
Judging a Type by Its Pointer: Optimizing GPU Virtual Functions

Mengchi Zhang∗

zhan2308@purdue.edu

Purdue University

West Lafayette, Indiana, USA

Ahmad Alawneh∗

aalawneh@purdue.edu

Purdue University

West Lafayette, Indiana, USA

Timothy G. Rogers
timrogers@purdue.edu

Purdue University

West Lafayette, Indiana, USA

ABSTRACT

Programmable accelerators aim to provide the flexibility of tra-

ditional CPUs with significantly improved performance. A well-

known impediment to the widespread adoption of programmable

accelerators, like GPUs, is the software engineering overhead in-

volved in porting the code. Existing support for C++ onGPUs allows

programmers to port polymorphic code with little effort. However,

the overhead from the virtual functions introduced by polymorphic

code has not been well studied or mitigated on GPUs.

To alleviate the performance cost of virtual functions, we propose

two novel techniques that determine an object’s type based only

on the object’s address, without accessing the object’s embedded

virtual table pointer. The first technique, Coordinated Object Alloca-

tion and function Lookup (COAL), is a software-only solution that

allocates objects by type and uses the compiler and runtime to find

the object’s vTable without accessing an embedded pointer. COAL

improves performance by 80%, 47%, and 6% over contemporary

CUDA, prior research, and our newly-proposed type-based allo-

cator, respectively. The second solution, TypePointer, introduces a

hardware modification that allows unused bits in the object pointer

to encode the object’s type, improving performance by 90%, 56%,

and 12% over CUDA, prior work, and our new allocator. TypePointer

can also be used with the default CUDA allocator to achieve an 18%

performance improvement without modifying object allocation.

CCS CONCEPTS

· Software and its engineering→Polymorphism; ·Computer

systems organization→ Single instruction, multiple data.

KEYWORDS

GPU, Virtual functions, Object-oriented programming

ACM Reference Format:

Mengchi Zhang, Ahmad Alawneh, and Timothy G. Rogers. 2021. Judging a

Type by Its Pointer: Optimizing GPU Virtual Functions. In Proceedings of the

26th ACM International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS ’21), April 19–23, 2021, Virtual,

USA. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/3445814.

3446734

∗These authors equally contributed to this work.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ASPLOS ’21, April 19–23, 2021, Virtual, USA

© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8317-2/21/04. . . $15.00
https://doi.org/10.1145/3445814.3446734

A Object

vTable*
vFunc* vFunc* …

Virtual Function Table

Type A

vFunc* vFunc* …

A Object

vTable*

B Object

vTable*

LDG R1, [vTable*]

LDG R2, [R1 + vFuncOffset]

CALL [R2]

A

A

BB
A

B
A

B

Virtual Function Table

Type B C

(a) Global memory and branch instructions involved in the CUDA

implementation of dynamic dispatch for virtual functions.

0%

50%

100%

Average Over Object-Oriented Apps

P
e

rc
e

n
t

la
te

n
cy

a
d

d
e

d

Indirect Call

Load vFunc*

Load vTable*A

B

C

(b) Breakdown of the average virtual function call overhead across

object-oriented GPU apps (Section 7) executing on an NVIDIA V100.

Figure 1: Direct cost of virtual function calls in GPUs.

1 INTRODUCTION

General-Purpose Graphics Processing Unit (GPGPU) programming

extensions like CUDA [2], OpenCL [32] and OpenACC [1] enable

the execution of C/C++ code on GPUs. While GPUs offer the po-

tential for high performance and energy efficiency, a major barrier

to their adoption as general-purpose accelerators is programmabil-

ity. To help alleviate this problem, the subset of C++ supported on

GPUs has grown to include much of the C++ standard as well as a

shared virtual address space with the CPU. These features can make

it possible for reusable, object-oriented frameworks, written for

multithreaded CPUs to execute on GPUs with little to no porting

effort. However, no contemporary GPU programming language

allows objects with virtual functions to be shared between the CPU

and a GPU with a discrete memory space. As a result, little work

has been done to evaluate the overhead of GPU virtual functions.

Despite these impediments, a number of high-performance, closed

source packages, like theOptiX raytracing library fromNVIDIA [39]

make use of virtual functions. Intel has also developed an iHRC

compiler [6] that has basic support for virtual function calls on inte-

grated Intel GPUs. A Github survey for instances of CUDA virtual

function calls reveals more than 35k GPU-side virtual functions

in the wild. These numbers indicate that there is clear interest in

executing virtual functions on the GPU, but their performance and

usability in contemporary systems hinders their widespread use.

Figure 1 illustrates the implementation and added latency of

the instructions involved in calling a virtual function, known as

241

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3445814.3446734
https://doi.org/10.1145/3445814.3446734
https://doi.org/10.1145/3445814.3446734

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

the direct cost [21], using contemporary CUDA1. Similar to C++

implementations on CPUs, CUDA implements virtual functions

by storing a virtual table (vTable) that contains virtual function

(vFunc) pointers for each type. Each object instance contains a

pointer to its vTable. To call a virtual function, a pointer to the

vTable is loaded A , then the table is accessed to obtain the virtual

function pointer B . Finally, an indirect branch is called using the

address loaded from the table C . Figure 1b plots a breakdown

of the latency added by each of these instructions using Program

Counter (PC) sampling across 11 GPU-enabled implementations of

object-oriented applications [35ś37, 40] executing on an NVIDIA

V100. 87% of the direct cost comes from the load to the vTable

pointer A . Since each object has it’s own private copy of the vTable

pointer, the load at A will be diverged, generating a request to a

different memory location from each thread. However, since the

many objects being accessed come from a much smaller number

of types, many threads will ultimately access the same vTable,

resulting in coalesced memory accesses and more cache hits for B .

If the vTable pointer load can be avoided, so can most of the direct

cost of calling virtual functions.

This observation is fundamentally different from what is ob-

served on CPUs, where fewer threads and more cache-per-thread

make the vTable pointer load an effective prefetch for the object

members that reside on the same cache block, which will likely

be accessed inside the virtual function itself. In GPUs, there are

2 reasons this prefetching is less effective: (1) the many threads

executing at once are likely to thrash the caches, decreasing the

likelihood of hitting on object members, and (2) even if the subse-

quent member accesses hit in the cache, cache bandwidth is wasted

on loading vTable pointers for many concurrent threads.

In CPUs, which rely on extracting instruction level parallelism

from a single thread, the predictability of the indirect branch C is

a major concern [29, 30, 33]. On GPUs, which do not use branch

prediction, multithreading provides enough independent work that

speculation and out-of-order execution is not necessary. On GPUs,

the problem with virtual function calls is the memory system.

We propose two techniques that completely avoid accessing the

per-object vTable pointer by identifying an object’s type based only

on the object’s address in memory. The first technique, Coordinated

Object Allocation and function Lookup (COAL), is implemented

completely in user-level CUDA. COAL coordinates the compiler

and GPU object allocator to place objects of the same type within

a set of address ranges. Without any programmer intervention,

compiler-generated code maps the object’s address to its type. The

second solution, TypePointer, requires a small hardware change to

the Memory Management Unit (MMU) to ignore the 15 unused bits

in the GPU virtual address space, where 64-bit values represent

a 49-bit virtual address. TypePointer uses these bits to encode the

object’s vTable location within the pointer to the object. When an

object is allocated, the runtime embeds an offset in these bits, which

is recovered using a simple sequence of shift and mask instructions

before a vFunc is called.

1In CUDA there is a level of indirection between B and C which loads from constant
memory to account for different function locations in different kernels. We omit it
here for clarity (see Section 2).

Prior work on supporting high-level languages on GPUs has

either removed the ability to access non-primate types on the

GPU [28, 41], or added support for virtual function calls through

embedded class tags and switch statements [3, 6, 45]. All prior so-

lutions that support virtual functions must still access the object to

determine its type, which we have identified as the key bottleneck.

Switch-statement based approaches, such as Intel’s Concord [6]

effectively eliminate the converged vTable access B , while still

accessing a type field embedded in each object instance, which is

similar to the access to the virtual function pointer A . To the best

of our knowledge, no prior implementation of virtual functions on

either CPUs or GPUs has attempted to determine an object’s type

based only on the object’s address.

To study real object-oriented workloads on GPUs, we introduce

a new object allocation mechanism, that allows the CPU and GPU

to share objects with virtual functions on NVIDIA GPUs with dis-

crete physical memory. Using this framework, we evaluate eleven

multithreaded, object-oriented workloads [35ś37, 40, 46], in both

simulation and on a silicon GPU. The goal of this paper is to remove

the need to completely restructure the design of multithreaded CPU

code, while still achieving significant gains on the GPU. Decades

of work on runtime systems, compilers and architectures for CPUs

have improved the execution of object-oriented applications enough

to make them commonplace. We seek to do the same for GPUs.

We make the following contributions:

• We demonstrate that there are different performance bottle-

necks when executing virtual functions on GPUs. CPUs suf-

fer significant performance loss from mispredicting indirect

branches, however, GPUs primarily suffer from additional

memory traffic caused by translating thousands of virtual

function calls in parallel.

• We propose COAL, a software-only solution that allocates

objects of each type consecutively, such that an automated

lookup function can determine an object’s type based only

on the object’s address.

• We propose TypePointer, a hardware mechansim that makes

use of unused bits in the virtual address space to encode each

object’s type, removing the lookup overhead and allocator

complexity of COAL.

• We introduce a Shared Object Allocation (SharedOA) frame-

work that allows the CPU and GPU to share objects with

virtual functions through unified virtual memory. SharedOA

eases the GPU porting process, allowing the CPU and GPU

to seamlessly share data types.

We demonstrate that, combined with our improvements to the

memory allocator, COAL and TypePointer improve the performance

of object-oriented code on GPUs by 80% and 90% respectively over

CUDA and add an additional 6% and 12% on top of the performance

improvements made by our proposed allocator. Since TypePointer

is allocator-independent, we also evaluate it in simulation when

applied on top of the default CUDA allocator, demonstrating an

18% performance improvement.

