the
amplitude of the field along a ray can be deduced from the conservation ;f
energy, properly extendgd to the case of a creeping wave.

Field calculations employing the geometric optics approximation are
carried out using Snell's Law and the conservation of energy by cal-
culating the change in cross-section of the tube of rays (pencil) upon
each reflection from the surface of the spheres. This cross-sectional
change can be calculated by following the principal radii of curvature of
the wavefront through each reflection.

Consider an incident wave with radii of curvature p1 and Py in the
principal planes which is incident upon an arbitrary smooth perfectly
conducting surface ¥ at an angle 6 with the normal to the surface having
principal curvatures ¢ and Cy- The reflected wave after impact at point

A, in the plane of the incident wave, will then have the principal

curvatures (Born and Wolf, 1964):

1 1
6% = BI + 2c1 cos6
(5.1
1 1
— = — + 2c¢, sech
Pf Py 2
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where for the sphere Cp = ¢y = 1/a, a being the radius of the sphere
(see Figure 5.1). Thus, if E(A) is the value of the incident field at A,

then the reflected field at some point P, a distance s from A, is given

by:

%* A% 1 2
P1P; ] 2 ks

E(P) = - E(A) [(QT+S)(DE+S) e (5.2)

The bracketed term is designated the divergence factor &A. If more than
one reflection is involved, the above procedure is repeated; the field at
some point P after N reflection will then assume the form:

N iks

E(P) = (-1)VE(A) T b e
g r=1 r

N (5.3)
where Ar is the divergence factor associated with the rth reflection and
SrN is the ray length between the reflection points r and (r+l1l). The
(-1)N factor is consistent with the vertical polarization assumed in
Figure 5.1; for horizontal polarization, the (-1)N factor is replaced by

-1. 1In general, the orientation of the reflected E field for each

reflection is determined by the well known result of geometric optics:

E =E, -2ax (E. X n).
Y 1 1

If the point P does not lie in the plane formed by the incident wave
and the normal to the surface or if refractions are also involved, the
more systematic matrix formulation of Deschamps (1967) is preferred in
which the "state" of the pencil of rays is described by a curvature
matrix. Each operation on the pencil (reflection, refraction, rotation,

propagation) is described by a matrix; the resultant state of the pencil
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m
x>

P|,Pz >0 for Divergent Beam

C,,C,>0 for Convex Body

P

Figure 5.1 Reflection of an Astigmatic Pencil of Rays
from a Curved Surface.
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is obtained by multiplying together the appropriate matrices.

It is necessary next to describe the basic geometry and constituents
of the creeping wave theory as it applies to the sphere. With regard to
Figure 5.2, consider a source located at Q a distance R from the impact

“points Q1 and Q2. Consider next an observation point P in the geometrical
shadow of Q. The field at P is due to rays which take the geodesic paths
QQ1P1P and QQZPZP in addition to those which encircle the sphere any
number of additional times before leaving the sphere at Pl and PZ’
respectively. We may, however, neglect those réys which make the
additional circuits since the attenuation of these rays is exponential
along the surface. From Levy and Keller (1959) we find the field at P due
to the ray QQlPlP to be:

o @
5 ® < 3@ | Fry

1/2
A 2
s(p1+s) Do

ik (aT,+R+s) -a aT
X e L e o1 (5.3)
1/2 , . ,
The factor [dU(Ql)/dJ(Pl)] is the ratio of the strip width of the

surface diffracted rays at Q1 and P

/2

1 which for the sphere reduces to the

ratio (ao/al)1 , and Py is the secondary radius of curvature of the

emerging ray P

1

P which is obtained by extending a line along PIP until

intersection with the caustic line Q0. With the above (5.3) becomes:

e e (5.4

aR ] 1/2 D2 1k(a¢1+R+s) -a.aT

EI(P) B E(Ql) [prs|sin6‘

(e}
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L Figure 5.2 Geometry of Creeping Waves on a Sphere j
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The companion ray QQZPZP is found from above by replacing Ty by Tys OF

by replacing 6 by 2T-8 in (5.3), and multiplying the result by
I

e-l 5. The -1/2 phase shift results from the fact that the ray P2P
passes through the caustic line at C (see Figure 5.2) which means that .
Py has changed sign resulting in an additional factor + /=1 in (5.3);

the minus sign being chosen because of the e-ith time convention. The
factors Dg and ao are respectively the diffraction coefficients and
attentuation factor of the creeping waves. We present the formsT for

these two quantities, appropriate for the vector problem of the sphere,

given by Senior and Goodrich (1964):

1/2 | e
p’ = <f7——> QM2 By (I35 (5.5)
o T \Zk —— 1
9,8 (q,)
o, = a7l BG (1L 3R L T3 5.6)

With the omission of the terms in parentheses this agrees with Levy and

/3

Keller. 1In the above, § (ka/6)1 and A(x) is the Airy integral

A(x) f COS(yz-xy)dy
o

with Eo being the first zero of g; A(x) = 0, and is approximately given

by q_ &~ 1.46935. The remaining constants are:
o

The higher order term in parentheses in the general case is a function
of © which becomes unbounded in the backscatter direction; the diffraction
coefficient shown here is applicable for the backscatter direction. For

. large ka we have approximately, ng/al/z‘ ~ (ka)-1/6,
‘ Re{aoa'r} R~ .71-(ka)1/3.
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AZ(EO) ~ 1.36142

-2 -
X, = 3/20q; + 8q_/45 ~ .330695
S,
X, = 3/20q7 - q_/180 ~ .061313
xa = (32/9 - 7/35. + 63/497)/1400 ~ 004352
3 o o o ) ’

The diffraction coefficient and decay exponent (5.5) and (5.6) apply to
the case of the electric vector propagating normal to the surface. The
complimentary case of the electric vector tangential to the surface will
not be discussed since it contributes negligibly.in comparison to the
former case.

From (5.4) it is apparent that the directions 8 = 0 and T are ex-
ceptional directions since (5.4) predicts an infinite value. These two
directions place the observation point on the caustic line which results
from the fact that in these directions there are infinitely many geodesics.
Equations (5.3) and (5.4) are also not applicable in cases where the
observation point lies on the shadow boundary since at these places the
residue series does not converge in the first place. Furthermore, we

/3 (Franz, 1954).

should consider only those points at a distance kr > (ka)1
When the observation point lies in the far field thé above two restrictions
may be summarized by the inequality 0 < |6-a| - € < T with € > 0(1/ka)
(Senior and Goodrich, 1964). The case of backscattering (8 =T-qa),
however, may still be included using the previous formulation if the

1/2
axial caustic correction factor 01ka‘sin9|) / is supplied (Levy and

Keller, 1959) along with an electromagnetic backscattering theorem which

introduces an additional factor of -1/2 (Levy and Keller, 1960). The
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caustic correction factor may not be used in the forward scatter
direction as the residue series diverges there and the creeping wave
interpretation of the solution loses its meaning.

As an illustration of the above analysis, the backscattered electrig
“field is calculated in the far field region for an incident plane wave

with the result

Eh = - %r_ eik(r-Za)[l - i/2ka - Dga'l/z(ana)l/z
. . -0 am -
y olka(m+2)+im/4 "o ]. (5.7)

The first two terms arise from the saddle point integration of the
remainder of the transférmed series solution after the residue series has
been split off (White, 1922); only the first term carries the geometric
optics label. The third term comprises the creeping waves which creep
around the backside of the sphere. TIf the radar cross-section (RCS)

g = lim 4ﬁr2|En|2, normalized to the area ﬂaz is computed from (5.7)
r o

the results are found to differ from the exact solution by no more than
1% for a/\ as small as 0.3 and 3% for a/\ as small as 0.1.Jr

With these results for the single sphere it is quite tempting to
conclude that the creeping wave theory applied to two spheres should give
equally good results. As will be demonstrated shortly, application of the

creeping wave theory to two spheres is critically dependent on geometry.

It is interesting to note that the inclusion of the most significant
creeping wave for the electric vector tangential to the surface gives
consistently worse results than without it.
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5.2 Application to Special Cases

" @, and the scattering angle is 8. Using the geometric optics approach

Let us consider the case depicted in Figure 5.3 where we have two
perfectly conducting spheres of different size (presumably large in terms

of wavelengths). As in the previous approach the angle of incidence is

outlined in (5.1) to (5.3) we may calculate the reflected field at P

which has undergone one, two or more multiple reflections. Let us

introduce several notations which will be of help when a large number of
rays are traced through many reflections. Let Rj be the set of rays, each
member of which undergoes exactly j reflections before reaching the obsé;ver.
A member of R2 is shown“in Figure 5.3, which consists of the sub-rays

S

In general, a member of Rj comprises S _.-S -...-Sjj where

0275127522" 05 51

Sij is used to denote the length of the ray between reflection points i
and (i+1). The angle between ray Sij and the norma¥ at the ith reflection
point is denoted by “ij'

1f Ei is an incident plane wave, then from (5.1) through (5.3), for

an observation point in the far field, we have for one reflection:

ik (R+r-2a cosT,,)
o= -2 o 11 (5.8)
where

r = S11 + a sinﬂll, nll = (M-8-a)/2 I

and R is the distance from the source to origin 0. I
For two reflections, the situation is somewhat more difficult since

we must first determine the unknowns “12’ n22, and 512’ This means we

must have the solution to the three simultaneous equations:
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Figure 5.3 Geometry for a Ray that Undergoes Two Reflections.
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1]
[a

a cosdx-ﬂlz) + b cos(a-ﬂzz) + S12 cosGJ-Zﬂlz)

|
(e

a sin(a—ﬂlz) - b sin(e-ﬂzz) + S12 sin(a-Zﬂlz) = (5.9)

ﬂ12 + “22 + (B+)/2 =1,

This is not a trivial task since trancendental functions are involved.
Numerically this can be handled with one of the gradient methods or a

multidimensional form of the Newton-Raphson method (Todd, 1962)., Once
these parameters are determined, the divergence factors Ai may be cal-
culated. The analogous result to (5.8) for two reflections using (5.1)

through (5.8) is:

ab { cosTly, costy, } 1z
(Llcos'ﬂ22 + chosnlz)(11+12)

ik[R-a cos'ﬂ12 + S

+ r-b cosl,,-d cos®)]
X e

12

(5.10)

where r = 822 + b cos'ﬂ22 + d cos® and the far field assumption, S,, >> d,

22

has been made. 1In addition, the following identifications apply to the

above:

>
il

-
H

1 a+ Slzcosﬂ12 1 812 + a cos'ﬂ12

=
il

) = b+ S1,¢08M,, 12 =5, t b cosl,, -

We could carry out the same type of analysis for a field that has under-
gone j reflections before reaching the observer, but the analysis becomes
rapidly more complicated since there will be in general 2j-1 unknowns

involved in the form of simultaneous transcendental equations. The

situation becomes much more meaningful if we confine our attention to a
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few simple cases. Consider first the case of a pair of identical
perfectly conducting spheres of radius a illuminated by a plane wave
perpendicular to their common axis, i.e., broadside incidence. Further-
more, we will be interested only in the backscattered field. Some of the
rays appropriate for this geometry are shown in Figure 5.4. There are
many other possibilities in addition to these, for instance, using the

