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ABSTRACT

Massively multithreaded GPUs achieve high throughput by
running thousands of threads in parallel. To fully utilize
the hardware, workloads spawn work to the GPU in bulk
by launching large tasks, where each task is a kernel that
contains thousands of threads that occupy the entire GPU.

GPUs face severe underutilization and their performance
benefits vanish if the tasks are narrow, i.e., they contain
< 500 threads. Latency-sensitive applications in network,
signal, and image processing that generate a large number
of tasks with relatively small inputs are examples of such
limited parallelism.

This paper presents Pagoda, a runtime system that vir-
tualizes GPU resources, using an OS-like daemon kernel
called MasterKernel. Tasks are spawned from the CPU
onto Pagoda as they become available, and are scheduled
by the MasterKernel at the warp granularity. Experimen-
tal results demonstrate that Pagoda achieves a geometric
mean speedup of 5.70x over PThreads running on a 20-core
CPU, 1.51x over CUDA-HyperQ, and 1.69x over GeMTC,
the state-of-the-art runtime GPU task scheduling system.
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eSoftware and its engineering — Runtime environ-
ments;
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1. INTRODUCTION

GPGPU computing has demonstrated an ability to ac-
celerate a substantial class of compute-intensive applica-
tions [36, 7]. These applications have a high degree of paral-
lelism, where iterations of large parallel loops are executed
on the GPU. The programs see significant performance ben-
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efits because they can fully utilize the GPU’s hardware re-
sources by launching enough concurrent threads.

The GPU’s performance benefits start to diminish as the
degree of parallelism lessens. Conventionally, large parallel
loops are offloaded to the GPU, while retaining the execution
of smaller ones on the CPU. The main thesis of this paper
is that despite having a smaller degree of parallelism, appli-
cations can benefit from using the GPU, provided that the
involved task (or CUDA kernel) count is sufficiently high.
Each such task, called a narrow task, has limited parallelism
(< 500 data parallel threads in practice).

Narrow tasks emerge in a number of scenarios. One set of
such applications comprises latency-driven, real-time work-
loads. For example, online sensors that generate small in-
puts, resulting in tasks with low parallelism. Online sen-
sors can generate many tasks in quick succession and require
immediate processing. These workloads have been charac-
terized as having mixed task and data parallelism [33, 32].
Secondly, irregular applications can exhibit narrow tasks.
These applications often contain varying amounts of com-
putation among different threads, and/or among loop iter-
ations. To reduce load imbalance, these applications are
often represented using many tasks with low degrees of par-
allelism [24]. Irregular workloads may also arise in multi-
programmed environments. Different applications with low
degrees of parallelism can be co-executed on a node to ex-
ploit all the computing resources.

GPU underutilization is the key reason why narrow tasks
are conventionally executed on CPUs. This paper presents
Pagodal!, a runtime system that greatly improves GPU uti-
lization in the presence of narrow tasks. Pagoda introduces
novel elements of a massively parallel OS to virtualize and
dynamically schedule GPU core resources at warp granular-
ity, enabling hundreds of tasks to execute concurrently.

Prior work has identified the issue of GPU underutiliza-
tion [37, 8, 25, 14]. One approach to solve this problem is
to statically fuse multiple smaller tasks [37, 8] to accumu-
late a large kernel. Advanced approaches [28, 25] use a con-
current kernel mechanism, monitoring and time-slicing their
execution at runtime to obtain fair sharing. These static ap-
proaches require the programmer to fuse tasks manually and
none of them have been shown to work beyond ten concur-
rent tasks. These mechanisms also require static knowledge
of the kernels to be fused, which is not always possible in
multi-programmed or real-time environments. Additionally,
individual tasks in a fused tasks receive the same on-chip re-
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Table 1: Pagoda Programming API

CUDA Function Pagoda Caller| Return Value Arguments Description
Function
kernel<<<>>> taskSpawn CPU taskId #threads, #threadblocks, | Spawn a task from CPU onto
shared memory, sync flag, | Pagoda
kernel pointer, kernel args
cudaEventSynchronize | wait CPU taskId Wait until the specified task is
over
cudaEventQuery check CPU true if the task is done, | taskld Returns the status of the task
else false
cudaDeviceSynchronize| waitAll CPU Wait until all tasks in Pagoda are
over
threadIdx getTid GPU thread Id Get the thread Id of this thread
syncthreads syncBlock GPU Synchronize all threads in the
block
__shared__ char *arr getSMPtr GPU 32-byte aligned char Get shared mem pointer for the
pointer threadblock

source allocation, e.g., shared memory and registers, thereby
limiting occupancy based on the resource requirements of
the largest task.