242

Judging a Type by Its Pointer: Optimizing GPU Virtual Functions ASPLOS ’21, April 19–23, 2021, Virtual, USA

CUDA

OpenCL

CUDA 1.X

Basic C

support

2006

CUDA 3.X

C++ class inheritance

& template inheritance

2010 2012 2014 2018

CUDA 4.X

C++ new/delete

& virtual functions

CUDA 6.X

Unified CPU/GPU

memory

CUDA 9.X

Enhanced Unified

memory, GPU Page

Fault

OpenCL 1.0

C99 support

2008

OpenCL 2.1

C++14 Class inheritance

& template inheritance

2015

OpenCL 2.0

Shared virtual memory

2013

Figure 2: Evolution of programming features in CUDA and OpenCL

2 OBJECT-ORIENTED CODE ON GPUS

Figure 2 details the state of GPU programming features in CUDA

and OpenCL over the last decade. Both platforms began by sup-

porting basic C and have gradually added features such as support

for objects, virtual functions and unified virtual memory. In C++,

runtime polymorphism is achieved through object inheritance and

implemented via virtual function calls. We focus this paper on vir-

tual functions in CUDA, as other programming languages, including

OpenCL do not support GPU-side virtual function calls. Despite

supporting virtual function calls, contemporary CUDA requires

that objects using them are manually allocated in GPU memory via

device-side calls to new. We extend CUDA such that the GPU can

accesses CPU-allocated objects with virtual functions.

Broadly speaking, overheads incurred by object-oriented pro-

gramming fall into two categories: one-time overheads that take

place when an object is created/destroyed, and recurring overheads

incurred every time code interacts with an object. One-time costs

can be substantial in workloads where objects are created and de-

stroyed dynamically at a high frequency. However scalable, parallel

applications, like the ones we study, often allocate data structures

once then operate on them repeatedly. Although studying the im-

plications of object initialization is an interesting problem [27], this

paper focuses on the runtime phase of the algorithms.

To support virtual function calls, where the location of the code

implementing the function is not known until runtime, the CUDA

compiler and runtime supports dynamic binding. The runtime cre-

ates one vTable per-type that gets initialized once for the whole

program. All objects contain a pointer to their type’s vTable, which

is initialized when the object is constructed. GPUs do not support

dynamic code loading or code sharing across kernels (like Linux

does with .so files). Therefore; the code for every virtual function

potentially used in a kernel must be embedded inside each kernel’s

code. That means that the same virtual function implementation

has different function addresses in different kernels. To support

object creation in one kernel and use in another (where the vir-

tual function’s location in memory may be different), a layer of

indirection is added to traditional CPU virtual function implemen-

tations. A second virtual function table is created in kernel-specific

constant memory. The per-kernel constant memory tables contain

the location of the virtual functions in each kernel’s instruction

memory. The global memory load B in Figure 1 retrieves an offset

into constant memory for the virtual function being called. Then a

Table 1: Overhead of calling virtual functions in prior work

and our proposed techniques. Acc=Number of global ac-

cesses.

Operation
State-of-the-art:

CUDA

Software Only:

COAL

Hardware

Support:

TypePointer

A Get vTable*
𝐴𝑐𝑐 ∝

𝑁𝑢𝑚𝑂𝑏 𝑗𝑒𝑐𝑡𝑠

𝐴𝑐𝑐 ∝

𝑁𝑢𝑚𝑇𝑦𝑝𝑒𝑠
0 𝐴𝑐𝑐

B Get vFunc*
𝐴𝑐𝑐 ∝

𝑁𝑢𝑚𝑇𝑦𝑝𝑒𝑠

𝐴𝑐𝑐 ∝

𝑁𝑢𝑚𝑇𝑦𝑝𝑒𝑠

𝐴𝑐𝑐 ∝

𝑁𝑢𝑚𝑇𝑦𝑝𝑒𝑠

C Call vFunc*
Indirect

Branch

Indirect

Branch

Indirect

Branch

constant memory load between B and C loads the virtual func-

tion’s address in the running kernel’s instruction memory. Since

this table is small, it fits in the dedicated constant memory cache

and we did not observe it to be a bottleneck, hence we omit it when

discussing Figure 1.

The implementation details of object-oriented features onNVIDIA

GPUs are not public. We obtain the information in this section by

reverse-engineering binaries with the NVIDIA profiler. We perform

all our analysis using CUDA 10.1 on an NVIDIA V100 Volta, how-

ever, we examined code from several different GPU generations

and observe similar behavior.

3 HIGH-LEVEL SOLUTION GOALS

Given the results in Figure 1, we design two independent solu-

tions that reduce the cost of finding the vTable*: COAL in pure-

software and TypePointer with hardware support. The goal of both

solutions is to reduce the memory accesses required to obtain an

object’s type (hence its vTable location, operation A in Figure 1).

Table 1 details the three abstract actions that happen when a vir-

tual function is called and enumerates the number of global mem-

ory accesses required for the baseline and our proposed solutions.

CUDA accesses each object instance to obtain the object’s vTable*,

meaning that memory accesses are proportional to the number

of accessed objects. In both our solutions, the vTable* is obtained

without dereferencing the object pointer, using only the object

pointer value itself. COAL modifies the memory allocator to allo-

cate objects of the same type in contiguous address ranges. Next,

a software lookup function obtains the object’s vTable* without

accessing individual objects by testing the object pointer against all

243

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

OBJ1

OBJ2

OBJ1

OBJ2

OBJ3

OBJ1

OBJ2

OBJ3

Base Addr 1

Base Addr 2

Base Addr 3

Range Addr 1

Range Addr 2

Range Addr 3

Virtual Range Table

Base 1 Range 1 Fun 1 Fun 2 …. Fun N

Base 2 Range 2 Fun 1 Fun 2 … Fun M

Base 3 Range 3 Fun 1 Fun 2 … Fun K

Type 1

Type 2

Type 3

Figure 3: Type-based object allocator.

the allocated ranges. The lookup operation still generates memory

accesses; however, memory accesses are now proportional to the

number of types in the program, not the number of objects. Gen-

erally, 𝑁𝑢𝑚𝑂𝑏 𝑗𝑒𝑐𝑡𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 >> 𝑁𝑢𝑚𝑂𝑏 𝑗𝑒𝑐𝑡𝑇𝑦𝑝𝑒𝑠 , which results

in less memory pressure using COAL. More importantly, there is

significant reuse in the lookup function, where each thread walks

a small, centralized data structure, regardless of which object it is

accessing. In contrast, CUDA accesses thousands of discrete objects

spread throughout memory to obtain their type. TypePointer is a

more efficient, alternative solution to COAL that requires a small

change to the compiler, allocator and hardware. Using a much

smaller allocator change than COAL, TypePointer makes use of ex-

tra bits in the 64-bit object pointer (GPU unified memory uses a

49-bit virtual address space) to embed object type information in-

side the pointer to the object when it is allocated. TypePointer then

uses a simple sequence of shift and mask instructions to obtain

the object’s vTable* without accessing main memory. TypePointer

requires a small change to the GPU’s Memory Management Unit

(MMU) to ignore the unused bits in the virtual address.

4 A TYPE-BASED SHARED OBJECT
ALLOCATOR

To implement COAL, we design a type-based memory allocator that

allows objects which make use of inheritance and virtual functions

to be shared between the CPU and GPU, greatly easing the port-

ing process. No industrial computing framework (CUDA, OpenCL,

OpenACC, etc) supports the use of objects with virtual functions

in unified virtual memory. To overcome this limitation, we design

a Shared Object Allocator (SharedOA). SharedOA is written in user-

level CUDA and allows users to allocate objects with inheritance

and virtual functions in managed memory using a sharedNew()

function. Objects allocated with sharedNew() store one CPU vTable

pointer and one GPU vTable pointer.

The type-based allocator has two main functions: (1) dedicate

contiguous chunks of memory to each object type, and (2) create

a tracking structure with the address ranges of each type, which

we call the virtual range table. There is an interesting challenge

in predicting how large the region dedicated to each object type

should be. If its too large, you risk wasting precious GPU memory

space, too small and you will have to allocate many discrete regions

for the same type, increasing the number of entries in the virtual

CPU-GPU Shared Space

SharedOA

Type-Based

Object

Allocator

Allocation on CPU

Obj* = sharedNew

TYPE1()

Kernel Launch

on GPU

Fun* = Object Range

Lookup(Obj*)

Call Fun*

Original Code

Obj->vFun()

Transformed Code

Fun* = Object Range

Lookup(Obj*)

call Fun*

E
xe

cu
ti

o
n

T
im

e
li

n
e

Compile Time Run Time

Allocate

C
o

m
p

il
e

r
In

st
r.

Virtual Range

Table

Generate
COAL

Lookup

i

ii

Returns

Function

Pointer

iii

iv

v

Figure 4: Overview of COAL.

range table. To alleviate this problem the allocator starts by allocat-

ing a small region size (i.e. 4K objects). If the region gets full, the

allocator creates a new region with double the size. This doubling

continues as more object are allocated and allows the regions sizes

to adapt with the demands of the workload. Further, when regions

of the same type happen to be allocated contiguously, the allocator

attempts to merge the contiguous regions into one larger region.

This system reduces the potential for memory fragmentation while

limiting the total number of allocated regions, which can have a

detrimental performance impact on COAL. We discuss this trade-off

in Section 5 and evaluate its effect on performance in Section 8.2.

Figure 3 illustrates an example of SharedOA’s operation. In the

example, there are three types that each have their own memory

region values, e.g., (Base 1, Range 1). OBJ1 can be easily identi-

fied as TYPE1 if the address of OBJ1 is between Base Addr 1 and

Range Addr 1. The allocator can create new regions for the same

type by simply allocating a new chunk, and adding a new entry

for another region of the same type of object. The allocator stores

this information in global memory by augmenting the traditional

virtual function tables with base and range values, which we call

the virtual range table (shown on the right hand side of Figure 3).