1 R1C_
by reciprocity), C C_, C+R1, C_Rz, etc., the latter few

previously defined notation we may also have rays of the type C R
(the same as C_R1
can generally be excluded due to the large atfenuation associated with the
creeping waves combined with the divergence factors introduced by the
reflections. It is difficult if not impossible to state in general which
rays (particularly the hybrid rays) will be the most significant since the
modulus of each depends on the incident polarization, the size of the
spheres in wavelengths, and the separation of the spheres, which in turn
determine the diffraction and attenuation coefficients and the divergence
factors. Furthermore, this question must be reconsidered every time the
angle of incidence is changed. For symmetrical configurations, however,
computations are, for the most part, elementary and little effort is re-

quired to include many rays, if necessary. With these simplifications

for the broadside case (b = a, @ =8 =1/2), (5.8) becomes

_ _a _ik(Rtr-2a) _
E1 =-3ce = R1 (5.11)
For two reflections, (5.9) can be solved directly giving “12 = “22 =T/4
with 812 = d-a/2. Using this in (5.10) yields the very simple result:
2 ,
E, - T Z . (1_a/ﬁd)-1/2e1k(a+r+d-2a/‘2’) (5.12)
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Figure 5.4 Some Possible Broadside Backscattered Rays.
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Extracting the singly reflected field (5.11), equation (5.12) becomes:

R eika(p+2-2/§)

20 V1-14/2

where w is the ratio d/a and the upper and lower signs refer respectively

E, =+ (5.13)

2

to horizontal and vertical polarization (y = 0,7/2). The result (5.12)
was also obtained by Bonkowski et al. (1953) using a rather lengthy tensor
formulation.

The calculation of the triply reflected rays shown in Figure 5.4 is
quite straightforward due to the symmetry. Using the previously defined

notation, we find that:

Mgy =0

, -1
My3 = M3y = sin T+ Vep'+1 )/4u] (5.14)
813 = 823 = a csc20(u-sinB-sin20) = ad.

It is worth noting that had we considered a, 8, a, and b as arbitrary, we
would be confronted with the problem of solving five simultaneous equations
(4 transcendental, 1 linear) not knowing a priori that a solution even
exists; i.e., clearly no triply reflected ray can exist when o = O,
regardless of the values of a, b, and 9.

Upon insertion of (5.14) into equations (5.1) through (5.3), and
(5.11), we obtain the following expression for the field due to three

reflections:

E, = Rlcosﬂ[(cosﬂ+25)(l+25cosﬂ)(cosﬂ+25+2)(1+26005ﬂ+2cosﬂ)]-1/2

3

eiZka(l-cosﬂ+6)

X (5.15)
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where for brevity we have written T for ﬂ13 and ﬂ33.

The analogous expressions for the fields which have undergone four,

five, and six reflections have also been derived, but will not be written

I’ down since the expressions become quite lengthy and the recipe for ob-

taining them has already been given.
[‘ The hybrid creeping waves likely to be most influential for the present

broadside configuration are those of the type C_R1 and R1C_. The hybrid

ray C R, is shown in Figure 5.5, from which we may ascertain the following

1

Ty, = sin” C(L+ TFBR (T /4u]

Combining this with the previous results of the creeping wave theory
and geometric optics gives us the following expression for the far field

due to the hybrid wave C_Rl

E(C_Rl) = - Rl(-i)Di[Z/p(a cosﬂ11+23)]1/2

ik(s-a cosT), +2a (1+n11)] -2 T
e

X e (5.16)

It may be verified by direct calculation that the above result is

identical to that obtained from the hybrid ray R C_ — as we should expect

1
close, or touch, since in this case the reflected ray at P (Figure 5.5)

t from reciprocity. This ray cannot be computed when the spheres are very
L, nearly grazes the surface; and at contact, the ray interpretation, for

this hybrid ray, breaks down and (5.16) becomes unbounded. There are
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Figure 5.5 Geometry of the Hybrid Ray C_Rl.
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four such rays (2C_R1 + 2R C_) which contribute to the total back-
scattered field, however their effect is negligible for all but the smallest
pair of spheres for the horizontal polarization and completely negligible

for vertical polarization since the associated attenuation of the creeping

~ wave is much higher. For this reason we may exclude all hybrid rays for

this geometry.

We now confine our attention only to those rays C and R, through R

1

and present some numerical results. We would expect those rays which

6

reflect more times before reaching the observer to contribute less. 1In

Figure 5.6 the modulus of the multiply reflected rays R, through R

2 6

(normalized to R, as in (5.13) and (5.15)) is shown vs. the parameter

1
b = d/a. This illustrates several important points. When the ratio d/a

is large (not necessarily the éphere spacing d), each higher order reflected
ray is about an order of magnitude smaller than the previous one; however,
at contact (d/a = 2) even six multiple reflections may not be sufficient.
Moreover, the higher order rays decrease in magnitude at a very much more
rapid rate with separation. This is illustrated perhaps more vividly in
Figure 5.7 where we see adjacent to each curve, plotted for particular
values of the ratio d/a, the corresponding photographically recorded
intensity distribution of the reflected rays of two polished silvered
spheres illuminated by a point source of 1ight. The two bright spots,
common to all the diagrams, denote the specular returns R, from the front

1

surface of each sphere. The remaining spots R (when they can

2 R3! LIRS |

be seen) are identified by counting inward from the two R, spots. The

1

first spot picture (for d/a = 2) was obtained by illuminating the pair of
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spheres shown in the photo immediately above by a point source of ordinary
light situated as close as possible to the axis of the camera and recording
the reflected intensity on film when the studio lights were extinguished.
The remaining diagrams were obtained under the same circumstances with

" increased center separation (measurable as the distance between the two
bright spots). Due to the finite exposure time, only those spots of,
intensity greater than -30 db with respect to the specular returns Rl can
be seen. The rapid disappearance of the higher order rays with separation
is quite evident (cf. Figure 5.6).

Using only the rays R,, C_ (5.7) and R, through R6, we compute the

1’ 2

normalized radar cross-;ections of pairs of identical metallic spheres for
the two principal polarizations for ka = 2, 4.19, 6.246, and 10.0. This size
range was chosen so that the results could be compared with the exact
approach (modal expansion technique) for the purpose of determining where
solutions obtained by the two approaches "overlap.". These results are
presented in Figures 5.8 and 5.9. Throughout this thesis, the results ob-
tained from the modal theory will be shown by solid curves and those from
the ray theory by dashed curves unless otherwise stated. With the exception
of the case of horizontal polarization at ka = 2 (Figure 5.8a), the results
are surprisingly good. By using no hybrid rays for this geometry, we would
expect the results for vertical polarization to be slightly better than
those for the companion case of horizontal polarization, since attenuation
associated with hybrid waves for the former case is much higher. Figures
5.8 and 5.9 seem to demonstrate this. It is interesting, however, to make

note of the fact that including the hybrid rays C_R, and C C_ (and even

1

C_R2, Q+R1, C_R,C, R1C+R1,...) does not improve the results for any of

2
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these cases. From these figures we also see that as d/a becomes large
(and hence the coupling small) the normalized cross-section settles down
to A(Oafﬂaz) as expected.

A further example is given in Figure 5.10 which iavolves the radar
- cross-section of a pair of spheres in contact as they both grow in size
for vertical polarization. Again, the same set of rays is considered as
was used for computation in the previous example. The creeping wave
influence for this example is apparent for ka < 10 and can be identified
with the local maxima in this range since we know the creeping wave C_to
add in phase with R1 (for the single sphere) at ka = 2om/(247) with a
period in ka of roughly 27/ (2#+7). Beyond this point the radar cross-
section seems almost coﬁpletely dominated by the geometric optics components
alone. We draw this conclusion on the basis of the good agreement of the
results using ray theory with those of'the rigorous modal expansion
technique shown together in Figure 5.10. The normalized RCS of the pair
will not, however, settle down to some constant value for large ka as it
does for the single sphere. This is because d/a is constant and hence the
normalized return is made up of components constant in magnitude, but whose
relative phases change with ka. It should also be mentioned that this
ray-optical result obtained for sets of reflected rays inclusive to R6
is closer to the true solution than other sets of rays which involve fewer
reflections. This is what we would expect intuitively. This is not

necessarily true, however, as we saw in the previous examples when higher

order hybrid rays were included. Asymptotic expansions in general are

subject to both types of behavior when more terms are taken.
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Another case study involves the scattering by two spheres when the
incident vector is colinear with the common axis of the two spheres, i.e.,
endfire incidence. This is a rather interesting case since sphere B lies

in the geometric shadow of A (b < a), hence the only purely geometric optics

" return is the specular reflection from sphere A. If b = a we have the

creeping waves C_ on sphere A in addition to hybrid rays which graze the
shadow boundary of sphere A, creep around B, and again graze A. These
grazing rays do not reflect off of A, nor do they actually creep over A,
since a zero creeping path length is involved. Let us assign this ray
the symbol G, even though we may not be able to compute its true value.

The rays to consider for this geometry when b = a are then: Rl’ C_, GC_G,

N N

those shown in Figure 5.11: C R.C , C_R1C_, C-R3C_, C_R3C , and possibly
others such as C_R2C+G, C_C+C_, etc. R? means that of'j multiple re-

flections, one is a normal reflection. For backscattered rays this

implies S , =S.,., §,, = S, s e esS, .=
P 0j 33’ T1j 31,3777 3-1/2, 3

several drawbacks of the ray approach for this configuration. Geometric

Sj+1/2,j' There are
optics dictates that the shadowed sphere will never see the incident
field which we know it should eventually at very large spacing — i.e.,
for large d/a, the backscattered field of two identical spheres should
approach the single sphere value times the array factor 1 + eZikd. This
indicates that we will have to be content with the case of two rather
closely spaced spheres for this geometry. Furthermore, the larger the
separation, the closer the hybrid rays are to the shadow boundary where

the representation breaks down. Finally, precisely at contact, we must

exclude the rays C_ on A, C_RIC_ and C_R3C_ since their passage through

the caustic line is blocked by B. The ray GC G still presents a problem.
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When b < a this becomes the ray C C C , and C_ on B when b > a. To get
some sort of a crude estimate of the importance of GC_G, we consider the
former case (b < a) and let b approach a. When we do this, we obtain

for the backscattered field GC G:

D4

E(GC G) = 59 E(c_)e21kd

(5.17)

The effect of a glancing ray can then be estimated as

1/2 ~ eikd/pl/z 1/6

/d (ka)

Dcz)elkd for large ka. Hence at contact and

ka =~ 10, (5.17) implies that the modulus of EGC G

is at most 20% of EC H
hence, a small error in GC G will not have a large overall effect. )

We expect the largest contributions, next to Rl’ to be of the type
C_R?C_ and C_Rlc_ at close spacing. The field due to these hybrid rays
is calculated in a manner similar to the others with the results for

arbitrary a and b:
B(c_Rc) = R @/a)[Mmka/ -1 Vo112

-1
X e2ika[1-k+v pz-l + csc-lp]—iﬂ/Qe-zaoa esc B (5.18)

E(C_R,C) = R (-1) (@2/a)mka/  (u-n 217"

-1
o 2kal e V-0l + ese ™ en]-im/a "M o5 (M)

(5.19)

where A = b/a and u = d/a.

