Identifying Critical Areas

in Your Watershed

Jane Frankenberger, Purdue University

Critical Area: Where watershed efforts are most likely to result in the greatest impact on water quality.

What characteristics cause watershed efforts to have the greatest impact on water quality?

- A source of pollution is causing a real problem
- We can identify the location it comes from
- A possible solution exists
- Land owner is willing to make a change

This location
 or source is
 the biggest
 problem

So what are some options for identifying critical areas?

One source of ideas:

IDEM's 2009 Checklist

Critical Areas Identification - From IDEM 2009

- "Within a WMP and following the above guidelines, critical areas should be identified as one or a combination of the following descriptions:
- 1. 12 digit HUCs or smaller geographic areas where a particular pollutant needs to be addressed to meet the water quality goals of the WMP.
- 2. Specific region within a 12 digit HUC or smaller geographic area where a particular source(s) is contributing a pollutant of concern and needs to be addressed to meet the water quality goals of the WMP.
- 3. Specific source(s), anywhere in the project area, that are contributing a pollutant of concern."

Critical Areas Identification Options From 2009 IDEM Checklist

1

Defined by geographic area (usually HUCs or subwatersheds)

Example: Mudbug Watershed 2

Combination

Example:

to streams in

Mudbug

Watershed

3

Defined by Source

Example:

Locations where livestock have access to streams

1. Defined by geographic area (usually HUCs or subwatersheds)

Example:

4 of the 5
12-digit HUCs in the watershed

1. Defined by geographic area (usually HUCs or subwatersheds)

Example:

Five priority
levels of HUCs
defined in a
large watershed

Where are the critical areas?

Unbuffered Streambank

Deciding on a process in your watershed

Critical Areas Identification Options

1

Defined by geographic area (usually HUC or subwatershed)

Makes sense if you

- Have monitoring data that differentiates locations
 - high spatial resolution
 - shows one watershed with higher yields (concentration or load/area)
- Have a very homogenous land use

Example of high spatial resolution monitoring data

 Define geographic areas if you have monitoring data that can differentiate locations

Critical Areas Identification Options

Makes sense if

- you know that there are particular behaviors that people are willing to change
- "the time is right" for grants to fund a particular solution to a source
- your monitoring data is sparse or concentrations in all areas are similar

3

Defined by source of pollution to address

Examples:

Cropped fields
without cover crops
Lawns that receive P
fertilizer

One idea for selecting sources

	Real	Can we	Can we	Land
Nitrogon — Sources	prob-	identify	address	owner
Nitrogen – Sources	lem?	locations?	source?	willing?
Drained cropland	Υ	maybe	Υ	
Manure land application areas	Υ	No	Υ	
Wastewater treatment plants	maybe	Υ	No	
Failing septic systems	maybe	No	No	
Pet waste	maybe	Υ	Υ	

The same process can be used for all pollutants of concern

	Real	Can we	Can we	Land
E. coli – Sources	prob-	identify	address	owner
E. Coll – Sources	lem?	locations?	source?	willing?
Livestock access to stream	Υ	Υ	Υ	
Manure land application areas	Υ	No	Υ	
Manure storage (leaks, spills)	maybe	No	No	
Failing septic systems	maybe	maybe	maybe	
Dense wildlife areas	maybe	Y	maybe	

The same process can be used for all pollutants of concern

	Real	Can we	Can we	Land
Sediment – Sources	prob-	identify	address	owner
Sediment—Sources	lem?	locations?	source?	willing?
Riparian areas lacking buffers				
Erosion in cropped fields				
(conventional tillage)				
Streambank and bed erosion				
Livestock access to streams				
Altered hydrology (ditching				
and draining)				

Does modeling help define critical areas?

Two concerns

- Often assumes the goal is to locate the biggest problem only
- Aggregates sources into one overall estimate for the subwatershed.

<u> </u>				
	HUC 12	HUC Name	Acreage	Current Nitrogen Load Ibs/year
	51202040401	Sugar Creek-Pee Dee Ditch	13,257	86,218
	51202040402	Sugar Creek-Marsh & Trees Ditch	15,541	101,250
	51202040403	Sugar Crook Barrett Ditch	14.001	94 719

Models are useful, but perhaps not for critical area definition

Useful for

- Load estimation
- Load reduction estimation
- If we are confident in load reduction, can use models to see where load reduction is greatest

Identifying Critical Areas in Your Watershed

Identifying Critical Areas

in Your Watershed

- Jane Frankenberger –
 Overview of options
- Kris Vance –
 Experiences in several watersheds, Options and reflections
- Rob Miller One specific experience in Central Muscatatuck Watershed

Illustration from Arkansas Watershed Advisory Group

Summary: Let's think about characteristics of critical areas

- A source of pollution is causing a real problem
- We can identify the location it comes from
- A possible solution exists
- Land owner is willing to make a change

Always keep in mind that the goal is to improve implementation