Dynamic (runtime) solutions can mitigate the above issues
of static fusion. NVIDIA’s current-generation GPUs employ
HyperQ [20], which allows 32 tasks to concurrently execute
on the GPU. However, we show that narrow tasks can still
cause underutilization, as 32 such tasks may not occupy the
entire GPU. We argue that software mechanisms are needed
to achieve flexible kernel concurrency. Prior work, GPU en-
abled Many-Task Computing (GeMTC) [14], presents a run-
time task scheduling mechanism, where a task executes as
a single threadblock. Threadblocks are sets of threads con-
stituting the GPU kernel. Because GPU architectures limit
the concurrent threadblock count, executing narrow tasks in
GeMTC may result in poor utilization. In addition, GeMTC
uses batch-based task execution, which results in delayed
task launching and load imbalance since the completion time
of a batch is determined by its longest running task.

Pagoda is designed to overcome these issues. The pro-
grammer replaces certain CUDA API calls with equivalent
Pagoda calls in the host and device codes, retaining the func-
tionality of the CUDA programming model. Unlike static so-
lutions, the programmer does not have to tediously fuse the
available tasks. Pagoda achieves high utilization by continu-
ally running a MasterKernel, which controls the execution of
all GPU warps in software. In Pagoda, tasks are spawned by
the CPU as soon as they become available, without batching.
On the GPU side, the MasterKernel virtualizes the GPU’s
resource allocation and threadblock scheduling mechanism
to allow individual warps to make progress as soon as re-
sources are available. There are three key challenges that
must be addressed when attempting to launch and run thou-
sands of short-running tasks on a GPU, the combination of
which no previous work has solved.

First, CPU-GPU communication overhead must be min-
imized, while allowing the GPU to asynchronously sched-
ule new tasks on each Streaming Multiprocessor (SMM).
Launching thousands of short-running tasks increases the
importance of minimizing the time it takes for each task to
begin execution on the GPU. Since the CPU and GPU must
coordinate task spawning and scheduling over the PCle bus,
which currently has no support for atomic operations, the
handshaking required is expensive or impossible if a tradi-
tional data structure, such as a queue [18], is used. Previous
work that required OS-like co-ordination over PCle [12, 31]
solved consistency issues using a producer-consumer model
but did not have to optimize the system for many, short

running tasks. To support narrow tasks, Pagoda presents
TaskTable, a novel data structure aimed at limiting com-
munication overhead and enabling asynchronous GPU task
pulls.

The second challenge is to keep the overheads involved
in task spawning and scheduling low. Minimizing both the
copying of task parameters and the search for free GPU re-
sources is important when task execution times are short.
To limit these overheads, Pagoda performs task scheduling
in parallel and pipelines task spawning, scheduling and exe-
cution to overlap their operation.

The third issue is supporting native CUDA functionality
such as shared memory usage and efficient threadblock syn-
chronization. Since Pagoda’s MasterKernel overrides native
support for this functionality, we introduce low-overhead
software mechanisms to provide it.

In summary, the following contributions enable the effi-
cient execution of narrow tasks on GPUs. This paper

e introduces a continuous task spawning mechanism to
reduce CPU-GPU synchronizations and obtains a high
spawn rate.

e presents a software mechanism to schedule multiple
tasks on the GPU in parallel, and describes a pipelin-
ing scheme to overlap several task processing stages.

e describes software solutions for dynamic shared mem-
ory management and sub-threadblock synchroniza-
tions.

e implements and evaluates the presented methods in a
new runtime system, called Pagoda. Pagoda achieves
geometric mean speedup of 5.70x over PThreads run-
ning on a 20-core CPU, of 1.51x over CUDA-HyperQ,
and of 1.69x against GeMTC.

2. GPUPROGRAMMING AND
ARCHITECTURE

The GPU cores are organized into 24 Streaming Multi-
processors (SMMs) 2. Each SMM has 128 CUDA cores and
can concurrently schedule up to 64 warps. A Warp is the
basic Single Instruction, Multiple Thread (SIMT) work unit,
which comprises 32 threads that march in lockstep, execut-
ing the same instruction. Each SMM has a 96KB on-chip
programmer managed cache, known as shared memory and
64K, 32-bit registers.