= 2

If b and/or d is considerably larger than a, then the ray C_R,C_ will
lie very close to the shadow boundary of sphere A and we would not expect

to obtain very good results. The size of sphere A in wavelengths

determines how close we may approach the shadow boundary and still use
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the results of the creeping wave theory of the single sphere; the sharp-
ness of the shadow boundary and darkness of the shadow region are related
to ka.

Figure 5.12 sho@s the normalized RCS of two identical metallic
- spheres for ka = 7.41, 11.048, and 20.0. These computations were made

N

using the rays R ¢, GC_G, C_R1C_, and C_R,C_, computed from equations

1° 1
(5.7) and (5.17) through (5.19), respectively. The exact solution (multi-
pole expansion) is shown for comparison. 1In the absence of coupling, the

. . . . ' 2
normalized radar cross-section will oscillate between Q0 and AGa/ﬂa , the

latter being indicated by the dashed line on the ordinate of each curvei
The agreement does get better (for small to moderate d/a) with increasing
ka as we expect and is best for ka = 20. The results even at close
spacing, for ka = 7.41, however, are not very satisfactory. The fact that
the position of the peaks and nulls cén be predicted with reasonable
accuracy seems to indicate that perhaps we have madé a judicious choice
for the sets of rays. The amplitude discrepency, however, can be
attributed, at least in part, to the inaccuracy in the canonical creeping
wave problem near a shadow boundary. This conjecture was tested with the
following additional examples. Endfire radar cross-section was computed

for the case ka = 7.41, kb = 11.048 and the case ka = 11.048, kb = 7.41.

The dominant contribution (next to Rl) for close spacing in both cases is

N

the ray C_R1

C_. The results for the former case were worse than the case
when both spheres were of size 7.41; and the results of the latter example
were better than the case when both spheres were of size 11.048. 1In the
first case the ray C_R?C_ was closer to the shadow boundary, whereas in

the second case it was further from the shadow boundary. 1In the previous
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numerical examples for endfire incidence, computations were not carried to
the point where the two spheres touched (but very close) since at that

point rays C_on A and C_R,C_ are blocked and (5.19) becomes unbounded.

1

At very slight separation, the contribution made by (5.19) is small due to
the long creeping path. Since the case of contact supports different sets
of rays, we must treat it separately as shown below,

Let us consider computing the normalized RCS of two spheres in contact

and C RNC . Now the creeping

at endfire incidence using only the rays R _RyC

1

wave influence on the backscattering from a single sphere is nearly absent

at values of ka greater than about 10-15 since the creeping waves creep

over a path length of half the circumference of the sphere. Placing an

identical sphere directly behind another drastically alters that situation

N

since the hybrid wave C_R1

C overwhelms any single sphere creeping wave C
because its associated creeping path length is only a total of one sixth

of the circumference of the first sphere — implying that the oscillations

about Rl will persist for a much larger value of ka than for the single

sphere. 1In Figure 5.13(a) the normalized RCS of a pair of identical spheres
in contact is shown computed using the exact modal approach as ka covers
the range O to 24. It is clearly seen that there is considerable

oscillation about R, even for ka as large as 24. It becomes somewhat

1
costly to carry out computations much beyond this value using the modal
approach. For larger ka, the ray approach should be used, with the results
shown in Figure 5.13(b), plotted on a logarithmic scale in ka to ka = 150.

If we compare these two curves, we find excellent agreement in the location

of the peaks and nulls after ka = 10 and also in the amplitude after
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ka ~ 16. The period of oscillation can be very simply determined.

Assuming that these oscillations are caused only by the interference of
N

1 and C_R1

simply T/ (/6 + /3) ~ 1.39, with peaks at ka = nP and nulls at (2n-1)P/2

R C , the period P, in ka, of the oscillation can be shown to be
. . . t
where n is a positive integer. In the general case where a and b are of

different size, the period in ka is given by:

P = ﬂ/[csc'1(1+k) + 1-M0 V1 + 2/)] (5.20)

where \ = Db/a.

It is interesting to note from the above discussion and Figure 5.13
that eventually the front sphere can "hide'" the back sphere — this is what
geometric optics told‘ﬁs from the very beginning. 1In fact, the front sphere
may even “hide' a sphere that is larger than itself. Since the attenuation

N 7 -20,,a cse~1(1+))
of the hybrid rays C_R1C_ is proportional to e , ka must be
larger in order to hide a bigger sphere (b > a) than to hide a smaller one
(b < a).

In view of the above results, it is perhaps of interest to draw some
conclusion at this point. The fact that the value of ka for which the ray
optics solution agrees closely with that of the modal solution is relatively

small for the case of broadside incidence and considerably large in the

case of endfire incidence indicates that caution must be exercised in using

This may be compared with the period of oscillations in the radar
cross-section curve for a single sphere (caused by the interference of R
and C ) which is 2T/ (M+2) =~ 1.23. This is also evident for ka < 10
in Figure 5.10.

1
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the ray optical approach. It would not be feasible, for example, to use
this method to calculate the radar cross-section of two spheres as the
incident angle (@) varies since this would require the separate con-
sideration of different sets of rays for each angle. This kind of study
would require a canonical problem which describes the smooth transition of
a creeping wave ray into a reflected ray as a shadow boundary is crossed.
Such a continuous ray description is presently not available even for the
sphere. The ray optical method is desirable? however, in the sense that
it gives us physical insight into the scattering mechanism. Tt can predict
gross behavior in most cases and‘in some cases yields very good results.

The possible extension of this ray optical method to the case of two
dielectric or one dielectric and one metallic sphere is certainly of
interest.T Very recently, Nussenzveig (1969) in a long series of papers,
considered the residue series for a single dielectric sphere and was able
to interpret from the series the very complex ray geometrics when the
sphere is large and lossless. His analysis is restricted to cases where
the inequalities:

/3

(ka)1 >> 1

(5.21)
N-1 (ka)l/3>> 1
hold with the exclusion of the cases where N >> 1. There is a large

variety of rays involved in this description of scattering by a single

f— pr——— ———

The extension to scalar scattering by two spheres with the surface
conditions u = 0 or du/dn = 0 (soft or hard) is trivial, Mention is
made of these cases in connection with a parallel between the scalar
and vector two sphere problem in Section 6.1.2.




103

dielectric sphere. There are those which undergo simple reflection and
refraction, creeping waves, multiple refractions, refractions to the
outside surface at the critical angle followed by creeping waves, and
critical refraction of creeping waves into the sphere, called '"shortcuts,"
of which the variety is infinite. The problems of extension to two spheres
are obvious, but the physical interpretation and insight suggested appear
to be most fascinating. For the case of two very large dielectric spheres
(ka > 100) this appears to be the only possible means for obtaining
numerical results. For smaller spheres the modal expansion technique will

give the exact results for spheres of any composition (even with loss and

parameters not in the ranges of (5.21)).
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6. TFURTHER APPLICATION OF THE GENERAL THEORY

6.1 Acoustic Scattering by Two Spheres

The geometry of>the problem of acoustic scattering by two spheres
is the same as given in Figure 2.1 except that the field quantity under
consideration is now the acoustic pressure, a scalar quantity.

Again for simplicity the incident field is assumed to be plane and
of unit strength with its propagation vector lying in the xz plane and
inclined at an angle @ with respect to the axis of the two spheres as in
Figure 2.1. The scalar spherical wave expansion of the incident field

¢i about origins 0 and 0' becomes, respectively:

(1)
Z mnumn

M

n=0 m=-n : 6.1
(=]
- v (D)
*i z i Pom"mn
n=0 m=-n
where
p = iM(2n+1) LB A coay) (6.2)
mn (ntm) ! "n ’
and
08D = 2 () ey PP (cose)e 1™ (2.5)
“mn
P&n differs from Pun by the multiplicative phase factor elkdcoﬂx.

As in the vector problem, in order to satisfy the boundary conditions
on the two spheres simultaneously, one must be able to expand the total
field alternately about the origins of spheres A and B. Such an addition

theorem for scalar waves is given by (A3) and (A7) where attention is

restricted to the case for r < d, d being the separation between sphere
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centers. Also as in the vector problem, the scattered field of each
sphere is formulated in a spherical wave expansion with unknown co-
efficients which are determined after the boundary conditions are applied.
Let the scattered field of each sphere in the presence of the other be:

A _ (3)
¢S - :E: 4nn"mn

nm (6.3)

B'_ 3y,
wS B :E: bmnumn ’

nm

then, the total field for r and r' exterior to both spheres in each

coordinate system is, using the addition theorem (A25) énd (A26):

Vp - Z o ol s oy Z ity (6.4)
nm V=m
e Do e p w® e S ™
nm V=m
X G:Sun(;)'] ' (6.5)

For r and tr' interior to the spheres, the fields will have the same
expressions as (6.4) and (6.5) except that the superscript (3) will be
replaced by (1) since pressure and velocity are finite at all interior
points. Furthermore, for the interior fields, the coefficients a and
bmn must be distinguished from those in the exterior field expansion.
The boundary conditions then require continuity of the pressure and
radial velocity at r = a and r' = b, This requires the matching of WT

and W% in (6.4) and (6.5) and their radial derivitives on the interfaces

of both spheres. Combining this with the orthogonality relation:
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n
m m , _ 2 (44m) !
[ Pi(cose)Py(cost)singdd = 5 o 8 (6.6)
o

results in the following coupled sets of simultaneous linear equations

in the unknown multipole coefficients for the exterior field:

[}
]

mn cn(a)[pmn + :E: azﬁbmv]
(6.7)

o
i}

v
o= e !+ z CRACNCIN
\Y; .

where cn(x) is the scattering coefficient for a single sphere of radius
x with the appropriate impedance boundary condition (Morse and Feshbach,
1953). For a penetratable or soft sphere, cn(x) = jn(kx)/hil)(kx) and
a rigid or hard sphere, ¢ (x) = o (3 (kx)]/é— [h(l)(kx)].
' Tn dx ““n X - n
Once the system (6.7) is solved for an and bmn’ the solution of the
exterior scattered field is complete by virtue of (6.3). Of particular

interest is the scattered field in the far zone. This is obtained when

the asymptotic expression of hél>(kr) for large kr is used giving for
\
u(3) and u(3) :
\ mn mn
ikr .
u(3) ~ i-n-1 E---———-Pm(cose)elmgs
{ mn kr n
(6.8)

t .
u(3) ~ elkdcoseu(B)
mo mn

Again making use of the symmetries in the associated Legendre functions,

the total scattered field from (6.3) may be rewritten as a sum over only

non-negative values of m giving:
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L n

ikr
A+B _ e z E ; ,=n ikdcos8, m
¢S ~ The i Em(amn+bmne )Pn(cose)cos md (6.9)
n= m:

Negative values of the index m may also be appropriately excluded from

all previous equations in this section.