This table is accessible from the compiler generated code described

in Section 5. Allocating objects of the same type contiguously is

similar to how existing small-object allocators in modern operating

systems work [7, 9]. Small-object allocators in CPUs are primar-

ily used to improve allocation time, prevent fragmentation and

reduce space overhead. However, in GPUs, we observe that our

type-based SharedOA results in better object packing than the de-

fault CUDA allocator, which can have a positive impact on runtime

performance, independent of allocation time. We evaluate the ef-

fect of SharedOA without COAL in Section 8.2. Using the SharedOA

framework, we believe there is an interesting space in studying

shared object allocation in GPUs that is orthogonal to the virtual

function problem.

5 COORDINATED OBJECT ALLOCATION
AND FUNCTION LOOKUP (COAL)

COAL leverages the runtime object allocator described in Section 4

to determine an object’s type based on which address range the

object’s pointer falls into. Figure 4 presents an overview of COAL’s

components. The left side of Figure 4 illustrates the compile-time

instrumentation of GPU code and the right side presents an example

244

Judging a Type by Its Pointer: Optimizing GPU Virtual Functions ASPLOS ’21, April 19–23, 2021, Virtual, USA

of how COAL works in co-ordination with the object-allocator

at runtime. To implement the lookup portion of COAL, we use

the compiler to statically instrument the GPU code, replacing the

traditional virtual table pointer access (i in Figure 4) with a lookup

mechanism based on object ranges, followed by a call to the function

pointer resulting from the lookup (ii).

On the right side of Figure 4, the runtime SharedOA allocator

is invoked by the CPU and type-based allocation is performed

(iii). When the GPU kernel is launched, the transformed code calls

the COAL lookup implementation (iv), which returns the correct

function pointer (v).

Algorithm 1: Scan algorithm for the virtual range table

Function ObjectRangeLookup(𝑜𝑏 𝑗𝑒𝑐𝑡𝐴𝑑𝑑𝑟 , 𝑓 𝑢𝑛𝑐𝐼𝑛𝑑𝑒𝑥)

node = 0;

nextNode = 0;

while True do

if objectAddr in node.left.range then

nextNode = 2 * node + 1;

else if objectAddr in node.right.range then

nextNode = 2 * node + 2;

else

return NULL;

end

if nextNode >= treeSize then

return node.vfuncTable[funcIndex];

end

end

end

The role of code generation in COAL is two fold: (1) to instru-

ment virtual functions with a pre-defined range checking algorithm

that will find the appropriate virtual function to call based on the

object’s address, and (2) to determine which virtual function calls to

instrument with range checking. In some cases, the cost to perform

the range search will outweigh the benefit of accessing the object.

This is a heuristic-based decision that can be decided by multiple

factors. For this work, choose not to instrument a virtual function

with COAL if we can statically determine that every thread in a

warp will be accessing the same object instance when they call the

virtual function. There are several call points in the apps we study

where this is true. We have observed that removing coalesced loads

to the same object does not outweigh COAL’s overhead.

The compiler inserted code must first access the virtual range

table to determine the object’s type. Once the type is known, the

compiler looks up the correct virtual function to call by indexing

into the object’s virtual range table, in the same way traditional

vTable lookups operate.

To implement the scan in COAL, we organize the types into a

segment tree [16]. Each leaf node contains the base and the range

address of one type, while each internal node includes the mini-

mum and maximum address boundaries of two child nodes. Our

balanced segment tree algorithm is shown in Algorithm 1 and has

𝑂
(

log2 (𝐾)
)

complexity, where K is the number of object ranges.

The compiler implements these operations, as it has knowledge

TypeTypePointer Format GPU Addr

15-bit 49-bit

(a) Format of the TypePointer returned by the new operation.

𝑅𝑜𝑏 𝑗 : The register containing the object address (known by the

compiler)

𝑅𝑣𝑇𝑎𝑏𝑙𝑒𝑠𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟 : Beginning address of the contiguous page table

storage (a fixed register similar to the virtual page table register)

#𝑣𝐹𝑢𝑛𝑐𝑂𝑓𝑓 𝑠𝑒𝑡 : The byte offset for the vfunc within the vTable

(known by the compiler)

1: 𝑆𝐻𝑅 𝑅𝑎, 𝑅𝑜𝑏 𝑗 , #49

2: 𝐴𝐷𝐷 𝑅𝑎, 𝑅𝑎, 𝑅𝑣𝑇𝑎𝑏𝑙𝑒𝑠𝑆𝑡𝑎𝑟𝑡𝐴𝑑𝑑𝑟

3: 𝐿𝐷𝐺 𝑅𝑎, #𝑣𝐹𝑢𝑛𝑐𝑂𝑓𝑓 𝑠𝑒𝑡 (𝑅𝑎)

4:𝐶𝐴𝐿𝐿 𝑅𝑎

(b) Instructions implementing virtual function calls with Type-

Pointer

Figure 5: TypePointer format and operations.

of which register contains the object address, and which virtual

function is being called.

The chunk size used by the memory allocator introduces a trade-

off between using large and small chunks for the object ranges. For

COAL, the optimal chunk-size varies per-application both because

of variance in the object size and the number of objects created. To

help adjust for this variance, the COAL allocator creates chunks

based on the number of objects in the range, not raw byte values.

Therefore larger objects are given larger chunk sizes. A sensitivity

study of SharedOA’s initial chunk-size is presented in Section 8.2.

6 TYPEPOINTER

In this section, we present TypePointer, a more efficient alterna-

tive to COAL that locates an object’s vTable without generating

additional memory requests. TypePointer exploits unused bits in

the GPU’s 64-bit virtual address space to encode the type’s vTable

location. Althoughmore efficient than COAL, TypePointer requires a

small hardware change and has a finite limit on the number of types

that can use it. TypePointer requires a small change in each of the

memory allocator (Section 6.1), compiler (Section 6.2) and hardware

(Section 6.3). Section 6.4 describes TypePointer’s limitations.

6.1 TypePointerMemory Allocator
Modifications

TypePointer’s memory allocator must encode each object’s type in

the pointer returned from the new operation. Both the memory

allocator and the GPU’s virtual to physical memory translation

hardware must agree on which bits of the virtual memory space are

used to encode the object type. The memory allocator then creates

the virtual function tables for all allocated objects in a contiguous

memory region such that the unused bits in the pointer can be

used as an offset into the space allocated for vTables. Figure 5a

describes the format of the TypePointer returned by the allocator.

Allocating vTables contiguously allows TypePointer to load the

vTableStartAddr into a register at the beginning of the program,

245

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

similar to how the page table register is initialized with the page

table’s address. Note that it appears vTables are already allocated

contiguously in CUDA.

The unused 15-bits in the virtual address space allows us to en-

code 32kB worth of vTable space, which is enough for 4k virtual

function pointers, shared among all the types used in the program.

This is more than sufficient for the programs we study in this pa-

per, however if more pointers are required, we can pad each type’s

vTable such that they are all the same size and use the 15-bits as an

index, which gets multiplied by the vTable size to determine the off-

set. This would allow us to map 32k different types, which is many

more types than most heavily object-oriented CPU programs [14].

In the extremely unlikely case that a program has more than 32k

types, the compiler can make this determination at link time and

choose to use TypePointer on a subset of types, and use COAL or the

traditional CUDA vFunc lookup as a backup mechanism. Note that

TypePointer can be implemented in either our type-based allocator

(which we evaluate in Section 8.1), or in the default CUDA allocator,

evaluated in Section 8.2.

6.2 TypePointer Compiler Modifications

To call a virtual function using TypePointer, the compiler inserts

a sequence of instructions to extract the vTable offset from the

unused 15-bits of the object’s pointer. Figure 5b lists the assembly

instructions that shift the object’s address (line 1), add the offset

to the beginning of the contiguous vTable space (line 2), loads the

appropriate vFunc* based on the vFuncOffset (line 3), then calls the

function (line 4). To implement a version of TypePointer that can

map more types, an index (instead of a byte-offset) can be stored in

the object pointer. The ADD instruction (line 2) is then replaced

with a fused multiply-add that multiplies a vTable size register

(which is initialized upon program launch) by the index. In this

implementation the system must ensure that the vTables for all

object types are padded to the maximum vTable size, potentially

wasting space. In the benchmarks we study, TypePointer works

with either solution. In the worst case, the padded implementation

consuming only 360 additional bytes with the total space devoted

to vTables being < 1𝑘 .

6.3 TypePointer Hardware Modifications

To implement TypePointer in a production system, a small change

must be made to the MMU, in order to avoid triggering exceptions

when unused bits of the virtual address space are modified. This

would involve a small change to the logic in the MMU that would

not introduce any practical overhead. Such a modification could

also be implemented with an enable flag such that the feature can

be disabled on applications that do not require TypePointer support.

To study TypePointer on a real machine, we develop a prototype that

avoidsMMU exceptionswhen attempting to access objects allocated

with TypePointer. In particular, we discovered that the CUDAunified

memory allocator returns a consistent pattern in the upper 15-bits of

allocated addresses. Leveraging this fact, we modified our memory

allocator to encode type information in the upper-most 15 bits,

then replace these bits with the known consistent pattern before

we access the fields of the object. This implementation adds some

additional overhead to mask out our type information at runtime,

but gives us the ability to evaluate TypePointer on a real machine.

We also evaluate TypePointer in simulation using Accel-Sim [31].

In simulation we evaluate TypePointer using the default CUDA

memory allocator (Section 8.2) and confirm that our prototype has

similar performance to a machine with a modified MMU.

6.4 TypePointer Limitations

TypePointer embeds type information in an object’s pointer when

the object is constructed. Generally, valid C++ code that constructs

objects with the new operator can use these special pointers without

any effect on functionality. However, there are some corner-cases

where, without additional runtime checking, using TypePointermay

produce a different result than the same program without Type-

Pointer. In particular, if the program: (1) Manipulates the pointer

bits in C, clobbering the upper 15 bits of the pointer value. Gener-

ally, this will produce undefined behavior in C/C++ and will cause

TypePointer to break. (2) Uses abusive C-style pointer casting that

converts a pointer of one type into another. Again, this will gener-

ally cause undefined behavior without TypePointer, but there are

more instances where incorrect execution will occur when Type-

Pointer is used. (3) Mixes the TypePointer allocator with the other

allocators that are unaware of the type embeddings.