2We use terminology from the NVIDIA Maxwell Titan X
architecture.
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}

#pragma omp barrier //ensure all tasks are done
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Figure 1: Pagoda runtime system overview: The source task kernel and CPU code require few changes to an equivalent CUDA code.
The MasterKernel design is shown for the Mazwell Titan X GPU. The 48 MasterKernel threadblocks (MTBs) have 1024 threads each.
TaskTable is mirrored on both the CPU and GPU. The CPU threads spawn tasks into the CPU TaskTable, which are then sent to the
GPU counterpart. Scheduler warps inside each MTB find free executor warps to launch tasks on. The WarpTable performs bookkeeping

for each executor warp.

In the CUDA programming model, the programmer or-
ganizes parallel work in kernels. Threads of a kernel are
grouped into threadblocks. Multiple threadblocks can reside
on each SMM, the maximum number being 32. The thread-
block size is limited to 1024 threads, or 32 warps. Each SMM
can hold up to 2048 concurrent threads. Both the shared
memory and registers of an SMM are partitioned among the
executing threadblocks. There is no CUDA primitive for
global, kernel-wide synchronization; however, threads in a
threadblock can use the __syncthreads() function as a bar-
rier.

A way of measuring the GPU utilization is occupancy.
Occupancy is the ratio of the total number of resident GPU
warps divided by the maximum number of warps that can
co-exist in the GPU (i.e. 64 X the number of SMMs in the
GPU). The kernel occupancy is affected by three factors,
namely, i) size of threadblocks, ii) kernel’s register count,
and iii) size of the requested shared memory. Balancing
these three factors requires programmer expertise, making
high occupancy often difficult to achieve. Consider a sce-
nario of narrow tasks, where one task has 256 threads, or 8
warps. If only one task is executed at a time, the occupancy
would be (8/(64x24))x100% = 0.52%. With HyperQ, 32
kernels may co-execute, meaning that 32 narrow tasks can
run simultaneously. The achieved occupancy then would
still be low, i.e. (8x32/(64x24))x100% = 16.67%.

3. PROGRAMMING WITH PAGODA

Programmers use Pagoda API functions in their applica-
tions to access the Pagoda runtime system. Pagoda sup-
ports the CUDA programming model, where-by the Pagoda
API functions shown in Table 1 override the corresponding
CUDA functions. The Pagoda API functions belong to the
following two categories:

CPU-side API: The taskSpawn function launches a task
from the CPU onto Pagoda. The programmer specifies
the number of threads per threadblock, and the number of

threadblocks as arguments. The programmer also specifies
the kernel to execute, along with the parameters. The size
of the shared memory needed per threadblock in bytes may
be specified. The sync flag indicates if threadblock-level
synchronization is necessary for the task. TaskSpawn is a
non-blocking function. The CPU can synchronize with the
spawned task(s) using wait and waitAll functions, or can
check the task status with check function. One difference in
functionality with respect to CUDA is that Pagoda returns
a taskID for each task. The taskIDs are essential to use
functions such as wait.

GPU-side API: Since Pagoda virtualizes the GPU
resources, the CUDA-based shared memory allocation
and threadblock synchronization cannot be directly used.
Pagoda allocates shared memory and barriers for each
threadblock when it gets scheduled, and the API provides
functions that allow the threadblock to obtain a pointer to
its shared memory, and to perform barrier synchronizations.
Pagoda also offers a function to obtain the threadld of the
current thread.

Fig. 1a shows a possible implementation of Pagoda host
code, while Fig. 1c shows the corresponding device code for
FilterBank.The two CPU threads spawn tasks and wait for
their completion. Calling wait() in a nested task allows the
CPU thread to progress, without getting blocked. One key
distinction from CUDA is that the task kernels are written
as __device__ functions, instead of __global__.

4. PAGODA NARROW TASK

PROCESSING

This section first describes the MasterKernel design that
achieves resource virtualization. Next, it presents the
Pagoda task spawning mechanism. The mechanism employs
TaskTable, a novel data structure that allows simultane-
ous updates from both the CPU and GPU, and is mirrored
in both their memories. TaskTable drastically reduces the
CPU-GPU handshaking communication by allowing lazy ag-



gregate updates. Lastly, the section presents Pagoda’s GPU
scheduling mechanism that parallelizes the scheduling pro-
cess, and overlaps various task processing stages.