As in the vector problem, several simplifications result upon
specialization of the geometry. When the incident plane wave is directed
along the axis of the two spheres (@ = 0) only the m = 0 term is present

since in this case (6.2) reduces to:

= i? ] :
Pon i (2n+*)6m’o (6.10)

As a result, the only translation coefficients in the scalar wave addition

theorem needed are those for m = 0:
ag\rj = iV M 2w+]) Z 'i-pa(O,n,O,\),p)hp(kd) 6.11)
P

where a(0,n,0,v,p) is given explicitly in simple form by (A33). The
series expansion of the field (6.9) in this case then involves only a
single summation.

The case of a pair of identical spheres illuminated by a plane wave
from the broadside direction (o = T/2) yields the following simple relation

between the multipole coefficients of the two spheres:

nHm
bmn = (-1) a0 (6.12)
When this is inserted into (6.7) we have the result:
[+
_ _pym v
a . = cn(a)[pmn + :E: (-1) amnamv] (6.13)
V=m
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Here the only unknowns to solve for are a which represents half the
work required in solving (6.7) which may be substantial for large
spheres.

6.1.1 Decoupling of Equations for Large Separation

Finally, as in the EM problem there is an asymptotic form of the
addition theorem valid for large separations of the spheres when the
condition g > 0O(ka) is satisfied. For the scalar addition theorem, as
shown in (A41l), the result is

ikd

mn _ .n-v-1 e
a =i (2v+1) d o]

.4
" ; > 0(ka). (6.14)

m,o

From (6.7) this implies that all the coupling of the fields is contained
only in the azimuthal mode m = 0. Using (6.10) and (6.14) in (6.7), the

system of equations (6.7) for the m = 0 mode becomes:

o
"

n n eikd > N
on = 1 (2n+1)cn(a)[Pn(cosa) + (-1 Thd :E: i bov]
=0 (6.15)
-]

n ikdcoso e]'kd -V
by, = 1 (2n+1)cn(b)[e P_(cosa) + T zg; i adv]
V=

The above system of equations can be solved explicitly by successive
substitution since it can be demonstrated that the series obtained are
geometric and hence can be summed in closed form.

First let us introduce the notation

eikr 2
Sa(?,e) = Tir :E: (2n+1)cn(a)Pn(cose), 7 (6.16)
n=0

which will be recognized as the scattered field in the far zone from an

isolated sphere. of radius a illuminated by a plane wave of unit strength.
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The observation point is located a distance r from the center of the
sphere and makes an angle M-8 with the incident wave vector k. With
this notation (6.15) can be recognized as series in powers of the quantity
Sa(d,ﬂ)sb(d,ﬂ). After summing these geometric series we arrive at the

result:

Y
"

on in(2n+1)cn(a)[Pn(co§1)

elkdcogsb (d ,TT'G-) + Sa (d ,a)sb (d ;n)

T - §_(d,M8, (d,M)

+ (-7

(6.17)

in(2n+1)cn(b)eikdcogl[Pn(coax)

o
]

on

e-ikdcosasa(d,a) + §5_(d,m)8, (d,7-a)

[ -8, (dms, (&M

provided |Sa(dﬁT)Sb(d,ﬂ)| < 1. It can also be verified that (6.17)
satisfies (6.12) for broadside incidence and identical spheres.
If we use these results in the expression for the scattered field

(6.9), the coupled and uncoupled portions of the solution may be separated:

ikd (cosa-cos®)

¥ ikr jg: (2n+1)P_(cos®)L (- e L(a) 8 e

n=0

X (0)4,] + S Z Zeanﬂ) e

X P:(cosx)Pg(cose)cos mg

ikd (cosa-cosB)

X [cn(a) + e

c (b)] (6.18)
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where

ikdcosq
e

J - Sb(dvn'c-) + Sa(d,q)sb(d9n)
B T-S,(&MSs, @M
(6.19)
-. g . e'ikd°°s°‘sa(d,a) +5_(d,Ms, (d,714)

A T -8,(d,Ms, (@M

The summation over m in (6.18) will be recognized as the addition

theorem for Legendre functions which reads (Stratton, 1941):

n

P_(cos§) = z € g“'"‘)g P’I‘I‘(cosa)P’:(co'se)cos g . (6.20)

m=C

~

The angle § is the space angle between the incident wave vector k and
the position vector of the observation point with coordinates (r,9,9).

Using this result in (6.18) gives:

At+

*s B _ Sa(r,g) + Sb(r,g)eikd(cosa-cose)

e)eikd(cosa-cose)

+ ,nga(r,n-e) + ,JAsb(r, (6.21)

i Equation (6.21) has some rather interesting implications which can best
! be explained by illustration. For convenience, consider the observation

point to lie in the plane ¢ = 0; then € = 0-00. Referring to Figure 6.1

1 and equation (6.21) we see that the first two terms are the scattered
fields from two isolated spheres individually illuminated by a unit plane

} wave — the incident and scattering vectors forming an angle 8-0 with

{ each other. The third term !fBSa(r,ﬂ-e) is the field scattered by

sphere A illuminated by a plane wave of strength ‘JB originating from

-
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}/ d=kd (cosa - cos 8)

1

Figure 6.1 Physical Interpretation of Multiple Scattering
at Large Separation.
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i - )
sphere B at O'.T Similarly the fourth term ngSb(r,e)elkd(cosa cos®)

is the fiéld scattered by sphere B due to source !fA' The phase factor
eikd(COSI-cose) is present since S is always written about 0. The
amp litudes “XA and ,XB are also easily interpreted. From (6.19), the
amplitude of *JB (at 0) is the sum of the field scattered by B in the
direction of O, eikdcoglsb(dﬂT41), and the field scattered by A toward
B and then backscattered by B, Sa(d,a)Sb(d,ﬂ). The factor
(1 - Sa(d,ﬂ)Sb(d,ﬂ)]-l contains the true multiple scattaing contribution
since it is the sum of the remaining infinity of contributions to *XB of
the form [Sa(d,ﬂ)sb(d,ﬂ)]n where n is an integer. Similar remarks
follow for the interpretation of “XA'

As a final result, consider the broadside backscattered field from a
pair of identical spheres. 1In this case, (6.21) yields the very simple

result:

$,(d,m/2)S_(x,n/2)
I -5 _(d,m

WS\+B = z[sa(r,rr) + (6.22)

Again it is emphasized that the only assumption made in the rigorous
solution to arrive at the results (6.21) and (6.22) (other than the
observation point being in the far zone) was the assumption g > 0(kx) in
the addition theorem, where x is the larger of a and b. This assumption

(1),
p

permits replacing the Hankel function h (kd) in the addition theorem by

TThe source %53 is, strictly speaking, a spherical wave, however, (for

b > a) the criterion for the above analysis will be recalled as
d

T > O(kb). This justifies considering ,?A and ‘SB as locally plane at

a distance of d.

_
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the first term in its asymptotic expansion to O(kd)-l. An analogous

result could also be obtained using the second term in the expansion of
h;l)(kd) (to O(kd)-z) in the addition theorem, the theorem in this case
being given by (A46).

The physical interpretation of the results of this approximation,
shown diagrammatically in Figure 6.1, has been proposed heuristically for
general multiple scattering type phenomena by many authors as long ago
as 1893 (see Twersky, 1960). A result analogous to equation (6.21) was
obtained by Twersky (1952) for the case of two (identical) cylinders by
an identical method — i.e., by using an asymptotic forﬁ of the additfbn
theorem (for cylindrigal waves) and summing all the "orders of scattering"
explicitly in a geometric series. Twersky (1960) calls this approximation
in multiple scattering (where each object is in each others' far field),
"far multiple scattering."

The extension of far multiple scattering (of O(Rd)-l) to arbitrary
scatterers was made by Karp (1953), and to O(kd)"2 by Zitron and Karp
(1961a,b). 1In the general case, however, they are not able to sum up
all the "orders of scattering" as in (6.21) and (6.22) so that there is
not an exact correspondence with their solution to O(kd)-1 and that given
by (6.21). This has, however, been done by Twersky (1962) in operator
form.

6.1.2 Numerical Results and a Comparison Study with the
Electromagnetic Problem

As with the electromagnetic case we are confronted with the problem

of selecting representative values for a few of the large number of

parameters involved. Since the major emphasis in this thesis has been
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the electromagnetic problem, no attempt will be made to be as complete
for the acoustic case, however, as we will see, many of the results of the
electromagnetic problem can be used in connection with the scalar problem.
To the author's knowledge, no previous results are available for tpe
scalar problem of scattering by two spheres, numerical or experimental.
We must have some means, however, of checking the numerical results. 1In
line with this, a general program was written using the modal expansion
technique of the previous section for arbitrary a, b, d, o and © for either
soft or hard spheres. Now, since the geometric optics solution for the
broadside case gave such good results for the electromagnetic problem, it
seemed only natural to consider the ray approach as a test for the results
of the acoustic problem.
If we consider only those rays Rj at broadside, for a pair of
identical spheres (see Figure 5.4),Qe will find the field due to these

rays to be of the form:

. i .
'llj = (-)Jc T A e rJ (6.23)

for the case of two soft spheres, since the Fresnel reflection coefficient
for a plane boundary with the boundary condition u = 0 is -1. For hard
spheres, the Fresnel coefficient is +1 so that in this case the sign
preceding 'the constant ¢ in (6.23) would Bé +1. The notation used in
(6.23) was defined previously in Section 5.1. Thus we see upon comparing
(6.23) with (5.3) that we will get exactly the same results (in the

geometric optics limit) for the normalized radar cross-section of two

identical spheres at broadside incidence for the EM case at vertical
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polarization as we will for the acoustic case of two soft spheres, like-
wise for the EM case at horizontal polarization and acoustically hard
spheres. This being the case, we would expect this correspondence to show
up in the modal expansion solutions for the appropriate vector and scalar
problems for this geometry when ka is sufficiently large. Sufficiently
large is defined as that point where the backscattered field is due

almost entirely to returns of the type Rj'

Numerical results using the general program for the scalar problems
are shown in Figures 6.2 and 6.3 for the spécial cases of identical
spheres, both soft and hard, at endfire and broadside incidence for
ka = 2 and 10. We see by comparing Figures 6.3(c) with 5.9(d) and
6.3(d) with 5.9(c) that the correspondence is indeed remarkable,
particularly in the former case. This is to be expected at ka = 10, since
nearly all vestiges of creeping waveé are gone at this value of ka in
the backscattered field of a single soft sphere (sée Senior, 1965). This
is because the attenuation of the creeping waves on a soft sphere is very
much higher than for the hard sphere. The comparison for the hard spheres
and horizontal polarization is equally good except at contact,

The higher attenuation associated with creeping waves on an
acoustically soft scatterer is quite apparent for the endfire cases,

particularly that for ka = 10 in Figure 6.3(a). This behavior is easily

N
1

where the attenuation of the hybrid ray is greatest near contact since

explained on the basis of simple interference between rays R, and C_R.,C

1

the creeping path is largest there. This claim is supported by the

observation that the phase difference of these two rays from (5.18)

predicts peaks in the radar cross-section at pnka where By is the
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solution of the equation:

-1 2
csc W + M -1 = dT/ka

From this we may also find the local period near the nth peak as

(pn-pn_l)ka. This agrees quite well with the results in Figure 6.3(a).

