

IDEM's Water Quality Monitoring Programs

Presented for the Indiana Watersheds Webinar Series July 24, 2012
Indiana Watershed Leadership Academy
Marylou Renshaw, IDEM Office of Water Quality

The Importance of Demonstrating Water Quality Improvements

- Limited resources demand accountability: Are we getting the biggest bang for our buck?
- Are our programs effective?
- Demonstrate that our watershed planning and conservation practices merit continued funding.

Design of a Monitoring Program

- Program design is determined by the monitoring objectives and data requirements
- Water Quality Monitoring Strategy (WQMS) is required by the Clean Water Act (CWA) Section 106 and includes 10 elements
- Priorities have changed over time, driving different monitoring designs

- State agency with CWA authority to implement programs to protect and restore water quality
- CWA requires monitoring to determine if waters are meeting water quality standards and to report on status every two years in Integrated Report and the 303(d) List of Impaired Waters
- To support other CWA programs such as drinking water and National Pollutant Discharge Elimination System (NPDES) permitting and compliance, and more recently, grant program watershed restoration activities

Water Quality Monitoring: Three General Approaches

- Fixed: An approach to sampling in which sites do not change from season to season
- Probabilistic: A stratified random approach to site selection
- Targeted: Intentional selection of sampling sites based on specific monitoring objectives or decisions to be made

Fixed Stations

- Water chemistry, bacteria (E. coli), and field analytical data collected monthly on rivers and streams
- Established in 1957 with 49 sites located mainly at drinking water intakes and Wastewater Treatment Plant (WWTP) outfalls
- Now 163 fixed locations
- Provides large, long-term data set to reveal water quality trends under changing conditions

Fixed Station Monitoring

- Point source compliance and enforcement effluent monitoring and mixing zone effects
- Data needs to calibrate and verify waste load allocation models for permit and water quality standard violations
- In the 1980s, U.S. Environmental Protection Agency (U.S. EPA) promoted a national fixed station network to characterize ambient water quality in flowing waters

Probabilistic Monitoring

- Randomly generated sites in rotating basins
- The monitoring approach that allows us to meet the CWA Section 305(b) goal of assessing all waters of the state
- Overall trends in water quality within each basin and allows basin-to-basin comparison
- Statistically robust with known level of confidence
 - Can predict water quality conditions for the basin
 - Does not indicate where specific impairments are located or the reasons for impairment
 - Data can also be used to make reach-specific assessments

We Protect Hoosiers and Our Environment

Water

Probabilistic Monitoring 1996-2011

Streams

Monitoring Strategy Areas

West Fork White

Patoka

East Fork White

Great Miami

Upper Wabash

Lower Wabash

Upper Illinois

Great Lake Tributaries

Ohio River Tributaries

Sources:

Probabilistic Sampling Site Data - Obtained from

the IDEM AIMS database

Stream Layer - Obtained from the USEPA Reach

File 1 (rf1.shp)

Map Projection: UTM Zone 16 N

Map Datum: NAD83

Mapped By:

Myra McShane, Office of Water Quality

Date: January 23, 2012

We Protect Hoosiers and Our Environment

Water

The "Problem" with Probabilistic Monitoring: The 303(d) "Listing Machine"

Indiana's 303(d) list continues to grow as a function of an imbalanced approach to monitoring.

- Probabilistic monitoring

 Sampling conducted at new sites every season, resulting in newly identified impairments that must be added to the list
- Targeted Monitoring

 Needed in order to tell the other side of the story, to identify improvements that may be occurring

Monitoring Objectives Priority Shift Accountability

- Is water quality improving; are our waters getting better?
- Are IDEM's programs effective at protecting, restoring or improving water quality?
- Are grant program monies for watershed restoration programs working or effective?

Five-Year Rotation Compared to a Nine-Year Rotation

Baseline Monitoring

- Comprehensive information to identify sources of impairment and designate critical areas for planning purposes
- Targeted sites in small watershed based on a progression of drainage area "snapped" to the nearest bridge
- Physical, chemical and bacteriological data collected monthly for one year and biology once per year
- Human health recreational use, drinking water use and aquatic life use
- Baseline data for measuring performance of best management practices

Watershed Improvements

- Must identify changes in water quality to receive federal CWA funds
- Targeted monitoring of waters previously impaired (sufficient recovery time)
- Sampling sites and parameters monitored vary based on original impairment (up to 20 sites)
- Human health recreational use, drinking water use and aquatic life use

Success Stories:

Showing Water Quality Improvements

- Pigeon Creek from pollutant and sediment impaired to measurable improvement in water quality
 - www.watersheds.IN.gov/files/watershed success epa pigeon.pdf
- Clifty Creek from impaired for bacteria to meeting WQS www.watersheds.IN.gov/files/watershed success epa clifty.pdf
- Big Walnut Creek from impaired for bacteria to meeting WQS
 www.watersheds.IN.gov/files/watershed success epa bigwalnut.pdf
- Bull Run from impaired biotic communities to a well-balanced biotic community http://water.epa.gov/polwaste/nps/success319/upload/in-bull.pdf

Questions?

Office of Water Quality
Watershed Assessment and Planning Branch

www.idem.IN.gov/5512.htm

Marylou Renshaw, Chief (317)308-3325, mrenshaw@idem.IN.gov