4.1 Resource Virtualization via MasterKernel

The MasterKernel continually executes on the GPU as a
CUDA kernel. It acquires all GPU resources, namely warps,
shared memory, and registers, that later get allocated to
tasks running on Pagoda.

Fig. 1b describes our MasterKernel design on the Titan
X GPU. The MasterKernel acquires all warps of each SMM
(64) by launching two, 32-warp threadblocks, called MTBs
(Master Kernel Threadblocks). Each MTB statically allo-
cates 32KB shared memory, which later gets assigned to dif-
ferent tasks. The MasterKernel uses the remaining shared
memory of the SMM to store some of the scheduling data
structures. The register count of each thread is capped at
32 (using -maxrregcount) to ensure 100% occupancy for the
MasterKernel.

The first warp of each MTB is called a scheduler warp,
while the rest of the 31 warps are known as ezecutor warps.
The scheduler warp is responsible for scheduling tasks on
the executor warps in the MTB. It also manages shared
memory allocations and barriers. The MasterKernel con-
tains two scheduling data structures. The first one, called
TaskTable, is mirrored on the CPU and GPU, and is used
for task spawning. Each entry in the TaskTable holds a
task. The GPU TaskTable receives online updates from the
CPU TaskTable, and is therefore placed in the GPU device
memory. The second data structure is called WarpTable.
Each MTB contains its own WarpTable, which is placed in
the shared memory. Every WarpTable contains 31 slots to
maintain the status of each executor warp.

4.2 Continuous Task Spawning

Scheduling algorithms often involve queues that accumu-
late tasks, where processing elements pull tasks from the
queue [31]. To simultaneously schedule several tasks, mul-
tiple pulls must take place in a synchronous/atomic man-
ner, which has long been recognized as a critical source of
overhead [18]. Performing global synchronizations or atomic
operations on GPUs is extremely expensive. Therefore, to
reduce this contention, one solution would be to use multiple
queues, and only let a smaller set of GPU threads pull from
each queue. Even this solution is impractical. As the CPU-
GPU memories are discrete, before the CPU could spawn a
task on a GPU queue, it must gather the queue head and
tail pointers from the GPU. Such handshaking is expensive
because it requires data copies over the PCle bus. Another
way to spawn tasks is to use a batch-based mechanism [14],
where CPU sends a batch of tasks to the GPU.However,
such mechanisms are susceptible to load imbalance across
tasks.

The Pagoda design therefore employs TaskTable, a data
structure that as we will show, drastically reduces the
amount of CPU-GPU handshaking. Each TaskTable entry
contains the following fields describing the task: 1) num-
ber of threadblocks, 2) number of threads in a threadblock,
3) task kernel pointer, 4) size in bytes of the shared mem-
ory allocation required per threadblock, 5) a flag indicating
whether the task needs thread-block-level synchronization,
6) task inputs, 7) ready field, and 8) sched flag. Each Task-
Table column corresponds to an MTB; The scheduler warp

in that M'TB schedules tasks in the column’s entries onto the
executor warps of that MTB. Having multiple rows in the
TaskTable allows for high availability of tasks to schedule.
Pagoda uses 32 TaskTable rows per MTB.

4.2.1 TaskTable Operation

When a task is launched via the Pagoda API (a call to
taskSpawn), the tasks’s parameters must be copied into an
entry in the CPU TaskTable, then the entry must be copied
to the GPU for scheduling. Since this copy has to occur
while the MasterKernel is in flight, a ready field is neces-
sary to indicate the finishing of the copy to the GPU. A
straightforward way of implementing this, where the task’s
parameter data and the ready flag are copied in one cud-
amemcopy transaction, cannot work because the PCle bus
does not guarantee that the parameters will arrive in the
GPU memory before the ready flag. One solution would be
to simply split it into two cudamemcopy transactions, one
for the parameters, and another for the ready flag. How-
ever, this doubles the parameter copying overhead, signif-
icantly reducing Pagoda performance. To solve this issue,
we pipeline the launching of tasks. The launch of a task
prompts a copy of its parameters to the GPU, as well as
a pointer indicating which task had its parameters copied
in the previous cudamemcopy transaction. In the steady-
state, we achieve 1 cudamemcopy per task table entry and
the CUDA streams API guarantees that the parameters are
copied before the task is scheduled.