Ultimately, for large oo the above yields peaks in the cross-section at

kd = oft with period M, as we expect.

6.2 The Three Sphere Problem and Some Numerical Results

The generalization of the results for electromagnetic scattering -
by two spheres to the case of three,T is quite straightforward: therefore,
most of the details will be omitted. The general procedure for the
solution is again to use the addition theorem to translate the total field
of the other spheres alternately into the coordinate system of each sphere
and satisfy the boundary conditions on the surface. This determines the
unknown multipole coefficients for each sphere in the bresence of the
other two in the form of coupled sets of equations. There is one major
difference, however; there is no axis of symmetry for three spheres as
there was for two unless all spheres are colinear. Thus, in general the
more complicated general translation theorem (A20) will have to be used.

With the same configuration of the incident field as in the two sphere
case (see Figure 2.1), the geometry of the three sphere problem is shown

in Figure 6.4. The multipole coefficients of the incident wave about the

T . ,
Crane (1967) has considered the N sphere problem using matrix notation
but has given no numerical or experimental results.
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Figure 6.4 Geometry of Three Sphere Problem.
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three origins 0, 0' and 0" are respectively:

p(m,n)

ikdcosa
p'(m,n) = e p(m,n)

ike(sineosin¢osina + cosGOCOSI)
p'(m,n) = e p (m,n)

where p(m,n) is given by (2.14). The q's follow the same form as the
p's above. Using these coefficients in the incident wave expansions and
combining with the scattered field expansions in terms of the unknown
multipole coefficients we find in an analog&us manner to the two sphere
case the desired unknown multipole coefficients of each sphere in the
presence of the other two after application of the boundary conditions.
The results are, for the E and H modes of spheres A, B, and C,

respectively:

Ap(m,n) = v_(ka){p(m,n) +Z Car (@B (m,v) + B (d)B, (m,))
4 m

¥ Z(A::l(e,eo,qﬁo)CE(u,\)) + BEY (e,8_,9,)G, (1,v))1)
i

Ay (mn) = u (ka)la(mn) + ) LA @B, (mv) + B (4B (m,))
\Y
+Z (AR (e,8 ,8,)C, (w,V) + BEY(e,8 .8 )C (w,v))]]
"

By(m,n) = v_(kb){p' (m,n) +Z [0V @ (@A (m,v) - B (d)a, (m,v))
\Y

£ BEEC, 18,00, () + B(E,C 10,00, ()]
"
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B (m,n) = u (kb){q' (m,n) +z L™V @ @Ay mv) - BT (@A @m,v))
A%

+ Z(Aﬁﬁ(f,go,%)e}l(u,v) + BV (£,0,0,0C, (V) 1]
(b

Cy(m,n) = v, (ke){p" (m,n) +ZZ D™V e8 L0 )AL (w,v)
Vo

- BU(e,8 10 )A (V) + ALY (£,0 .0 )B(sv)

Y]
= an(f:€01¢o) BH(p‘ 1\))1}

Cy(m,n) = u_(ke){q" (m,n) +Z Z CDTVAN (6,0 0 A, (V)
Voo

- BV (e,0 8 AL (av) + AR (£,0 .0 )B (oW

- B (£,8 .9 0B, (00) 1)

To solve these equations in general represents quite a formidable

task. It will be noticed that it is necessary to calculate three different

. - LAY mv ny
sets of translation coefficients: Amn(d), an(d), Amn(e,eo,¢o),
Y WV Y A
an(e,90,¢o), Amn(f,§0,¢o) and an(f,go,¢o). Furthermore, if we truncate
the multipole expansions for the fields at v = n = N then for large N
the number of coefficients a(m,n,p,v,p) needed in the calculation of
each of the general translation coefficients A;Z approaches 8N5/15, and
N4/6 for the type A™,
mn
No attempt was made to obtain numerical results for this very general
case of three spheres, but it is relatively simple to consider the special

case of a colinear array of three spheres of equal size, equally spaced.
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For this case, only two sets of translation coefficients are>needed,
namely, Asﬁ(d), Bzz(d), AEX(Zd) and B$§(2d). Numerical results for the
broadside case of identical metallic spheres of size ka = 2 is shown in
Figure 6.5. The general character is no different from the case of only
two spheres as seen by comparison with Figure 5.8(b). The slight
flattening of the left side of the peaks seems to be due to coupling
between the two outside spheres. This is conjectured on the basis of
additional calculations made for this case by satisfying the boundary
conditions on each sphere only in the presencé of its ngarest neighbor
(the center sphere having two nearest neighbors) with the result that<;his
"flattening" disappeared.

Figure 6.6 shows numerical and experimental results for three equal
metallic spheres in contact as the aspect angle & is changed. The
agreement is excellent except near endfire. Further measurements with
various combinations of three spheres (dielectric and metallic) showed a
general high sensitivity to sphere allignment at and near endfire. Mis-
alignment of sphere A or C could be easily detected as an asymmetry in
the recorded scatter pattern; however, if the center sphere were

positioned slightly high or low with respect to the other two, then the

pattern would still retain its symmetry. This type of misalignment (if

indeed there was any) could not be detected at the time of the measurement.
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Figure 6.5 RCS of Three Equally Spaced Identical Metallic
Spheres, at Broadside Incidence, for ka = 2.0
vs. Separation Using the Modal Expansion Solution.
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7. EXPERIMENTAL INVESTIGATION

The need for experimental confirmation of the theoretical predictions
of multiple scattering behavior of two spheres is great in view of the
complexity of the solution. The modal expansion solution to the two sphere
problem is formally exact, but its usefulness is questionable unless we
can obtain reliable numerical results from it. 1In a previous chapter
various procedures were used to check numerical accuracy and consistency
of the programs,including comparison with different theoretical approaches.
Still, the most convincing check is direct experimental measurement.

A practical quantity for measurement and comparison is the radar
cross-section. The requirements on the equipment and environment for
accurate measurements of this type are, however, quite stringent. A lot
of time and money is required to setuparadar scattering range. Since the
laboratory under which this research was conducted had no scattering
measurement facility, it was thought that it would be best to conduct the
measurements elsewhere, at a well established facility. The CIC program
provides for such arrangements between the big ten universities of which
the University of Illinois is a part. It was indeed fortunate that such
an arrangement could be made to use the excellent scattering facility at
the Radiation Laboratory of the University Pf Michigan.

In what follows, a brief description of this scattering range is given.
The problems associated with supporting the two spheres and making dynamic

RCS measurements are also discussed and the equipment constructed for this

purpose is described.
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The scattering range is an indoor anechoeic chamber approximately
105' long, 15' high and 30' wide with 2" hairflex microwave absorber
lining the floor, walls and ceiling, with VHP-18 absorber on the rear
wall (both B. F. Goodrich products). The physical layout of the chamber
may be seen in the photographs to follow (see also Knott, 1964).

The microwave equipment is located outside of the chamber and is
shown pictorially in Figure 7.1 and schematically in Figure 7.2. This
corresponds to a rather typical CW system for RCS measurements. There are
frequency capabilities in the Ku, X, C and S bands; the appropriate equip~
ment for each band is contained on its own stand. The C band cart is
shown in position in Figure 7.1.

The ideal system.Qith perfectly matched loads at each arm of a
completely symmetrical hybrid junction or ''magic tee" would totally isolate
the transmitter and receiver. In préctice, however, the termination is
purposely mismatched (by the tuners shown in Figuré 7.2) in order to
reflect just that amount of signal into the receiver arm to balance or
cancel out the unwanted background signals. These background signals come
from extraneous reflections due to imperfect absorption by the anechoeic
chamber and any other obstacles present. The ratio of the power remaining
in the receiver arm qafter eamcellation to the power in the transmitting
arm is referred to as the isolation of the system. The accuracy of the
system depends on the isolation obtainable. For an accuracy of + 1/2 db
in the RCS measurements shown in Figures 4.4 to 4.9 at the lowest level,

the required isolation would typically have to be in excess of 100 db

(Blacksmith, et al., 1965). This means that with the spheres removed,
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Figure 7.1 Photograph of C Band RCS Measurement System,

-
-
-
-




" rsjuswaanseal SOY 103 walysAs MO Jo uweiSerq OT3PWAYDS z°/ 2ansig

[+ o] }
o
NOILVWYNO4NI NOILISOd
43XIA | ¥3AIZ03¥ | u3aHOD3N
TVLSAND .
NYOH
3AI13034 ONV
LINSNVYL MOLVNN3IL LV
e 4 331 &/ < NOILYNINY3IL
@@ -~~~ QIN8AH Ax\ »e __ o Q3IHOLVW
Y3NOILISOd / \
139uvL
, ¢ SY3INNL H-3
¥OLY119S0
NONL1SATIN
HOLVI0S! e
eV R TR
AON3INO 3N 4




129

the power in the receiver arm must be 100 db below that in the trans-
mitter arm. This requires extreme mechanical and frequency stability
since this 1isolation must be maintained throughout the time required for
the measurement which could be quite long.

Backscattering measurements have been made on two spheres for endfire
and broadside incidence vs. separation by Angelakos and Kumagai (1964)
and Mével (1960). Their measurements were made at discrete spacings.

Many points must be measured to faithfully reproduce the RCS behavior vs.

separation, particularly for the endfire caée. This would require a great
deal of time and patience for investigation of more than just a few cases.
Since the scattering facility was available only for a short time, a more

expedient method was éought.

A preliminary trip was made to the scattering facility to determine
such essentials as characteristics of the equipment and electrical
connections that would have to be made. The device for supporting and
separating the spheres was designed and constructed prior to succeeding
trips.