7 EXPERIMENTAL METHODOLOGY

We evaluate the effectiveness of COAL and TypePointer on an

NVIDIA Volta V100 GPU. For all our experiments we compile the

workloads with full optimizations (-O3) using CUDA 10.1. We use

the CUDA command-line profiler NVProf [38] and the CUDAVisual

Profiler to collect the profiling data for all techniques. To collect

data we run each program 10 times and report the average as well as

the maximum and minimum performance of the computation ker-

nels, as reported by NVProf. For the counter statistics, NVProf runs

the applications several times and reports the average, which we

found to have very low variance. To permit the workloads enough

heap space, we use the CUDA functions cudaDeviceSetLimit() and

cudaLimitMallocHeapSize and set the heap to 4GB.

To implement SharedOA, we override the default CUDA mem-

ory allocator. Since we implement SharedOA entirely in user-level

CUDA code and do not have access to device driver code or the

finalizing compiler, we run a tiny initialization kernel to leverage

CUDA’s vTable creation mechanism and update each object’s GPU

vTable*. This tiny kernel is run only once before the first kernel call

and consumes, on average, 0.15% of the total initialization time. The

init kernel can be completely avoided by implementing SharedOA

inside the CUDA backend. We implement a PTX-level compiler

transform to access vTables from the GPU-side vTable pointer.

To evaluate TypePointer, we implement a software-only proto-

type (described in Section 6.3) that bypasses the need to modify

the MMU. We use this prototype to evaluate TypePointer in Sec-

tion 8.1. In addition, we also evaluate TypePointer in simulation

using the V100 model in v1.0.0 of the SASS-based Accel-Sim +

GPGPU-Sim [31] simulator. We use the simulator to evaluate Type-

Pointer both with and without the software overhead introduced

to avoid MMU errors in our prototype, which we find to be in-

significant. Therefore; we only include only real hardware results

246

Judging a Type by Its Pointer: Optimizing GPU Virtual Functions ASPLOS ’21, April 19–23, 2021, Virtual, USA

Table 2: Workloads. # Objects=Number of object instances created. # Types=Number of types in the program. #vFunc=Total

number of virtual functions in the compiled code. vFuncPKI=Dynamic virtual function calls per thousand instructions.

Workload Description # Objects # Types vFuncs
vFunc

PKI

Dynasoar Workloads [22, 46]

Traffic (TRAF)
A Nagel-Schreckenberg model traffic simulation to model streets, cars and

traffic lights for traffic flows.
1573714 6 74 30.6

Game Of Life (GOL)
Game of life is a cellular automaton formulated by John Horton Conway.

This benchmark has two abstract classes Cells and Agent.
5645916 4 29 26.9

Structure (STUT)
Structure uses the Finite element method to simulate the fracture in a

material. The benchmark models the material with springs and nodes.
525000 4 40 30.0

Generation (GEN)
Generation is an extension of gol benchmark. The cells in Generation have

more intermediate states which lead to more complicated scenarios.
1048576 4 33 29.8

GraphChi-vE Workloads [35]

Breadth First Search (BFS)

BFS traverses graph nodes and updates a level field in a breadth-first

manner. The GraphChi-vE BFS implementation defines an abstract class

for edges, ChiEdge, and a concrete classEdge, which implements

all the virtual functions of ChiEdge.

2254419 4 5 35.9

Connected Components (CC)

Connected Component is commonly used for image segmentation

and cluster analysis, it employs an iterative node updates according

to the labels of adjacent nodes.

2254419 4 6 29.5

Page Rank (PR)
Page rank is a classic algorithm to rank the pages of search engine results

using iterative updates for each node.
2254419 4 3 36.9

GraphChi-vEN Workloads [36]

Breadth First Search (BFS)

The GraphChi-vEN BFS implementation also defines an abstract base

class for vertex, ChiVertex, and a concrete class vertex, which implements

ChiVertex’s virtual functions.

2254419 4 15 52.2

Connected Components (CC)
GraphChi-vEN CC is similar to GraphChi-vE described above. However,

GraphChi-vEN CC has both virtual edges and nodes.
2254419 4 15 44.2

Page Rank (PR)
GraphChi-vEN PR is similar to GraphChi-vE described above.

However, GraphChi-vEN PR has both virtual edges and nodes.
2254419 4 10 54.4

Open Source Ray Tracer [40]

Raytracing (RAY)

RAY performs global rendering of of spheres and planes. The algorithm

traces light rays through a scene, bouncing them off of objects, and back

to the screen.

1000 3 3 15.4

in Section 8.1. We also use the trace-based simulator to evaluate the

effect of TypePointer when using the CUDA allocator (Section 8.2).

We evaluate eleven representative applications from different

scalable, multi-threaded CPU frameworks [35ś37, 40] and contem-

porary object-oriented GPU workloads [22, 46]. The workloads we

study focus on graph analytics [35ś37], model simulations [22, 46]

and raytracing-based rendering [40], where parallel, object-oriented

programming is a natural fit. The workloads and their characteris-

tics are listed in Table 2.

8 EXPERIMENTAL RESULTS

In this section, we evaluate the effectiveness of both COAL and

TypePointer compared to the contemporary CUDA implementation

of virtual functions, the type-tag implementation in Intel’s Con-

cord [6] work and our type-based SharedOA allocator. We perform

functional validation on all the implementations to guarantee they

produce the same results. We study the following techniques:

CUDA: We implement the workloads using the default CUDA vir-

tual function implementation mechanism. By default, CUDA does

not support shared objects between the CPU and GPU. Therefore,

an object initialization kernel is run prior to executing the compute

kernels. The time required for this initialization is not included in

the CUDA results.

Concord: We support virtual function calls as described in Con-

cord [6], where a type field is embedded in each object instead of

a virtual function pointer. When a virtual function is called, the

compiler inserts a switch statement, which reads the embedded

type tag, then jumps to the appropriate function body. Concord

does not support true runtime polymorphism, since the call targets

must be known at compile-time.

SharedOA: We implemented the type-based shared object allocator

as described in Section 4. Objects of the same type are allocated

together in the same contiguous region.

COAL: We implement COAL as described in Section 5. COAL is

built on top of SharedOA, hence the performance improvements

demonstrated by COAL over CUDA and Concord are a combination

of the allocator effects and the effect of removing vTable* lookups.

TypePointer: We implement TypePointer as described in Section 6

inside the SharedOA allocator described in Section 4. To apply Type-

Pointer, we perform instrumentation at each virtual function call to

get the vFunc* and add instructions at member variable references

247

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

0.59
0.72

1.06
1.12

0

0.5

1

1.5

2

T
R

A
F

G
O

L

S
T

U
T

G
E

N

B
FS C
C

P
R

B
FS C
C

P
R

Dynasoar GraphChi-vE GraphChi-vEN RAY GM

N
o

rm
.

P
e

rf
.

o
n

si
lic

o
n CUDA Concord SharedOA COAL TypePointer

Figure 6: Performance, normalized to SharedOA on a silicon V100 GPU, averaged over 10 runs (error-bars=max and min).

0

1

2

3

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

C
U
D
A

C
O
N

S
H
A
R
D

C
O
A
L

T
P

TRAF GOL STUT GEN BFS CC PR BFS CC PR

Dynasoar Graphchi-vE Graphchi-vEN RAY AVG

N
o

rm
.

W
a

rp
 I

n
st

ru
ct

io
n

s MEM COMPUTE CTRL

Figure 7: Dynamicwarp instruction breakdown forCUDA,Concord (CON),COAL andTypePointer (TP) normalized to SharedOA

(SHARD). We break instruction types into memory (MEM), compute (COMPUTE) and control (CTRL).

to remove the TypePointer’s type bits. In order to provide a clean

comparison of TypePointer to COAL, we implement TypePointer on

top of our custom SharedOA allocator. However, since TypePointer

is allocator-independent, we also evaluate the effect it has when

applied to the default CUDA allocator in Section 8.2.

8.1 Experiments on COAL and TypePointer

Figure 6 plots the speedup of CUDA, Concord, COAL and Type-

Pointer, normalized to SharedOA. CUDA and Concord suffer a per-

formance loss versus SharedOA. Packing objects of the same type

into the same region of memory has a net positive impact on perfor-

mance that the default CUDA allocator is not able to capture. Adding

COAL and TypePointer on top of SharedOA further improves perfor-

mance over SharedOA by 6% and 12% respectively. AlthoughCOAL’s

geomean performance improvement over SharedOA is somewhat

muted, there is wide variation in the magnitude of the improve-

ment. In STUT, COAL achieves a 1.5× improvement over SharedOA,

while in GEN and GOL, COAL suffers a slight performance regres-

sion versus SharedOA, but still significantly outperforms CUDA

and Concord. Since Concord avoids loading a true vFunc* (B in

Figure 1a), it demonstrates some performance improvement over

CUDA, at the expense of flexibility and an increase in code size

comparing to CUDA. However, Concord must still access a field in

each object to determine the object’s type, which is an operation

similar to A in Figure 1a. If each thread is accessing a different

object, this load will be highly diverged and overwhelm the mem-

ory system. COAL and TypePointer demonstrate a speedup because

they eliminates this diverged load. Since TypePointer eliminates

all the accesses for vTable* shown in Table 1, TypePointer achieves

better performance than COAL on all the workloads. Interestingly,

Concord performs slightly better for RAY. A closer inspection of

RAY reveals that a number of the virtual function calls are not

diverged. RAY has several loops where each thread accesses the

same renderable object to determine if the ray collides with this

object. In these instances, COAL’s static analysis will not instru-

ment the virtual function since the overhead of the lookup is likely

to be higher than the gain. For TypePointer on RAY, TypePointer’s

performance is roughly equivalent to Concord (within the margin

of error), since removing the vTable* accesses is a less significant

bottleneck. Concord is able to take advantage of inter-procedural

optimizations enabled by statically knowing all the potential call

targets, which the other techniques (that support true dynamic

dispatch) cannot.