4.2.2 Task Spawning Example

Each task’s state comprises its ready field and sched flag.
The ready field of each TaskTable entry can be in one of four
states: 0 meaning the task is not ready, -1 meaning the task’s
parameters have been copied to the task table, 1 meaning the
task is being considered for scheduling on the GPU, or it can
be a taskID which is an integer > 1. The taskID provides the
necessary indirection to implement the pipelining, indicating
which task has already had its parameters copied to the
GPU. The sched flag has two states: 1, indicating that the
task is ready to begin scheduling on an MTB, and 0 meaning
otherwise. Fig. 2a presents a task’s state diagram.

Fig. 2b presents an example execution of task A (TA).
When the taskSpawn function is executed by the CPU,
Pagoda finds a TaskTable entry with a cleared ready field
and copies the task’s parameters into the entry. Since TA
is the first task, the CPU sets the ready field to -1. For all
subsequent tasks, it sets the taskld of the last spawned task,
e.g., during task B (TB) spawn, TA is set as the ready field.
The tasklds generated by Pagoda are references to entries
in the TaskTable. Next, the CPU clears the sched flag, and
copies the entry to the GPU. If the ready field is a taskID,
i.e, > 1, the continually polling scheduler warp for the Task-
Table column (S2) sets the state of the previous task (TA)

o (1, 1). Next, S2 sets the state of the current task to (-1,
0) (see Algo. 1, lines 5-13). S2 waits for the state of TA
to be (-1, 0) before changing it to (1, 1). This is achieved
through polling orchestrated with CUDA threadfence calls.
Now, S1, the scheduler warp for TA, finds that TA has a
set sched flag, and hence schedules TA. To do so, S1 first
clears the sched flag and then finds executor warps for the
task. Once the task execution is finished, the last finishing
executor warp for the task sets the ready field to 0, marking
the end of the task’s execution, and freeing up the task entry
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Task Spawn:

Copy the task entry
from the CPU to GPU,
with taskid
representing the task
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(a) TaskTable state diagram : The CPU only touches
TaskTable entries with cleared ready fields, and the GPU only
touches TaskTable entries with non-zero ready fields, allowing
for simultaneous TaskTable updates from CPU and GPU. The

sched flag determines when a task gets scheduled to warps.

S1: Scheduler Warp of the TaskTable Column correspondingto TA

CPU TaskTable S2: Scheduler Warp of the TaskTable Column correspondingto TB
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spawned. Task GPU (T8)1s to GPU TZn:nde schedules  cOPied copied
parameters spawned ToskTable from TaskTable from
are copied changed GPUto CPU.  GPU to CPU.
from the call TS state Next, S1 CPU starts
APlinto TA marked seeing TA as
finishingof TA- available.

(b) Example execution of task TA : TA gets scheduled only after

TB is spawned. Our design allows for the CPU and GPU
TaskTable entries to contain mis-matching values.

Figure 2: Obtaining Correct TaskTable Ordering

TA. If the CPU spawner thread observes no new tasks come
in, it copies back the status of the last task, i.e. TB, and if
it is (-1, 0), then sets it to (1, 1) and copies it to the GPU,
ensuring the successful execution of the last task.

Lazy Aggregate TaskTable Updates: The above
mechanism allows both the CPU and GPU to simultane-
ously update the TaskTable. As the CPU only spawns a
task if the ready field is reset, the CPU can keep spawning
as long as it finds an entry with a cleared ready field. Simi-
larly, since the GPU only edits TaskTable entries with non-
zero ready fields, it can keep scheduling as long as it finds
a task entry with a set sched flag. When the ready fields
of all CPU-side TaskTable entries are non-zero, the CPU
can no longer spawn tasks. In that case, it copies back all
the TaskTable entries from the GPU, thereby updating all
ready fields. It can then realize which tasks have finished,
and launch new tasks in entries with cleared ready fields.
The CPU therefore receives updates from GPU TaskTable
in a lazy aggregate manner.

This laziness greatly reduces the number of handshaking
communication calls. Furthermore, aggregated (bulk) copy-
ing achieves better data transfer bandwidth on the PCle
bus. The wait and waitAll functions return only when the
ready field(s) of the corresponding task(s) in the TaskTable
is/are reset. The laziness of TaskTable updates may block
these functions if the CPU is not spawning more tasks; these
functions therefore use a timeout, after which they enforce
a copy-back of the involved TaskTable entries.