Size and weight of the spheres to be measured are factors which
influence the choice of supporting technique. Extremely accurate spheres
are readily and economically available from ball bearing manufacturers
in sizes up to 4" in diameter and with surface tolerances to 10 millionths
of an inch, but the weight of these spheres is quite high. Supporting
technique utilizing very thin suspension lines are superior to most others
in regard to unwanted background radiation, however, excessively heavy

spheres may not be used. Hollow aluminum spheres 3 and 5 inches in
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diameter, ball bearing balls less than 1 1/2 inch, and solid dielectric
spheres about 3 inches in diameter were used and could be suspended safely
by .005" monofilament line. Many different commerical fishing lines were
tested for this application and StrenT was found to be the strongest for
its diameter and had the highest tensile strength without stretching
permanently. The 2 1lb. line is .005" diameter and for the sphere sizes
mentioned should introduce a signal no larger than -40 db with respect to
the return from the two spheres under test (Freeny, 1965). '"Cages'" were
made of this line in order to suspend the spheres from the ceiling of the
chamber. The sphere separation was changed by pulling them apart using
lines connected to a servo controlled "winch." This had to be accomplished
differently for the eﬁ&fire and broadside cases. The method employed for
these two configurations is shown schematically in Figures 7.3(a) and (b),
respectively. As seen in 7.3(a) thefe are unique problems associated with
keeping the rear sphere level as the separation is changed. Clearly the
broadside configuration does not have this problem. Figure 7.4 shows the
motorized winch which reels in the line,thereby separating the spheres.
This winch is motor driven and is connected to a servo which senses and
transmits the sphere separation information to the RCS chart recorder.
Between the winch and servo is a variable ratio drive (which may be
recognized from the picture as a ball-disc integrator). This allows any
desired expansion or contraction of the horizontal scale (kd) on the

recorded RCS pattern. We see that the above mechanism allows continuous

Registered tradename of E. I. duPont de Nemours.
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Figure 7.3 Schematic Diagram of First Suspension Technique.
for RCS Measurements of Two Spheres at (a) Endfire
and (b) Broadside Incidence.
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Figure 7.4 Motorized Winch Used for Separating the Spheres
for Endfire and Broadside RCS Measurements,




133

recording of RCS vs. separation. Once the system is balanced and the
spheres are set in the proper position, the actual time required for the
measurement is very short. Figure 7.5 shows the actual setup of the
suspended spheres in their ''cages" for the endfire (left photo) and
broadside configurations (right photo) at the completion of the measure-
ments. The mechanism shown in Figure 7.4 is "hidden'" behind the absorbing
barrier shown on the floor in both photos. One possible drawback of this
dynamic RCS measurement scheme is that before the system can be balanced,
the spheres must be removed, and replaced again after balancing. Proper
alignment of the spheres before the measurement may take considerable Eime,
hence, balance must be checked before and after the measurement. Since the
spheres in the above two geometries are essentially suspended each from a
single point by rather long lengths of line, vibrations were completely
undetectable. Any swinging of the spheres that resulted from pendulum

type motion could be easily eliminated by "bouncing” the spheres together

a few times. To avoid inducing any swinging or oscillétory motion as the
spheres are drawn apart (or together), the winch is driven at a nonuniform
rate.

Cases involving measurements with the two 3" hollow aluminum spheres
for the broadside geometry presented a slight problem because of their
extremely light weight (a few ounces). At close spacing, the amount of
tension in the horizontal lines is so small that the lines tend to sag.
This explains the departure of the horizontal scale in Figure 4.1(a). 1In
4.1(b), the larger (and heavier) spheres were used, minimizing the effect.
The experimental results using this suspension technique are shown in

Figures 4.1 through 4.6.
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RCS measurements of two spheres for variable angle of incidence and
fixed separation requires yet a third supporting structure. This is shown
in Figure 7.6 and consists of a rotary table with a polystyrene foam
column. This is the typically used supporting structure for most RCS
measurements and no modification was necessary. This structure was used
for the measurements appearing in Figures 4.7 through 4.9,

Another sphere supporting technique was conceived and the equipment
constructed to achieve the same results as the previous three configurations
but with a single apparatus. Furthermore,it was desired to have the
capability to make all adjustments from outside of the anechoeic chamber
including a method for withdrawing the spheres in order to balance the
system. The design ar;ived at is shown schematically in Figure 7.7. As
seen, the rotary table provides for aspect angle changes; another motor
and servo allow the spheres to be separated at will, and small motorized
winches allow both spheres to be moved up and downAindependently. All
these motions can be controlled at will from outside of the chamber. This
unit is covered with microwave absorbing material to minimize extraneous
scattering effects. The hardware and associated controis are shown in
Figure 7.8.

Measurements for any of the previous configurations could be made
quite rapidly with this system since the balancing and positioning of the
spheres can be done from outside of the chamber. With this, the spheres
could be separated at any angle or rotated at any separation. Since the

same basic drive mechanism was used for separation of the spheres, the

horizontal scale expansion or compression feature for the recorded RCS
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Figure 7.6 Supporting Structure for Fixed Separation,
Variable Angle of Incidence.
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Figure 7.7 Schematic Diagram of Final Suspension Technique
for all Orientations of Two Spheres.
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Figure 7.8 Associated Hardware for General Suspension
Technique.
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pattern was also available. Figure 7.9 (bottom) shéws the two spheres
withdrawn below the absorbing barrier in position for balancing of the
system. The upper figure shows the same spheres raised and aligned imn
position for the start of the measurement. Since the spheres in this
setup are essentially supported both from above and below, they are more
susceptible to vibration and oscillations. This was detectable most when
the spheres were rotated. Therefore great caution had to be exercised
during the measurement.

In summary, the results consistently’showed excellent agreement with
the theory indicating that the supporting structure and suspension lines
were indeed "invisible" to the receiver. This of course also indicates
the caliber of the microwave equipment and the chamber itself.

To aid in identification of some of the parameters associated with the
experimental results, the sphere sizes and materials and frequency of
operationf are associated with the results presentéd in the previous
chapter by the figure number in the table on the following page. In
all of the above cases, the distance from the transmitter to the spheres
was about 19 feet.

Many other measurements were made, all showing the same excellent
agreement with the theory. These are not included to prevent added

confusion,

Size is inches of diameter; Al. signifies aluminum, Cu - copper plated
steel and Rx. - Rexolite (Er ~ 2.56). The frequency is given in GHz.
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( Figure 7.9 Final Suspension Technique Showing Spheres in the
Lowered Position for Balancing of the Chamber

(bottom) and in the Raised, Aligned, Position

Ready
for Measurement (top).
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Table 7.1
Physical Parameters of the Spheres Used in the RCS
Measurements
Figure # Sphere A Sphere B Frequency
4.1(a) 3.173 - Al. 3.173 - Al. 4.9645
4.1(b) 4,750 - Al. 4.750 - Al, 4.9645
4.2 3.187 - Rx. 3.187 - Rx. 4.9645
4.4 (a) 3.173 - Al. 3.173 - ALl. 8.7810
4.4 (b) 4,750 - Al. 4.750 - Al. 8.7810
4.5(a) 3.173 - Al. 4.750 - Al, 8.7810
4.5(b) 4,750 - Al. | 3.173 - Al. | 8.7810 -
4.6(a),4.9(a) 3.187 - Rx. 3.187 - Rx. 8.7810
4.6(b),4.7 3.187 - Rx. 3.173 - Al, 8.7810
4.8(a) 3.173 - Al. 3.173 - Al. 4.2650
4.8(b) 3.187 - Rx. 3.173 - Al, 4.2650
4.9(b) 1.000. - Cu. 1.000 - Cu. 10.202
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8. CONCLUSIONS

In this thesis, multiple scattering of electromagnetic or acoustic
waves by two or three spheres has been studied in great detail using three
different approaches: multipole expansion, ray optics, and experiments, -
The results of these approaches were compared whenever possible. Except
for a very few cases, nearly perfect agreement was found.

In the multipole expansion approach, the translational addition
theorem for spherical wave functions is required. Due to the complexity
of this theorem, previous computations by other authors have been restricted
to spheres of radii less than 3/4 wavelength and large separations. 1In
this investigation, an important recursion relation pertaining to the
translation coefficients has been obtained. With this relation and other
symmetry properties, not only has computation time been reduced by several
orders of magnitude, but the range of computation was also extended to
spheres of radii as large as 10 wavelengths and separations as small as
physical contact. In addition, results were also extended to spheres of
different materials.

Solutions in closed forms are obtained for two special cases: the
Rayleigh approximation and the far multiple scattering approximation. The
former is applicable to spheres of radii small compared to a wavelength
while the latter applies to spheres at large separation.

The ray optical approach, which is particularly useful for large
spheres, is also studied in some detail. The scattered field is attributed

to purely geometric optics rays, creeping wave rays, and hybrid rays which

creep and reflect. It is shown that this approach yields excellent results
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for spheres even as small as 1/2 wavelength in radius and spaced as close
as physical contact. However, at present, this approach is confined only
to conducting spheres due to the lack of a tractable creeping wave theory
for dielectric spheres. Cases involving rays thqt come close to shadow
boundaries also require more investigation. This situation causes problems
even in the ray description of the single sphere. 1In spite of these
limitations, this approach provides much insight into the multiple
scattering mechanism, backscattering behavior in particular. The strength
of the multiple scattering contributions at broadside incidence for large
spheres depend only on the separation to radius ratio of the two spheres
whereas at endfire for the same separation the dependency is more
complicated. The multiple scattered rays are shown to be purely geometric
optics rays in the first case and hybrid rays in the second.

The valﬁe of any theory must be questioned if it cannot accurately
predict and explain experimental results. Due to the large number of
parameters in this problem, an extensive experimental brogram was under-
taken. For convenience, the experimental work has been restricted to back=-
scattering measurements. In almost all the cases, nearly perfect agreement
has been obtained.

Because of symmetry, the backscattered field of a single sphere, and
thus of two uncoupled spheres, will not be depolarized. Therefore,
depolarization from scattering by two spheres is a consequence of multiple
scattering. The polarization ellipse of the backs;attered field has been
examined in this context.

Acoustic scattering by two spheres has also been studied and

numerical results were given. The analysis is considerably simpler, but
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numerical convergence for many cases is often slower than in the electro-
magnetic problem. A unique relation between the acoustic two sphere

problem and its electromagnetic counterpart was discussed. Finally, the
problem of scattering by three spheres has also been formulated and some

“ numerical and experimental results were presented.

There are many aspects of this problem which have been dealt with

g Aremma, iy, e, e

only briefly here but which deserve a more thorough investigation. These
{ include multiple scattering by resonant dielectric spheres, and a creeping
[ wave theory valid near and at a shadow boundary, not to mention the many
additional numerical results that can be obtained.
A class of other related problems ﬁay now be readily solved because
of the more tractable form of the addition theorem presented. This in-

cludes the non-concentric spherical cavity and scattering by a sphere

with a non-concentric dielectric coating to name but a few.
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APPENDIX

TRANSLATIONAL ADDITION THEOREMS FOR SPHERICAL WAVE FUNCTIONS

A.1 General Scalar Addition Theorem

In this section the translational addition theorems for scalar and
vector spherical waves are examined and the work of previous authors is
reviewed and discussed. Recursion formulas are derived which greatly
simplify numerical computation of the coefficients involved and an
asymptotic form for the translation theorem for large translational
distances is presented. -

The addition theorem for spherical waves finds its use in problems
involving more fhan one coordinate origin where it may be necessary to
express spherical waves in one spherical coordinate system in terms of
spherical waves about another "translated'" coordinate system. The
geometry describing such a translation is shown in Figure Al.

This problem has received the attention of many iﬁvestigators,

however there seems to have been a considerable lack of communication

among them. The first known appearance of the addition theorem (both
vector and scalar) was due to Trinks (1935) who developed it specifically
for the two sphere boundary value problem. Perhaps this is why his work
went unnoticed by present day authors of the subject. His form of the
addition theorem, however, lacked the elegance of the more recent

treatments. The coefficients in the addition theorem were given in

operator form rather than in an explicit form and translation was re-
stricted to the z axis (60 = 0,m). Independently Sato (1950) derived

the scalar addition theorem again only valid for translation along the
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Figure Al. Geometry for General Rigid Coordinate Translation.
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z axis. The coefficients for his expansion were not given explicitly
but in a recurrent form. Eyges (1957) presents a still different form
for translation along the z axis. Ament (1959) tabulated some of the
coefficients involved in the vector translation theorem only for low
orders of the wave functions, however, no explicit form was given for
all orders.

