

- Received a IDEM 319 Grant to implement a 2 Stage
 Ditch
- The Nature Conservancy supplemented additional dollars to the project.
- County Surveyor (Dick Kemper) and NRCS District Conservationist (Sam St. Clair) selected 5 potential ditches and it was narrowed down to the Shatto. Selection criteria was flow rate of the ditch, visibility, cooperative landowners, amount of woody species present, soil types and landuse.
- US Army Core granted permission to implement the practice.
- Received approval from the County Drainage Board and all affected landowners
- Hired monitoring contractors and bid out the excavation work.

Channel Evolution

(Adapted from Simon 1989)

Two-Stage Ditch Design

Benches a Minimum of 2X Channel width, with 3 or 4 times being more desired

Current sampling design

- Every other month we measure
 - habitat cover
 - Transient storage
 - Denitrification
- Daily measurements include
 - Dissolved O₂
 - Specific conductivity
 - Temperature
 - Turbidity
 - pH
- Fish and invertebrate sampling once a year

Biological Response

- Improvement of invertebrate community diversity in the treatment reach of ditch
- Fish assemblages have increased in sensitivity, the treatment stretch is now holding more intolerant fishes.
- Habitat is beginning to diversify—riffle/pool
- Control still has no noticeable change

Monitoring Conclusions

- 105,000 pounds of sediment removed from treatment reach each year.
- 350% increase in denitrification potential
- Isopods in 2 Stage Ditch segment went from 87% to 38% control section 79% to 58%
- Sunfish species went from 1 to 4 species pre to post construction, control stayed at 1 specie
- Total suspended solids (TSS) control increased 4%, decreased 49% in treatment reach

<u>Updates</u>

- Total reach N removal increases with 2 Stage Construction
- % of N removal is the most when loads are the lowest – most effective when coupled with other strategies such as nutrient management.

Before Construction

After Construction – Nov. 2007

Just after the first of the year we had 2 bank full events – Jan/Feb 2008

2-Stage Ditch Costs

- Typical cost of 2-stage Construction
 - \$8 \$ 12 per linear foot
- Factors that affect your cost of Installation
 - 1. Depth of the ditch (top of bank to waterline)
 - 2. Width of ditch channel (and benches)
 - Amount of natural benches already starting to form
 - 4. Absence of adequate area to spread spoil
 - Number of tile outlets to be addressed

Breakdown of Project costs

Cost Breakdown

- Outlets and Erosion Control
- Survey, Design and Inspection Earth Work
- Seed and Seeding

Expected Payback Period

The payback period is 14 years

Solve

Implemented and Planned Projects

Indiana 2-stage Ditches by County

Installed 2-Stage

Planned 2-Stage

Counties with 2-stage in Watershed Plans

Closing Thoughts

- When managed for water quality, headwater streams and ditches have tremendous potential to improve downstream health of rivers.
- Many times ditches do not need maintenance performed but are viewed as functioning poorly because they "look bad"
- As stream (ditch) habitat improves, fish and invertebrate communities improve.
- Presence of vegetation is more essential than actual species type