Figure 7 shows the dynamic warp instruction breakdown for

CUDA, Concord, COAL and TypePointer normalized to SharedOA.

CUDA has the same instruction breakdown as SharedOA since the

allocator does not affect the execution of instructions. To apply

different techniques, Concord, COAL and TypePointer increase the

instructions by 28%, 83% and 19%. Concord adds a number of com-

pute and control instructions to the program and reduces memory

instructions by half. This is due to the fact that Concord uses low

overhead switch statements to replace high cost indirect function

248

Judging a Type by Its Pointer: Optimizing GPU Virtual Functions ASPLOS ’21, April 19–23, 2021, Virtual, USA

1.00
0.82 0.86

0.81

0

0.5

1

1.5

2

T
R

A
F

G
O

L

S
T

U
T

G
E

N

B
F
S

C
C

P
R

B
F
S

C
C

P
R

Dynasoar GraphChi-vE GraphChi-vEN RAY GM

N
o

rm
.

G
lo

b
a

l L
o

a
d

T
ra

n
s
a

c
ti

o
n

s
CUDA Concord SharedOA COAL TypePointer

Figure 8: Global load transactions, normalized to SharedOA on a Silicon V100 GPU.

31%
31%

44%
47%
45%

0%

20%

40%

60%

80%

100%

T
R

A
F

G
O

L

S
T

U
T

G
E

N

B
F
S

C
C

P
R

B
F
S

C
C

P
R

Dynasoar GraphChi-vE GraphChi-vEN RAY AVG

L
1

 H
it

 R
a

te

CUDA Concord SharedOA COAL TypePointer

Figure 9: L1 cache hit rate on a silicon V100 GPU.

calls. COAL increases all categories of instructions, but the memory

instructions have a higher cache hit rate and the compute instruc-

tions can be effectively hidden with multithreading. Versus COAL,

TypePointer decreases both compute and memory instructions, re-

quiring far fewer instructions to compute the object’s vTable* and

resulting in fewer memory transactions (Figure 8). Keep in mind

that one dynamic warp instruction can generate up to 32 memory

access, which is not reflected in examining the instruction break-

down in Figure 7 alone.

Figure 8 plots the number of global load transactions generated

by the respective techniques. COAL reduces loads by 14% because

it eliminates the diverged, low-locality vTable* load. However, addi-

tional global loads are added to perform the range check. Concord

reduces loads by a greater fraction than COAL because it does not

have the lookup overhead associated with performing the range

check. However, as we will see in Figure 9, the loads generated by

COAL are all to the same structure and hit in cache, whereas the L1

hit rate in Concord stays relatively constant versus CUDA. Since

TypePointer does not access memory to find the object’s vTable, it

efficiently decreases global load transactions by an average of 19%.

Finally, Figure 9 plots the L1 cache hit rate for CUDA, Concord,

SharedOA, COAL and TypePointer. Although Concord removes a sig-

nificant number of loads from the program, it generally decreases

the hit rate of the L1 cache. Concord removes many of the L1 hits in

the original CUDA program. COAL, on the other hand, sees a large

increase in L1 hit rate on all the applications, with the exception

of RAY, where COAL instruments relatively few instructions. The

hit rate improves becasue COAL removes the diverged load (A

in Figure 1) that often missed in the L1 cache. All the extra loads

instructions added to access the virtual range table in global mem-

ory turn into hits in the L1 cache, since the thousands of in-flight

objects are composed of relatively few types (Table 2). RAY is an

outlier for Concord, where the extra global loads added exhibit sig-

nificant locality. The L1 hit rate for TypePointer remains relatively

constant or even falls (versus COAL) in some applications, however,

it generates fewer transactions than COAL.

8.2 Allocator Effects

As mentioned in Section 4, the memory allocator alone can have

an impact on the performance of compute kernels. Although the

details of the CUDA allocator are not public, we observe that it

does not allocate objects of the same type consecutively and adds

additional padding between allocated objects. Although not the

primary focus of this paper, the more tightly-packed objects have a

positive performance impact in our applications. Figure 6 shows

the performance of SharedOA over CUDA, alongside the other

techniques evaluated in the paper for context. SharedOA alone is

able to out-perform CUDA by 41% because objects of the same type

tend to be accessed together and packing them in the same region

decreases divergence and increases cache performance. Applying

COAL on top of SharedOA improves performance by a further 6%.

In some apps, like STUT, COAL significantly improves performance

over SharedOA, where in others, the overhead of COAL causes a

small performance drop, although COAL is always significantly

249

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

0

1

2

3
4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M

TRAF GOL STUT GEN BFS CC PR BFS CC PR

Dynasoar GraphChi-vE GraphChi-vEN RAY GM

N
o
rm

.
P
e
rf
o
rm

a
n
ce

(a) COAL’s performance with different initial chunk sizes noramlized to CUDA on a silicon V100 GPU. Each X increases the initial region size

by 4× from 4k to 4M objects.

0%

50%

100%

4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M 4
K

4
M

TRAF GOL STUT GEN BFS CC PR BFS CC PR

Dynasoar GraphChi-vE GraphChi-vEN RAY AVG

E
x

te
rn

a
l

F
ra

g
m

e
n

ta
ti

o
n

(b) SharedOA external fragmentation with different initial chunk sizes on a silicon V100 GPU. Each X increases the initial region size by 4×

from 4k to 4M objects.

Figure 10: Effect of the allocator’s initial region size on performance and fragmentation.

1.18

0

0.5

1

1.5

2

T
R

A
F

G
O

L

S
T

U
T

G
E

N

B
F
S

C
C

P
R

B
F
S

C
C

P
R

Dynasoar GraphChi-vE GraphChi-vEN RAY GM

N
o

rm
.

P
e

rf
o

rm
a

n
ce CUDA TypePointer on CUDA

Figure 11: TypePointer performance on the CUDA allocator

in a V100 GPU simulation.

better than CUDA. Using TypePointer instead of COAL removes the

performance overhead from COAL.

COAL’s performance can vary based on the number of objects

initially allocated per region, before the region doubling starts.

Figure 10a sweeps the number of objects in the initial region size

from 4k to 4M. Generally, the performance of COAL is stable across

initial region sizes, with only GEN demonstrating a significant per-

formance increase at 2M. To better understand the fragmentation

caused by our proposed allocation scheme, Figure 10b plots Share-

dOA’s external fragmentation when the number of the objects in

the initial region size ranges from 4k to 4M. The fragmentation

varies from 17% at 128k to 27% at 4M. Similar to other small-object

allocators, SharedOA does not suffer from internal fragmentation.

To show that TypePointer is not dependent on a particular mem-

ory allocator, we also evaluated it in simulation on the default

CUDA memory allocator, which is plotted in Figure 11. Overall,

TypePointer is able to improve performance by 18% without any

major changes to the CUDA allocator.

Although not the focus of this paper, we also performed an evalu-

ation of our SharedOA allocator’s object initialization performance

versus the CUDA allocator. For the object initialization phase, Share-

dOA outperforms the default CUDA allocator by a geometric mean

80× over all our applications. Since SharedOA is a host-side alloca-

tor, we eliminate the huge synchronization overhead imposed by

performing device-side allocation of objects with virtual functions.

8.3 Scalability Study

To understand performance as types and objects scale, we perform a

study using a set of microbenchmarks that have high vFuncPKI. One

benchmark uses the standard CUDA implementation, where objects

are allocated on the GPU and use virtual function calls (CUDA).

Another use branches to arbitrate different "types" (BRANCH),

without any objects or object-oriented program. In all benchmarks,

threads scale with the number of objects and the compute inside

the function call is a simple addition operation. BRANCH decides

which function to call based on register values and does not access

memory for the function call. It represents control flow on GPUs

without memory overhead.

Using 4 types, we vary the number of objects from 1 million to

32 million in Figure 12a. As the number of objects increase, the

slowdown for CUDA versus BRANCH reaches 5.6×, while COAL

and TypePointer continue to linearly track BRANCH, demonstrating

3.3× and 2.0× slowdown over the idealized BRANCH microbench-

mark at 32M objects. In Figure 12b, we fix the number of objects

at 16M and scale the number of types being accessed by one warp.

As the number of types accessed by one warp increases, the per-

formance universally degrades across all the benchmarks, since

branch divergence increases. COAL consistently tracks closely to

BRANCH. At 32 types, the relative difference between the various

methodologies becomes small. In highly diverged code, the over-

heads associated with virtual functions are less pronounced. Since

fewer threads are active, memory has less contention and most of

the performance loss comes from poor SIMD utilization.

250

Judging a Type by Its Pointer: Optimizing GPU Virtual Functions ASPLOS ’21, April 19–23, 2021, Virtual, USA

0

40

80

120

160

1 2 4 8 16 32

N
o

rm
.

E
x
e

cu
ti

o
n

 T
im

e

number of objects (x 1 million)

type = 4

BRANCH CUDA COAL TypePointer

(a) Execution time, normalized to BRANCH with 1M objects, on a sili-

con V100 GPU as the number objects scale.

0

4

8

12

16

1 2 4 8 16 32

N
o

rm
.
E

x
e

c
u

ti
o

n
 T

im
e

number of types

object = 16M

BRANCH CUDA COAL TypePointer

(b) Execution time, normalized to BRANCH with 1 type, on a silicon

V100 GPU as the number of types scale.

Figure 12: Scalability experiments on microbenchmarks.