The most significant contributions to the general addition theorem
include the work on the scalar addition theorem by Friedman and Russek
(1954) and the extension to the vector case by Stein (1961), and Cruzan
(1962) . Recent related work includes that of Danos and Maximon (1965)
and Sack (1964).

Scalar spherical waves are solutions to the Helmholtz equation in

spherical coordinates:
Vzu + kzu =0 ' (Al)

k being the wave number 2T/X. The set of characteristic solutions with

. -ilt | .
suppressed time factor e is given by:

U(j) = Zr(lj)(kr)P:(Cose)eim¢

mn |m| <0, 0<n<w (A2)

b1 and
n

zéJ)(kr) is any of the spherical radical functions jn’ nos

(2
n

which refer respectively to the superscripts j = 1,2,3,4. The

defintions of the functions follow those given by Stratton (1941). The
translation of the spherical wave u from origin O to origin 0' a
distance d is given by (Stein, 1961)

- Vv

(3O' _ mn (1)

ud o Z Z @l Uy (A3)
V=
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where the prime indicates only that the coordinate variables refer to

origin 0' (see Figure Al) and

a‘:\‘)‘ = (-1)“'1\"“(2\”1)2 1'Pa(m,n,_p,\,,p)z;j)(kd)Pr;\-u(coseo)
P

i(m-p)o
X e o r < d (A4)

mn _ . m-p.vV-n .-P . , m-y
Sy " -1 i zl (2ptl)a(m,n,p m)p,v)Jp(kd)Pp (cosb )

X el(m_u)¢° r>d

The coefficient a(m,n,u,v,p) is defined by the following linearization

expansion:
—
Py ()R (%) =La(m,n,u,v,p)1=;‘+*"(x) (A5)
p
where p = n+v,n+v-2,...,|ndvl; the coefficient a(:) vanishes for all

other values. From the orthogonality properties of the associated

Legendre functions and equation (A5), the following identity results:

2V+1
am,n,um,p,v) = (-7 F5T a(m,n,-p,v,p) (46)

If this is used in (A4) above, a new more symmetric form of the co-

.. n
efficient amv results

_ z;j)(kd)
G‘m\r)l = (-l)pi\)-n(Z\)‘Fl)z’i-pa(m’n,-p"\))p)
0 i_(kd)
> P
_ d
N e, [T S
X P p'(coseo)e (A7)
P r>d
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If now translation is desired from 0' to 0O, the primed and unprimed
quantities in (A3) trade places and QES is preceded by the factor
(_1)n+v. This is evident upon replacing 80 by ﬂ-eo and ¢o by ¢d¥n which
introduces a (-1)p factor under the summation; this may be removed as
(_1)n+v since p cycles in jumps of 2.

As will soon become evident, the computation of these coefficients
presents the major difficulty in any application of the scalar or vector
translation theorem (see Section 3.2). From the orthogonality properties
of the associated Legendre functioms, it is clear that the coefficientwa(-)
can be written as an integral of the product of three associated Legendre
functions. This integral has quite a long historyT and has been evaluated
in various forms by Gaunt (1929), Infeld and Hull (1951) and others as
rather cumbersome summations of factorials. This has been identified as
a generalized hypergeometric series by Hardy (1923) and Rose (1955). Stein
and Cruzan, among others, recognized that the coefficient a(m,n,u,v,p)
could be written in terms of a product of two Wigner 3-j coefficients
which are associated with the coupling of two angular momentum vectors
(see, for example, Edmonds, 1957). This was regarded as an elegant
formulation as there are available extensive tables involving these co-
efficients (Rotenberg, et al., 195%). With this representation, the

coefficients a(-) are given by (Cruzan, 1962):

The product expansion for Legendre polynomials (m = p = 0) dates
back to 1878 in a paper by Adams.
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am,n,p,v,p) = (-1D™H(gpr1y [{mmOH): (pomp) 1/2
STV, (n-m) ! (v-p) ! (p+rmtp) !
ny p ny p
” 000 m g -m-p (A8)
Iy i, I,
where is the Wigner 3-j symbol. The 3-j coefficient
MMy MM

has many different representations (Rotenberg, et al., 1959) but the
Van der Waerden definition is most convenient for the present discussion;

it is given by:

ny p _ (_1)n—v-m-u

m g -m-y

x [_(.n-wvm ! (novtp) ! (~hvkp) ! (bm) ! (nem) t(vHR) ¢ (wep) ! (phmbp) ¢ (pomep) '.] H2
(nv+p+l) !

X:E:(-l)k[k!(n+v-p-k)!(n-m-k)l(v+p-k)!(p-v+m+k)l(p-n—p+k)!]-1
K
(A9)

The special coefficient Z : Z has a simpler form not involving a
summation but still a large number of factorials. Nevertheless, one can
appreciate the difficulty in trying to compute a single coefficient
a(m,n,u,V,p). Furthermore, any computation involving the translation
theorem, for all but the smallest orders, would require a prohibitive

storage capacity for the 3-j coefficients if tabulated values were used

(see Section 3.2). What is really needed is an efficient and systematic

mcthod of generating the a(-)'s. 1In particular it would be highly
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desirable to have a recursion formula for the a(:)'s which involves only
a cycling of the index p since the aE:'s in (A7) involve a summation of
the a(-)'s with p as the cycling index. Cruzan listed nine recursion
formulas involving the a(:)'s which he stated should be useful for
computational purposes; however, by themselves they are quite clumsy
since within a single recursion formula as many as six terms or three
different indices are involved. Curiously enough, all the information for
obtaining a single recursion formula in the index p alone is nevertheless
contained in six of these nine formulas. These six formulas with sligEt
rearrangement of the indices are shown in matrix formt in Table AI, and
can be reduced, after very tedious elimination, to the following pair of

three-term recursion formulas in the two indices v and p:
(2P+1)(2P-3)(V-u+1)[(m-u)P(P-l)-mj(n-V)(n+V+1)]a(m,n,u,V+1,P-1)
+ (2p+1) (p-my-1) (-nbvtp-1) (nbvp) [ (p-v-1) -m(v+1)]a (m,n,p,v,p-2)

+ (2P-3)(p+m3)(n+V-P+1)(n-V+P)[u(p+V)+m(V+1)]a(m,n,u,v,P) =0
(A10)

TTable Al gives six recursion formulas, each row corresponding to one.
A recursion formula is read by preceding each of the coefficients a(-)
in the top row by the factors in the columns below them, adding to-
gether and setting the result to zero. For example, the last row in
the table corresponds to the following recursion formula:

(\H'“') (V‘u"'l)a(m’n,u'l,\),P'z) + (P"‘m3'1) (p'm3'2)a(m,nap'+1’\)’f)'2)

+ [ (nbv-p+2) (n-vp-1)-2v(p-1)+2um ] a(m,n,u,v,p-2) = 0.
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and
= (2p+1) (2p-3) (V)L (m-p) p(p-1) -my (w-V) (mbv+1) Ja(m,n,p,v-1,p-1)
+ (2pr1) (p-my-1) (hv-p+2) (a-v+p- D) [ (prv)+mv]a (m,m,p,v,p-2)
) + (2p-3) (p+my) (mhvtp+1) (-nbv+p) [ (p-v-1) -mv]a(m,n,p,v,p) = 0
(A11)
where m, = mtp. These can in turn be reduced to a single three-term

3

recursion formula in the index p alone, but for this case it is
computationally more efficient to simultaneously generate two sets of
coefficients using the above two formulas.

Any recursion formula used for the purpose of generating special
functions or coefficients is of questionable value unless the starting
values are readily obtainable. For the present case this is very easily
accomplished by matching coefficients in .the highest powers of the

argument from equation (A5) with the results:

_(n-1)ttav-nry mg)e
&y (2nt2v-1) 1" (n-m) ' (V-p) |
_ (2n+2v-3)
qv-2 = T 2(2n-D) (v-1) (wtv-m,) (nhv-m,-1)
X {(n+\)-1)[n\)+mu(2n+2\)-1)]-m3[\)m(2\)-1)+np.(2n-1)]}an+v (A12)

where aq = a(m,n,k,V,q). This of course implies backward recursion.
These same starting values could also be determined from equation

(A9) since in this case the Van der Waerden definition of the 3-j co-

efficient reduces to a single term for p = otV and three terms for
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p = ntv-2, which can be easily combined; however, the coefficient
matching procedure is preferable because of its simplicity. Several
other useful recursion relations may be obtained. From (A5) and the

product derivative

d m_{ m dPs Pp dPn
©® ®R) =P 3 TR (A13)

o "y _/'-.—“ M M Py, P ey

n doé v do

and the associated Legendre function derivative relations:

S —

i | ap”
n _mcost m mt 1 _
' ® ~ siae n~ Fn (Al4) -
.
and
m
dp
n_ mcosd m m-1
a—e— = T Teind Pn + (ntm) (n-rrH-l)Pn ’ (A15)

one may obtain the following relationé (Cruzan, 1962):

a(m,n,W,v,p) = a(ffﬁ'lsn,}is\)sP) + a(m,n;}-ﬁ‘l,\),P), (Al6)

(P‘HTTH-L) (p-m-p+l)a (m,ns}-L,V ,P)

i = (v+p) (v-p+l)a(m,n,u-1,v,p)
" + (n+m) (n-m*'l)a(m'l,n,u s\)sp) ’ (Al7)
2’ L (pmHs) (p-m-p+ 1)+ (v-p) (VHu+1) - (nhm) (n-mt1) Ja(m,n,k,v,p)

= (VvH) (v-p+l)a(m,n,p-1,v,p)

p——e

+ (ptmtpt+l) (p-m-p)a(m,n,p+1,v sp) ’ (A18)
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and
[ (prmHs) (p-m-p+ 1)+ (n-m) (nbmt 1) = (VHu) (V-p+1) Ja(m,n,u,v,p)
= (otm) (n-mt1l)a(m-1,0,u,V,p)
+ (ptmHutl) (p-m-p)a(mtl,n,u,v,p) (A19)
To this point it has been demonstrated that the coefficients a(+) can be

determined in a considerably more efficient and systematic manner than

appeal to the 3-j formulation.

A.2 General Vector Addition Theorem

Armed with the results in A.l, the vector spherical wave addition
theorem can be more simply presented. This is obtained as a super-
position of scalar spherical waves from equation (2.3) and the scalar

addition theorem (A3) and (A7). The theorem reads:

© v
=)' _ mn =(j) mn =(j)
M-l = Z Z (Au\) Mot By NG
= p,:-
SN (A20)
O 2 Z z (A" §(3) 4 g ﬁ(j))
mn TRVERTAY) VAR TRV
v=1 pu=-Vv
with
V- 1 -
AES = (-n*iV " 23?:+1) i Pla(o+r D)+ (v+1) -p (p+1) ]

. i(m-p)o
X a(m,n,-p,v,p)z;J)(kd)Pz'“(coseo)e ° (A21)
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and
mn _ o q\H.V-n _2v+l -p
S Sy P
P
; - i(m-p)@
X b(m,n,-u,v,p,p-l)z;J)(kd)P? u(coseo)e °  (a22)

for r > d where:
2p+1l
b(m,n,"us\),P,P'l) = E;i-f [(V'M)(V‘*‘M‘*‘l)a(m,n:’u'l,\),P'l)

- (p-mH) (p-mHpt+1)a(m,n,-p+1,v,p-1)

+ 24 (p-mhp)a(m,n,-,v,p-1)]. | (A23)

: mn | X . X .
The form given here for Auv incorporates a factorization in which the

factor 2v+1 was extracted — this was apparently overlooked by Cruzan.

