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Abstract—Modern GPGPU programming extensions like
OpenCL and CUDA have supported object-oriented workloads
on GPUs for several generations. However, no analysis of
object-oriented workloads running on massively parallel ac-
celerators has been investigated.

This extended abstract presents a performance analysis
of object-oriented workloads on a PASCAL Titan X GPU.
Our characterization demonstrates that GPUs have different
performance trade-offs when running object-oriented code
than traditional CPUs. Where CPUs are sensitive to the
misprediction of indirect branches that result from virtual
function calls, GPUs are more sensitive to the additional
memory system pressure that comes from loading pointers and
virtual function table entries.
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I. INTRODUCTION

General-purpose programming extensions like CUDA and
OpenCL have enabled the execution of C/C++ code on
GPUs. GPUs offer the potential for high performance and
energy efficiency, but a major barrier to their general adop-
tion is still programmability.

As CPUs and GPUs become more tightly integrated
and the complexity of applications benefiting from GPU
acceleration increases, popular software engineering tech-
niques like object-oriented (OO) design are likely to become
more commonplace. There are several impediments to the
widespread adoption of OO C++ in GPUs. The first is the
complexity involved in creating and maintaining multiple
sets of objects in the CPU and GPU memories. However,
features such as unified virtual memory may help alleviate
this issue by allowing user-level software to manage just one
set of objects. Once objects are allocated and migrated to the
GPU, the second greatest challenge is the runtime overhead
of OO code in a massively multithreaded environment.

The performance cost of OO code is a long-studied
problem in the CPU world [1]. Calling virtual functions,
whose targets are not known until runtime has resulted in
a significant amount of CPU hardware research focused
on improving the predictability of indirect branches. A
fundamental difference between CPUs and GPUs is that
GPUs do not use any speculative execution. The high area,
complexity and energy overheads of speculative execution
on GPUs make techniques like branch prediction not viable.
Additionally, GPUs use of thread level parallelism to hide
latency makes the extraction of instruction level parallelism
less important.

// Object Heirarchy
class RenderableObject {

__device__ virtual float3 getNormal(...)=0;
__device__ virtual float intersection(...)=0;

}

class Sphere : RederableObject {
__device__ virtual float3 getNormal(...) {

...
}
__device__ virtual float intersection(...) {

...
}

}

class Plane : RenderableObject {
__device__ virtual float3 getNormal(...) {

...
}
__device__ virtual float intersection(...) {

...
}

}

Figure 1: Pseudocode GPU ray tracer using OO.

II. WORKLOADS

To begin studying this problem such that software systems
and architectural techniques can be developed, we created
a set of GPU OO workloads by transforming several non-
OO GPU applications from GPGPU-Sim’s ISPASS [2] and
lonestarGPU [3] benchmark suites into OO equivalents:

Raytracing [2] (RAY): A high-level view of our OO
implementation is shown in Figure 1. We created an abstract
RenderableObject class and Sphere/Plain classes that inherit
from the Object class. The simulation renders 2 spheres and
1 plane in a 512x512 image.

Breadth-First Search [3] (BFS): BFS with a worklist
(BFSW) and BFS with a worklist and flags (BFSA) from
the lonestarGPU benchmark suite. We create a BFSGraph
class which derives from the Graph class with a virtual
processNode function.

Single-Source Shortest Path [3] (SSSP): SSSP imple-
ments the Bellman-Ford algorithm. We create an SSSPGraph
class which derives from the Graph class and overloads node
processing functions.

Minimum Spanning Tree [3] (MST): Minimum Span-
ning Tree is imported from the lonestarGPU benchmark suite
and uses Boruvka’s algorithm. We create an MSTGraph class
which derives from the Graph class.



0
2
4
6
8
10

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

BFS RAY BFS RAY BFS RAY

ExecTime Load/Stroe	
Instructions

L1	Cache	Transactions

N
or
m
.	R

at
io

0
0.5
1

1.5
2

2.5
3

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

ba
se

no
-in

lin
e

O
O

BFS RAY BFS RAY BFS RAY BFS RAY BFS RAY

Total	Instructions L1	Cache	
Throughput

SIMD	Efficiency Register/Thread Achieved	
Occupancy

Figure 2: Ratio of statistics measured on Pascal TITAN X for inlined functions (baseline), non-inlined functions and full
OO. Values normalized to the non-OO baseline.
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Figure 3: Execution time for OO workloads on a Pascal
TITAN X. Normalized to a non-OO GPU implementation.
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Figure 4: Instructions executed and load/store executed for
OO implementations normalized to non-OO baseline

Barnes-Hut N-Body [3] (BH): BH is a star cluster based
gravitational force algorithm to solve the N-Body problem.
We create a bhClass class to hold position data, etc.

III. EXPERIMENTAL RESULTS

Our experiments compare a non-OO version of the appli-
cations with our OO implementations.

Figure 3 shows the execution time for the object-oriented
implementation on a Pascal Titan X GPU normalized to
the baseline, non-OO version. Supporting object-oriented
schemes introduces slowdowns which vary from 1.12× to
8.56× with an average of 2.50×.

Figure 4 presents the normalized instructions executed,
subdividing them into all instructions (OO) and just the

increase in loads and stores (OO LDST). Both values are
normalized to their non-OO equivalent. The number of
instructions rise (due to virtual table lookups and function
calling instead of inlining). However, our graph applications
see a much larger increase in memory instructions.

Figure 2 presents statistics collected from the RAY and
BFS workloads. We compiled each baseline benchmark both
with and without function inlining to quantify the overheads
that come from simply calling a function, and what OO
adds on top of that. The graph shows normalized values
for execution time, warp SIMD efficiency, total number
of instructions executed, L1 statistics available from the
profiler, registers/thread usage and occupancy. BFS and RAY
both experience a significant slowdown with OO code, but
the reasons for each is slightly different. In BFS, a significant
portion of the overhead comes from calling functions (as the
no-inline implementation shows a 1.8× increase in execution
time). However, in RAY, removing inlining has little effect.
RAY’s performance decrease comes primarily from a large
drop in the L1 cache throughput, specific to OO code.

IV. CONCLUSION

This extended abstract provides an early look at the
performance of OO programs on GPUs. Our initial results
demonstrate that OO workloads on GPUs have different
characteristics and bottlenecks than OO code on CPUs. Our
study suggests that GPU OO programming places excessive
stress on the memory system.
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