9 RELATED WORK

GPU Programmability. Prior work on supporting productive

languages in GPUs [28, 41, 45] has primarily focused on supporting

primitives and simple data structures on the GPU, opting to avoid

the use of virtual functions in GPU code. We explicitly focus on

efficiently executing GPU virtual function calls, rethinking their

implementation in massively multithreaded environments by em-

ploying a coordinated effort between the compiler and runtime

system. A body of work also exists on providing CPU-like pro-

grammability for GPUs. Support for a file system abstraction [44],

network stack [34] and more advanced memory management [42]

are examples of this. Although these works share the same motiva-

tion as ours, they are focused on other aspects of programmability.

GPUbenchmarks. There are numerous GPU benchmark suites [5,

10, 13, 48], and object-oriented CPU suites [8, 24, 51]. However,

there are no publicly available GPU benchmark suites that contain

object-oriented applications with virtual function calls. We believe

this is, in part, because the performance implications we study have

not been explored before.

Virtual Function Calls on CPUs. A vast amount of CPU work

has improved indirect branch/indirect jump [20] prediction [29,

30, 33], addressing the performance loss from misspeculation on

CPUs. Other works have looked at profile-guided techniques [11,

12, 20] for increasing single-threaded performance and making

code better suited to conditional branch predictors. However, a

fundamental difference between CPUs and GPUs is that GPUs do

not use any speculative execution and the cost of profiling and

recompiling thousands of concurrently executing threads is high.

On the software side, Just-In-Time (JIT) compilation techniques in

managed languages like Python and Java have removed much of

the overhead via profiling techniques that recompile the code and

inline virtual function calls at their call sites [17ś19, 23, 26, 49, 52].

Dynamically recompiling GPU code on the fly is a challenge for

several reasons. First, any inlining would have to be performed on

a per-thread basis, as the same call-site will be used by thousands

of threads, accessing thousands of objects. Second, there is no on-

device JIT compiler for contemporary GPUs.

Object-Oriented Programming On GPUs. In GPUs, the SIMT

stackmechanism to handle an indirect branch has been patented [15].

Barik et al. [6] develop Concord, which enables a subset of C++

to execute on integrated Intel CPU/GPU systems. Concord does

not support virtual function calls through indirect branches, but

instead relies on a set of if/else conditionals that test the object

type and must still dereference the object pointer to determine its

type. Other work [28, 41, 45] has supported advanced programming

languages on GPUs, (e.g., Java and Ruby). However, no work has

quantitatively analyzed the performance of virtual functions, or

proposed a solution to the significant overhead they incur.

Memory Allocation On GPUs. A set of work [4, 25, 27, 47] at-

tempts to implement efficient memory allocation on parallel archi-

tectures. Xmalloc [27] aims to implement a scalable GPU memory

allocator with lock-free buffers to hold pre-defined size truncks and

bins. Issac al. [25] formulate resource allocation to two-stages to im-

prove the allocation throughput on Nvidia GPUs. ScatterAlloc [47]

utilizes CUDA’s dynamic allocator to perform coarse grained al-

location, employing bitmaps to prevent collision. Halloc [4] uses

bit arrays to represent free blocks and a hash function to search.

DynaSOAr [22, 46] implements the first parallel memory allocator

for object-oriented programs on GPUs. Like SharedOA, many of

these allocators allocate data in large chunks, however they do it

to improve allocation speed. We allocate large chunks of data such

that we can determine an object’s type by its address range.

Type-based management On CPUs. Prior work on supporting

type-based management or addressing in object-oriented programs

on CPUs [43, 50] has focused on improving garbage collection

or reducing memory consumption. To the best of our knowledge,

we are the first work on either CPUs or GPUs to perform virtual

function calls without accessing objects to determine their type.

10 CONCLUSION

We examine the effects of executing object-oriented code on mas-

sively parallel architectures. Through a detailed analysis of the di-

rect cost of virtual functions on a silicon V100 GPU, we demonstrate

the memory system is the performance bottleneck, in particular

the loads to the virtual table pointer in each object. To alleviate this

pressure, we propose two techniques, one completely in software

(COAL) and one with hardware support (TypePointer) that deter-

mine an object’s type based only on the object’s address. We study

this problem on realistic object-oriented workloads, by implement-

ing a shared object allocator that allows the CPU and GPU to share

objects with virtual functions through unified virtual memory.

The software-only technique, (COAL) uses the runtime mem-

ory allocator to place objects of the same type in a set of ranges.

251

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

The compiler then inserts code to scan the address ranges and

determines which function is called based only on the object’s

address. We evaluate COAL on a silicon GPU and demonstrate a

80%, 47% and 6% performance improvement over contemporary

CUDA, prior academic work and our newly-proposed SharedOA,

respectively. The second technique eliminates the lookup overhead

of COAL with TypePointer. TypePointer encodes each object’s type

in unused bits in the GPU’s 64-bit address space. Using a small

modification to the GPU’s MMU, TypePointer locates the vTable

without accessing memory, improving performance by 90%, 56%

and 12% over CUDA, previous work and SharedOA, respectively.

We also implement TypePointer in simulation, applied on top of

the default CUDA allocator and demonstrate an 18% performance

improvement without changing how objects are allocated.

ACKNOWLEDGMENTS

We would like to thank our shepherd, Alexandre Passos and the

anonymous reviewers for their feedback which helped improve this

paper. This work was supported, in part, by NSF CCF #1943379 (CA-

REER) and the Applications Driving Architectures (ADA) Research

Center, a JUMP Center cosponsored by SRC and DARPA.

A ARTIFACT APPENDIX

A.1 Abstract

The artifact contains the source code for the SharedOA, COAL,

and TypePointer that applied to all workloads. We also include the

instructions to configure, build, run, and acquire the workload’s

performance. Users can reproduce the results in Figure 6. We also

contain a tutorial with examples to apply SharedOA, COAL and

TypePointer to show that the three techniques are reusable on other

CUDA applications.

A.2 Artifact Checklist

We list the artifact checklist below to formally describe our artifact:

• Program: Ported version of dynasoar, GraphChi and raytracing

Workloads are included in the measurement repository.

• Compilation: GCC 7.5.0, CUDA 10.1, 10.2 or 11.1.

• Transformations: COAL and TypePointer requires PTX transforma-

tions which are implemented by python scripts. PyYAML is needed

for the scripts.

• Data set: Included in the measurement repository.

• Run-time environment: Ubuntu 18.04.5

• Hardware: Intel x86 machine with NVIDIA Volta architecture GPU

with at least 8GB GPU memory. We use V100 GPU with 32GB GPU

memory in our experiments.

• Execution: NVProf commandline profiler from CUDA is used to

measure the kernel execution time of each workloads.

• Metrics: Normalized performances are reported by scripts for each

version of the workloads.

• Howmuch disk space required (approximately)?:At least 1GB

is needed to contain the measurement repository.

• Howmuch time is needed to complete experiments (approx-

imately)?: 20 minutes to compile and 40 minutes to run.

• Publicly available?: Yes.

• Code licenses (if publicly available)?: BSD 2-Clause "Simplified"

License

• Data licenses (if publicly available)?: BSD 2-Clause "Simplified"

License

• Workflow framework used?: Scripts are provided in the measure-

ment repo, no other framework required.

• Archived (provide DOI)?: Provided in Github, and a snapshot in

https://doi.org/10.5281/zenodo.4319923.

A.3 Description
A.3.1 How to Access. We provide the artifact evaluation with Github repos-

itories:

• Evaluation scripts: https://github.com/brad-mengchi/asplos21_ae_

script

• Measurement repository to compile and run the workloads: https:

//dgithub.com/brad-mengchi/asplos_2021_ae

• Tutorial for applying the SharedOA, COAL and TypePointer: https:

//dgithub.com/purdue-aalp/SharedOA

We also provide zipped version of the repositories on Zenodo: https:

//doi.org/10.5281/zenodo.4319923.

A.3.2 Hardware Dependencies. The SharedOA,COAL and TypePointerworks

on Intel x86 machine with NVIDIA Volta architecture GPU with at least

16GB GPU memory. The experiments in this paper use V100 GPU with

32GB GPU memory. 1GB CPU memory is required to contain the evaluation

repositories.

A.3.3 Software Dependencies. Ubuntu 18.04 Linux is preferred to run the

experiments. NVIDIA CUDA 10.1, 10.2 and 11.1 and GPU driver are required

to compile and run the GPU workloads.

A.4 Installation from Github
We include the evaluation scripts in asplos21_ae_script repository and detail

the instructions in README.md. Users need to clone the evaluation script

repository to a directory:

git clone https://github.com/brad-mengchi/asplos21_ae_scri

pt

We include setup.sh to configure environments for CUDA. CUDA_INSTA

LL_PATH need be set to the CUDA directory:

export CUDA_INSTALL_PATH=<CUDA directory path>

Users can finish the configuration after setting up the environment:

source setup.sh

A.5 Experiment Workflow
Users can use compile.sh to clone the workload repository and compile the

workloads:

source compile.sh

This compile.sh script clones the workload repository from https://github.

com/brad-mengchi/asplos_2021_ae and builds the workloads. We generates

55 binaries for 11 workloads with different techniques (CUDA, Concord,

SharedOA, COAL and TypePointer). All workloads binaries will be in the

directory asplos_2021_ae/benchmarks/bin/10.1/release/.

A.6 Evaluation and Expected Result
Users can use run.sh and get.sh to run the experiments and get the normal-

ized performance on specific GPU. To run the experiments on GPU 0 with

command below:

source run.sh 0

To get the statistics after running on GPU 0 with command below:

source get.sh 0

The script print out the normalized performance for workloads with

techniques like below:

252

https://doi.org/10.5281/zenodo.4319923
https://github.com/brad-mengchi/asplos21_ae_script
https://github.com/brad-mengchi/asplos21_ae_script
https://dgithub.com/brad-mengchi/asplos_2021_ae
https://dgithub.com/brad-mengchi/asplos_2021_ae
https://dgithub.com/purdue-aalp/SharedOA
https://dgithub.com/purdue-aalp/SharedOA
https://doi.org/10.5281/zenodo.4319923
https://doi.org/10.5281/zenodo.4319923
https:// github.com/brad-mengchi/asplos_2021_ae
https:// github.com/brad-mengchi/asplos_2021_ae

Judging a Type by Its Pointer: Optimizing GPU Virtual Functions ASPLOS ’21, April 19–23, 2021, Virtual, USA

trafficV 0.443328212062

trafficV_CONCORD 0.469073964166

trafficV_MEM 1.0

...