Without this factorization, the obviousness of the asymptotic form of

AT (Section A.4) for large translational distances is obscured. It was

¢ ——

not noted by Stein or Cruzan that the theorem for r < d could be obtained

l from that for r > d by simply replacing z;j)(kd) by jp(kd). In addition,

s the form given here for BES {(Cruzan, 1962) is not in the most desirable
for computational purposes since three different coefficients of the type

i a(m,n,-u,v,p-1) (see A23) preceeded by factors containing the index p
must be available at the time of each summation in p. Furthermore, this

i : form does not show explicitly the simplifications that result when

t translation is confined to the z-axis. Instead, the form given by Stein

(1961) for B$3 is preferred which is:
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nn ikd coseo mn
B T T NoED 2 Uy
ikd sineo i¢o o -i¢o o
- -E\)—-(—\.)Tl_)—— Le v-p) (\)+|,l,+1)0.u+1’v+e L.L-l,\)] (A24)

" where azs are the scalar wave addition theorem coefficients given by
(A7).

For the case of vector translation from 0' to O (A20) remains the
same except the unprimed quantities become primed and vice versa; the

coefficient Azs is preceded by the factor (_1)n+v and BE: by (_1)n+v+1.

A.3 Translation Along the z-Axis

There are cases (s;ch as the two sphere problem) in which the origins
0 and 0' may be restricted to lie along the z-axis with no attendent loss
in generality. As will become evident, this specialization admits many
simplifications. Some of these are obvious but will be stated for clarity.
Considering first the scalar case, one sees from (A7) tﬁat for z axis
translation (60 = 0 or M) the coefficient QES vanishes for all values of
i except p = m since Pz_u(il) is non-zero only in such a case; hence
(A7) becomesT

amn - p

mw ('1)mi\)-n(2\)+1)zi-pa(m’n:'m’\)’p_) 3 (kd) ’ (A25)
P
P

r

IV IA

The scalar addition theorem for translation along the z axis for
r>d and r' > d appears incorrectly in Liang and Lo (1967).
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and since ué3)= 0 when v < m, (A3) becomes
I ®
' _ mn (1)
U amv L (A26)

. V=m

-~ 8imilarly, it is easily seen that the vector addition theorem reduces to:

1 .b_dl (J) _ Z [Amn E(l) + an ﬁ(l)]
mn my my mv mV
‘ V=(T,m)
j © (A27)
='(3) _ mn =(1) mn —(1)
Nan™ T :E: , [Amv N ¥ B Moy i
’ v=(1l,m) _
5 where (1,m) denotesthe larger of 1 and m, and '
: mn _ m,Vv-n 2v+l =P
} A= (-1 D) i [n(+l)+v (v+1) -p(p+l)] 1
p
(1
S zp (kd) r>d
- X a(m)n)'my\),p) ’ ' (A28)
j_(kd) r<d
I p )
mn _ imkd mn
j P VoD v (429)

Perhaps most significant are the simplifications involved in the

PRNSEE A N

calculation of the coefficients a(m,n,-m,v,p). The recursion formulas

i~ (A10) and (All) may be easily combined to yield:
\
O .3, - (@ 4a -bmPa . +aa =0 (A30)
} p-3 p-4 p-2 "p-1 p-2 PP
where a = a(m,n,-m,V,p)

c(p)C(-p)

S
]
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and

C(p) = iE%T (nv+p+l) (n-v+p) .

The two starting values are

4 _ (n-1)ll(2v-1)t1 (ndv)!
o+ 2nt2v-1) 1! (n-m) ! (V+m) !
(A31)
(20+2v -3)

2
a (vn-m (2n+2v-1)]an+v,

ov-2 | (2n-D) (v -1) (mv)

Clearly then, all coefficients can be generated without calculating a

single 3-j coefficient.T Furthermore if these coefficients are generated

in the proper sequence with regard to n, Vv, and m, then no explicit

factorials need be calculated. 1In other words, the starting co-

efficients can also be generated in a recurrent fashion (see Section 3.2).
A striking feature of the three term formula (A30) is that for

m = 0 it reduces to the two term formula:
Cﬁpa(O,n,O,V;P) = ap_la(O,n,O,\),p-Z) =0 (A32)

which by successive application yields:

.‘-

It is worth noting that these new recursion, formulas (A10), (All),

(A30) and the result (A6) could be used to obtain new recursion
formulas for the 3-j coefficients. This is possible by simply using
the definition of a(:) in terms of the 3-j symbols (A8) and extracting
the special 3-j symbol for m = 4 = 0. The latter coefficient may
always be extracted since it is known explicitly and never vanishes
for ntv+p an even integer.
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-nHu+p n-v+p nt+V -p

-nHHp n-v+p o+ -p

2p+l
2(0,0,0,9,P) = ooty (433)

nHVH+p

nHv+p
2

This agrees with the formula given by Adams (1878), Hylleraas (1962), and
could also have been obtained by using the special form for the 3-j
coefficient for m =m, = 0 (Edmonds, 1957).

By combining (Al16) and (Al7) one can obtain the follbwing recursion
formula in the azimuthal index m for the case p = -m (which is useful for

recursion in m):
Lp(p+1) - (ntm) (n-m+1) - (v-m) (vim+1)]a (m,n,-m,V,p)
= (v-m) (V+tmt+1l)a(m+l,n,-m-1,v,p)

+ (n+tm) (n-m+l)a(m-1,n,-m1,v,p), " (A34)

and when m is set to zero, the above yields:

[n(+D)+v (v+1) -p (p+1)]

v (v+1) a(0,n,0,v,p) (A35)

a(lsn,'l,V,P)
or

_2ptl L@+ (v1)-p(prD)]
2V (v+1) (nHv+ptl)

-ntV+p
-mtv+p

a(l,n,'l,V,P)

n-v+p otV -p
n

-V+p n-v+p
2 2

2

(A36)
f ntv+p

V+

{
\

E
N
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This situation corresponds to the case of axial symmetry which admits
only the m = + 1 azimuthal modes in the vector theorem and in the two-
sphere electromagnetic scattering problem, results when the source is
incident along the common axis of the two spheres. The corresponding .
azimuthially symmetric case in the scalar problem requires only the m = 0
mode; hence the coefficients for this case are given by (A33).
Unfortunately there do not seem to be any further simple or closed
forms for the a(:)'s of great practical importance. Gaunt (1929) has
shown that the coefficients may be reduced to more elementary forms when
certain restrictions are placed on the indices. One special value of the
coefficient a(m,ﬁ,-m,v,p) useful for checking the stability of the recursion

formula (A30) is:

a(m,n,-m,n,0) = (~1)™/(2n+1). (A37)

Friedman and Russek (1954) give a short table of the coefficients

a(m,n,u,v,p) for some low orders of the index n.

A.4 Asymptotic Forms

It would seem reasonable that one should be able to simplify the
addition theorems when the translational distance kd is sufficiently large.
It is shown below that indeed such a simplifjication exists; in fact, they
can be reduced to a particularly simple form for the case when translation

is restricted to the z-axis.

TThe entry a(l,2,u,v,v) in their Appendix II appears incorrectly and

3 (2u+1)

Should read (2\)+3)(2\)_1)
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Working first with the scalar addition theorem, we have, as in (A7):

z;J)(kd)

mn gz H.V-n <:_’.-p
= - + 5 -
Gy = CDIETI@AD 3 1Patmn,wv,p) | g
p
p
i(m-p)¢
m-{ o
X Pp (coseo)e (A7)
r>d . . . .
for - . What is sought is a simpler form for the above valid for

r <d

large values of kd. It may be assumed in what follows that zp(kd) = h;l)(kd),
since if a simpler form can be found for the above case, then it is also
known for h;z)(kd) and hence also for jp(kd) and np(kd). If kd > 0(p2)“

where p < ntv, then:

ikd
(L) _ .-p-le
hp i < (A38)
and (A7) reduces to
ikd i(m-p)o -
R A e o 1\ P ;
ey~ CDYYTN D) g e Z( DPa(m,n,-4,v,p)
p
X Pm-u(cose ) (A39)
P o
and since p = n+v,n+v—2,...,ln4v|, the (-1)p factor may be removed as
(-1)n+v. The remaiﬁing summation may then be identified as just the

linearization expansion (A5) and we obtain as a result:

ikd i(m-p)o

m m -l
Pn(coseo)Bv (coseo)e s

n o gy n-v-1 e
GHV ~ (-1)71 (2v+1) wd

kd > 0(ntv) > (A4O)

For z-axis translation (say 60 = 0), the above simplifies to:
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mn n-y-1 eikd
GWV =1 (2v+1) T 6m,06u,o (A41)
For the vector case, applying (A38) to (A21) yields
AT o (_1)pindv-1 2+1 eikd ei(m-u)¢o
v 2V (v+1) kd
P
x [n(at1) v (+1) -p (pr1)] am,n,-4,v,p)PT ¥ (cos8 ) . (a42)

The summation in (A42) cannot be formed as in (A39) due to the presence of
the factor p(p+l). This can be summed, however, by combining (A16) and

(Al17) with the result.
z [o(at1)+v (v+1) -p(p+1)]a(m,n,-u,v ,p)PI;'LL
p

- mo-p _ ml _-p-1
mePan o~ u)(\)+p.+l)Pn R,

- (n+m) (n-m+1)P

m-lP\:LH'l (A43)

n
With this, (A42) becomes:

AR (_1)uin-v-1 2V+1 elkd 1(m-p)9
wv 2 (v+l) kd

) m -
[2umPn(coseo)Rv (coseo)
- (v-p)Cv+u+1)P:+1(coseo)R;u_1(coseo)

- (n+m)(n-m+1)P:-l(coseo)E;p+1(éoseo)]. (A44)

If now (A38) is used in (A24), BE: is identically zero, in which case,
the next higher order expansion for h;l)(kd) must be used:

(D) _ep-1 etk i
p (k) ~ i — (1 + 55 p(p+D)] (A45)

RRRESEEESSERRRRRRE
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To this order, (A43) and (A45) are combined with (A39) to yield:

mn _ p.n-v-1 elkd 1(m-k)g,
5 auv ~ (-D)7i (2v+1) - ©
! |

| X (P’::Pv“' + -2%5 {[n(n+1)+v (v+1)-2pm]1>‘:1‘1>v“'

|

S m1 1 1 1

+ (=) VD PR 4 (nm) (nemr 1) PR LR }) (A46)

( n AV, n \Y
i

Using this in (A24) gives the asymptotic form for BES to the same order

as ATS. Finally for z-axis translation (Go = 0) it is clear from (A24);

o

i‘ (A46), and (A44) that we get
ikd
mn _ _mn _ .n-v-1 2V+1 et
Auv = pr ~ 1 N (D) K4 6mu[v(V+1)6m’_1+n(n+1)6m,1].
(A47)
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