RAY_COAL 0.945034105267

RAY_TP 0.935876022056

Above results can verify the experiments in Figure 6.

A.7 Tutorial for SharedOA with Examples
SharedOA, COAL and TypePointer techniques can be easily reusable on other

CUDA applications. Therefore, we create a tutorial to show examples to

apply three techniques on a simple program. We provide the tutorial on

Github repository: https://github.com/purdue-aalp/SharedOA. The detailed

instructions are in README.md. Users can clone this tutorial repository

with:

git clone https://github.com/purdue-aalp/SharedOA

The example for SharedOA are in example/SharedOA/ directory, so users

can build and run SharedOA example with the following command:

cd example/SharedOA

make

./main

A.8 Tutorial for COAL and TypePointer with
Examples

The examples for COAL and TypePointer are in example/COAL/ and ex-

ample/TP/ directories. Users can build and run COAL example with the

following commands:

cd example/COAL

make

./main_COAL

Users can also build and run TypePointer example with the following

commands:

cd example/TP

make

./main_TP

A.9 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-badging

• http://cTuning.org/ae/submission-20201122.html

• http://cTuning.org/ae/reviewing-20201122.html

REFERENCES
[1] 2019. OpenAcc. https://www.openacc.org/. Accessed April 15, 2019.
[2] 2020. NVIDIA CUDAC Programming Guide. https://docs.nvidia.com/cu-da/cuda-

c-programming-guide/index.html. Accessed August 6, 2020.
[3] M. Abadi, L. Cardelli, B. Pierce, and G. Plotkin. 1989. Dynamic Typing in a

Statically-Typed Language. In Proceedings of the ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL) (Austin, Texas, USA).
https://doi.org/10.1145/75277.75296

[4] Andrew V Adinetz and Dirk Pleiter. [n.d.]. Halloc. https://github.com/canonizer/
halloc.

[5] A. Bakhoda, G.L. Yuan, W.W.L. Fung, H.Wong, and T.M. Aamodt. 2009. Analyzing
CUDA workloads using a detailed GPU simulator. In Proceedings of the Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS).
163ś174. https://doi.org/10.1109/ISPASS.2009.4919648

[6] Rajkishore Barik, Rashid Kaleem, Deepak Majeti, Brian T. Lewis, Tatiana Shpeis-
man, Chunling Hu, Yang Ni, and Ali-Reza Adl-Tabatabai. 2014. Efficient Mapping
of Irregular C++ Applications to Intergrated GPUs. In International Symposium
on Code Generation and Optimization (CGO). 33ś43. https://doi.org/10.1145/
2581122.2544165

[7] Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wil-
son. 2000. Hoard: A Scalable Memory Allocator for Multithreaded Applica-
tions. In Proceedings of the International Conference on Architectural Support

for Programming Languages and Operation Systems (ASPLOS). ACM, 117ś128.
https://doi.org/10.1145/378995.379232

[8] Stephen M Blackburn, Robin Garner, Chris Hoffmann, Asjad M Khang, Kathryn S
McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton,
Samuel Z Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Lee Han, Eliot
Moss, Aashish Phansalkar, Darko Stefanovic, Thomas VanDrunen, Daniel von
Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Bench-
marking Development and Analysis. In Proceedings of the Object-Oriented Pro-
gramming, Systems, Languages and Applications (OOPSLA), Vol. 41. ACM, 169ś190.
https://doi.org/10.1145/1167515.1167488

[9] Jeff Bonwick. 1994. The Slab Allocator: An Object-Caching Kernel Memory
Allocator. In Proceedings of the USENIX Summer 1994 Technical Conference on
USENIX Summer 1994 Technical Conference - Volume 1 (Boston, Massachusetts)
(USTC’94). USENIX Association, USA, 6. https://dl.acm.org/doi/10.5555/1267257.
1267263

[10] M. Burtscher, R. Nasre, and K. Pingali. 2012. A quantitative study of irregular
programs on GPUs. In Proceedings of the International Symposium on Workload
Characterization (IISWC). 141ś151. https://doi.org/10.1109/IISWC.2012.6402918

[11] Brad Calder and Dirk Grunwald. 1994. Reducing Indirect Function Call Overhead
in C++ Programs. In Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL). 397ś408. https://doi.org/10.1145/
174675.177973

[12] C. Chambers, D. Ungar, and E. Lee. 1989. An Efficient Implementation of SELF a
Dynamically-typed Object-oriented Language Based on Prototypes. In Conference
Proceedings on Object-oriented Programming Systems, Languages and Applications.
49ś70. https://doi.org/10.1145/74878.74884

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.
2009. Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proceedings
of the International Symposium on Workload Characterization (IISWC). 44ś54.
https://doi.org/10.1109/IISWC.2009.5306797

[14] Jiho Choi, Thomas Shull, Maria J. Garzaran, and Josep Torrellas. 2017. Short-
Cut: Architectural Support for Fast Object Access in Scripting Languages. In
Proceedings of the International Symposium on Computer Architecture (ISCA).
https://doi.org/10.1145/3079856.3080237

[15] B.W. Coon, J.E. Lindholm, P.C. Mills, and J.R. Nickolls. 2010. Processing an indirect
branch instruction in a SIMD architecture. https://www.google.com/patents/
US7761697 US Patent 7,761,697.

[16] Mark De Berg, Marc Van Kreveld, Mark Overmars, and Otfried Schwarzkopf. 1997.
Computational geometry. Springer. 231ś237 pages. https://doi.org/10.1007/978-
3-540-77974-2

[17] Jeffrey Dean, Craig Chambers, and David Grove. 1995. Selective Specialization for
Object-oriented Languages. In Proceedings of the ACM SIGPLAN 1995 Conference
on Programming Language Design and Implementation. 93ś102. https://doi.org/
10.1145/223428.207119

[18] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of Object-
Oriented Programs Using Static Class Hierarchy Analysis. In Proceedings of
the 9th European Conference on Object-Oriented Programming. 77ś101. https:
//dl.acm.org/doi/10.5555/646153.679523

[19] David Detlefs and Ole Agesen. 1999. Inlining of virtual methods. In Proceedings
of the 13th European Conference on Object-Oriented Programming. https://dl.acm.
org/doi/10.5555/646156.679839

[20] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Implementation of the
Smalltalk-80 System. In Proceedings of the 11th ACM SIGACT-SIGPLAN Symposium
on Principles of Programming Languages. 297ś302. https://doi.org/10.1145/800017.
800542

[21] Karel Driesen and Urs Hölzle. 1996. The Direct Cost of Virtual Function Calls in
C++. In Proceedings of the Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA). https://doi.org/10.1145/236337.236369

[22] Dynasoar 2019. CUDADynamicMemory Allocator for SOAData Layout. Retrieved
June 18, 2020 from https://github.com/prg-titech/dynasoar

[23] Izzat El Hajj, Thomas B. Jablin, Dejan Milojicic, and Wen-mei Hwu. 2017. SAVI
Objects: Sharing and Virtuality Incorporated. In Proceedings of the Object-Oriented
Programming, Systems, Languages and Applications (OOPSLA), Vol. 1. ACM, New
York, NY, USA, Article 45, 24 pages. https://doi.org/10.1145/3133869

[24] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S.
McKinley. 2011. Looking Back on the Language and Hardware Revolutions:
Measured Power, Performance, and Scaling. In Proceedings of the International
Conference on Architectural Support for Programming Languages and Operation
Systems (ASPLOS). ACM, 319ś332. https://doi.org/10.1145/1961296.1950402

[25] Isaac Gelado and Michael Garland. 2019. Throughput-oriented GPU Memory
Allocation. In Proceedings of the 24th Symposium on Principles and Practice of
Parallel Programming (Washington, District of Columbia) (PPoPP ’19). ACM, New
York, NY, USA, 27ś37. https://doi.org/10.1145/3293883.3295727

[26] Urs Hölzle and David Ungar. 1994. Optimizing Dynamically-dispatched Calls
with Run-time Type Feedback. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI). https://doi.org/10.
1145/1899661.1869634

253

https://github.com/purdue-aalp/SharedOA
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
https://www.openacc.org/
https://docs.nvidia.com/cu-da/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cu-da/cuda-c-programming-guide/index.html
https://doi.org/10.1145/75277.75296
https://github.com/canonizer/halloc
https://github.com/canonizer/halloc
https://doi.org/10.1109/ISPASS.2009.4919648
https://doi.org/10.1145/2581122.2544165
https://doi.org/10.1145/2581122.2544165
https://doi.org/10.1145/378995.379232
https://doi.org/10.1145/1167515.1167488
https://dl.acm.org/doi/10.5555/1267257.1267263
https://dl.acm.org/doi/10.5555/1267257.1267263
https://doi.org/10.1109/IISWC.2012.6402918
https://doi.org/10.1145/174675.177973
https://doi.org/10.1145/174675.177973
https://doi.org/10.1145/74878.74884
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/3079856.3080237
https://www.google.com/patents/US7761697
https://www.google.com/patents/US7761697
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/223428.207119
https://doi.org/10.1145/223428.207119
https://dl.acm.org/doi/10.5555/646153.679523
https://dl.acm.org/doi/10.5555/646153.679523
https://dl.acm.org/doi/10.5555/646156.679839
https://dl.acm.org/doi/10.5555/646156.679839
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/236337.236369
https://github.com/prg-titech/dynasoar
https://doi.org/10.1145/3133869
https://doi.org/10.1145/1961296.1950402
https://doi.org/10.1145/3293883.3295727
https://doi.org/10.1145/1899661.1869634
https://doi.org/10.1145/1899661.1869634

ASPLOS ’21, April 19–23, 2021, Virtual, USA Mengchi Zhang, Ahmad Alawneh, Timothy G. Rogers

[27] Xiaohuang Huang, Christopher I. Rodrigues, Stephen Jones, Ian Buck, and
Wen-mei Hwu. 2013. Scalable SIMD-parallel memory allocation for many-
core machines. The Journal of Supercomputing 64, 3 (01 Jun 2013), 1008ś1020.
https://doi.org/10.1007/s11227-011-0680-7

[28] K. Ishizaki, A. Hayashi, G. Koblents, and V. Sarkar. 2015. Compiling and Op-
timizing Java 8 Programs for GPU Execution. In Proceedings of the Interna-
tional Conference on Parallel Architectures and Compilation Techniques (PACT).
https://doi.org/10.1109/PACT.2015.46

[29] Jose A. Joao, Onur Mutlu, Hyesoon Kim, Rishi Agarwal, and Yale N. Patt.
2008. Improving the Performance of Object-oriented Languages with Dy-
namic Predication of Indirect Jumps. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating
Systems (Seattle, WA, USA) (ASPLOS XIII). ACM, New York, NY, USA, 80ś90.
https://doi.org/10.1145/1353535.1346293

[30] John Kalamatianos and David R. Kaeli. 1998. Predicting Indirect Branches via Data
Compression. In Proceedings of the International Symposium on Microarchitecture
(MICRO). IEEE Computer Society Press, 272ś281. https://dl.acm.org/doi/10.5555/
290940.290997

[31] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.
Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling.
In Proceedings of the International Symposium on Computer Architecture (ISCA).
ACM. https://doi.org/10.1109/ISCA45697.2020.00047

[32] Khronos Group. 2013. OpenCL. http://www.khronos.org/opencl/.
[33] Hyesoon Kim, José A. Joao, Onur Mutlu, Chang Joo Lee, Yale N. Patt, and

Robert Cohn. 2007. VPC Prediction: Reducing the Cost of Indirect Branches
via Hardware-based Dynamic Devirtualization. In Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA). ACM, 424ś435. https:
//doi.org/10.1145/1250662.1250715

[34] Sangman Kim, Seonggu Huh, Yige Hu, Xinya Zhang, Emmett Witchel, Amir
Wated, and Mark Silberstein. 2014. GPUnet: Networking Abstractions for GPU
Programs. In Proceedings of the International Conference on Operating Systems
Design and Implementation (OSDI). https://doi.org/10.1145/2963098

[35] Aapo Kyrola. [n.d.]. GraphChi-C++. https://github.com/GraphChi/graphchi-cpp.
[36] Aapo Kyrola. [n.d.]. GraphChi-Java. https://github.com/GraphChi/graphchi-java.
[37] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi: Large-scale

Graph Computation on Just a PC. In Proceedings of the International Conference
on Operating Systems Design and Implementation (OSDI). https://dl.acm.org/doi/
10.5555/2387880.2387884

[38] NVIDIA. 2018. NVIDIA profiling tools. https://docs.nvidia.com/cu-da/profiler-
users-guide/index.html. Accessed Aug 20, 2018.

[39] Steven G. Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
and Martin Stich. 2010. OptiX: A General Purpose Ray Tracing Engine. In ACM
SIGGRAPH 2010 Papers (Los Angeles, California) (SIGGRAPH ’10). ACM, New
York, NY, USA, Article 66, 13 pages. https://doi.org/10.1145/1778765.1778803

[40] Peter Shirley. 2018. Ray Tracing in One Weekend. https://github.com/
petershirley/raytracinginoneweekend. Accessed Aug 20, 2018.

[41] P. C. Pratt-Szeliga, J. W. Fawcett, and R. D. Welch. 2012. Rootbeer: Seemlessly
Using GPUs for Java. In High Performance Computing and Communications, 2012.
HPCC ’12. 14th IEEE International Conference on. 375ś380. https://doi.org/10.
1109/HPCC.2012.57

[42] Sagi Shahar, Shai Bergman, and Mark Silberstein. 2016. ActivePointers: A Case
for Software Address Translation on GPUs. In Proceedings of the International
Symposium on Computer Architecture (ISCA). https://doi.org/10.1145/3007787.
3001200

[43] Yefim Shuf, Manish Gupta, Rajesh Bordawekar, and Jaswinder Pal Singh. 2002.
Exploiting Prolific Types for Memory Management and Optimizations. In Pro-
ceedings of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL). New York, NY, USA, 295ś306. https://doi.org/10.1145/503272.
503300

[44] Mark Silberstein, Bryan Ford, Idit Keidar, and Emmett Witchel. 2013. GPUfs:
Integrating a File System with GPUs. In Proceedings of the International Confer-
ence on Architectural Support for Programming Languages and Operation Systems
(ASPLOS). https://doi.org/10.1145/2499368.2451169

[45] Matthias Springer and Hidehiko Masuhara. 2016. Object Support in an Array-
based GPGPU Extension for Ruby. In Proceedings of the 3rd ACM SIGPLAN In-
ternational Workshop on Libraries, Languages, and Compilers for Array Program-
ming (Santa Barbara, CA, USA) (ARRAY 2016). ACM, New York, NY, USA, 25ś31.
https://doi.org/10.1145/2935323.2935327

[46] Matthias Springer and Hidehiko Masuhara. 2019. DynaSOAr: A Parallel Memory
Allocator for Object-oriented Programming on GPUs with Efficient Memory
Access. In ECOOP. http://drops.dagstuhl.de/opus/volltexte/2019/10809

[47] M. Steinberger, M. Kenzel, B. Kainz, and D. Schmalstieg. 2012. ScatterAlloc:
Massively parallel dynamic memory allocation for the GPU. In 2012 Innovative
Parallel Computing (InPar). 1ś10. https://doi.org/10.1109/InPar.2012.6339604

[48] John A. Stratton, Christopher Rodrigues, I-Jui Sung, Nadi Obeid, Li-Wen Chang,
Nasser Anssari, Greg Daniel Liu, and Wen-mei W. Hwu. 2012. IMPACT Technical
Report, IMPACT-12-01. University of Illinois, at Urbana-Champaign.

[49] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa, Raja Vallée-Rai,
Patrick Lam, Etienne Gagnon, and Charles Godin. 2000. Practical Virtual Method
Call Resolution for Java. In Proceedings of the Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA). https://doi.org/10.1145/354222.
353189

[50] Kris Venstermans, Lieven Eeckhout, and Koen De Bosschere. 2007. Java Ob-
ject Header Elimination for Reduced Memory Consumption in 64-Bit Vir-
tual Machines. ACM Trans. Archit. Code Optim. 4, 3 (2007), 17ś30. https:
//doi.org/10.1145/1275937.1275941

[51] D. Zaparanuks and M. Hauswirth. 2010. Characterizing the design and per-
formance of interactive java applications. In Proceedings of the International
Symposium on Performance Analysis of Systems and Software (ISPASS). 23 ś32.
https://doi.org/10.1109/ISPASS.2010.5452075

[52] Olivier Zendra, Dominique Colnet, and Suzanne Collin. 1997. Efficient Dynamic
Dispatch Without Virtual Function Tables: The SmallEiffel Compiler. In Proceed-
ings of the Object-Oriented Programming, Systems, Languages and Applications
(OOPSLA). https://doi.org/10.1145/263698.263728

254

https://doi.org/10.1007/s11227-011-0680-7
https://doi.org/10.1109/PACT.2015.46
https://doi.org/10.1145/1353535.1346293
https://dl.acm.org/doi/10.5555/290940.290997
https://dl.acm.org/doi/10.5555/290940.290997
https://doi.org/10.1109/ISCA45697.2020.00047
http://www.khronos.org/opencl/
https://doi.org/10.1145/1250662.1250715
https://doi.org/10.1145/1250662.1250715
https://doi.org/10.1145/2963098
https://dl.acm.org/doi/10.5555/2387880.2387884
https://dl.acm.org/doi/10.5555/2387880.2387884
https://docs.nvidia.com/cu-da/profiler-users-guide/index.html
https://docs.nvidia.com/cu-da/profiler-users-guide/index.html
https://doi.org/10.1145/1778765.1778803
https://github.com/petershirley/raytracinginoneweekend
https://github.com/petershirley/raytracinginoneweekend
https://doi.org/10.1109/HPCC.2012.57
https://doi.org/10.1109/HPCC.2012.57
https://doi.org/10.1145/3007787.3001200
https://doi.org/10.1145/3007787.3001200
https://doi.org/10.1145/503272.503300
https://doi.org/10.1145/503272.503300
https://doi.org/10.1145/2499368.2451169
https://doi.org/10.1145/2935323.2935327
http://drops.dagstuhl.de/opus/volltexte/2019/10809
https://doi.org/10.1109/InPar.2012.6339604
https://doi.org/10.1145/354222.353189
https://doi.org/10.1145/354222.353189
https://doi.org/10.1145/1275937.1275941
https://doi.org/10.1145/1275937.1275941
https://doi.org/10.1109/ISPASS.2010.5452075
https://doi.org/10.1145/263698.263728

	Abstract
	1 Introduction
	2 Object-Oriented Code on GPUs
	3 High-Level Solution Goals
	4 A Type-Based Shared Object Allocator
	5 Coordinated Object Allocation and Function Lookup (COAL)
	6 TypePointer
	6.1 TypePointer Memory Allocator Modifications
	6.2 TypePointer Compiler Modifications
	6.3 TypePointer Hardware Modifications
	6.4 TypePointer Limitations

	7 Experimental Methodology
	8 Experimental Results
	8.1 Experiments on COAL and TypePointer
	8.2 Allocator Effects
	8.3 Scalability Study

	9 Related Work
	10 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact Checklist
	A.3 Description
	A.4 Installation from Github
	A.5 Experiment Workflow
	A.6 Evaluation and Expected Result
	A.7 Tutorial for SharedOA with Examples
	A.8 Tutorial for COAL and TypePointer with Examples
	A.9 Methodology

	References