Because the CPU overwrites the TaskTable while the Mas-
terKernel is in flight, coherence issues may arise. We there-
fore marked the TaskTable as volatile, and performed ex-
tensive micro-benchmarking to ascertain that the in-flight
writes by the CPU to the TaskTable are visible to the GPU
and vice-versa on two GPU architectures, Tesla K40 and
Maxwell Titan X. This behavior is also confirmed by other
researchers [12, 31].

4.3 Concurrent Task Scheduling

Task scheduling in Pagoda involves finding free resources
(warps, shared memory) on which to execute a task. All
warps of a given task execute in the same MTB. This design

stems from the fact that narrow tasks need less threads than
those available in an MTB.

We found that task spawning and scheduling are high-
overhead operations, especially for narrow tasks, which can
be short running. To mitigate this issue, Pagoda overlaps
the three task processing stages, namely, spawning, schedul-
ing, and execution. Secondly, multiple scheduler warps
across different MTBs schedule tasks concurrently, lowering
the time to execution for each task.

Two Pagoda data structures facilitate task spawning and
scheduling in parallel: the multi-row TaskTable and the per-
MTB WarpTable. While the CPU is spawning tasks on a
TaskTable row, scheduler warp(s) on the GPU may schedule
tasks from the remaining rows. The status of each execu-
tor warp is stored in a WarpTable entry, whose fields are
described in Table 2.

Algorithm 1 describes the operation of the scheduler and
executor warps. The scheduler warp (Lines 2-28) scans the
corresponding column in the TaskTable, and when it finds
an entry with a set sched flag (Line 14), it attempts to sched-
ule the task. It begins by resetting the sched flag. If the task
requires shared memory or synchronization, then the sched-
uler first allocates shared memory/barrier (Lines 19- 24) for
them (Section 5.1) and performs scheduling for each individ-
ual threadblock of the task. If neither shared memory nor
synchronization are required, then execution is based solely
on available warp slots (Line 28).

The executor warps remain idle until the ezec flag in their
WarpTable slot is set. Once this flag is set, they execute the
task (Line 33). Afterwards, they release the shared memory
and the synchronization barriers (Lines 36-39). Lastly, they
reset the ready flag in the corresponding TaskTable entry,
and reset the ezec flag in the WarpTable element, marking
the warp to be free (Lines 41-43). In order for this mecha-
nism to work, the scheduler and executor warps must have
a consistent view of the WarpTable, which is achieved by
the threadfences. The scheduler warp does not explicitly
monitor the end of a task execution. Hence, it cannot free
the shared memory used by the task’s threadblocks immedi-
ately after they finish execution. The executor warps cannot
themselves deallocate the shared memory, since it may lead



Algorithm 1: Pagoda Task Scheduling : Each MTB
Executes this Algorithm

1

Input: gTaskPool - column of task entries in the TaskTable
belonging to the given MTB, numEntriesPerPool -
#rows in the TaskTable, ctrfnumEntriesPerPool] and
doneCtr[numEntriesPerPool] - counters allocated in
shared memory, tid - threadlD

while (1) do

2 if tid < warpSize then // scheduler warp does this
3 for (i = 0; 4 < numEntriesPerPool; i++) do
a entry + gTaskPool[i]
5 taskld = entry.ready
6 if taskld > 0 then
7 prevEntry < taskTable entry for taskld
8 if prevEntry.ready # -1 then
9 threadfence()
10 continue
11 else
12 prevEntry.ready < 1
13 prevEntry.sched < 1
14 if entry.sched then // check if sched flag is set
15 entry.sched < 0
16 doneCtr[i] « ctr[i] + getNumWarps(entry)
17 if entry.SMSize > 0 V entry.sync then //
schedule warps per threadblock
18 for (j = 0; 7 < entry.numIB; j++) do
19 if (entry.sync) then barld + getBarld()
20 if (entry.SMSize > 0) then
21 do
22 deallocMarkedSM() // avoids
deadlocking
23 retVal < allocSM(entry.SMSize, &index)
24 while (retVal == false)
25 ctrfi]«— getNumWarpsPerTB(entry)
26 pSched(ctr[i] Xj, i, index, barld, &ctr[i])
27 else // schedule all warps
28 | pSched(0, i, 0, 0, &ctr[i])
29 else // executor warps do this
30 if (warpTable/warpld].ezec) then
31 entryld < warpTable[warpld].eNum
32 tEntry < gTaskPool[entryld]
33 *(tEntry.funcPtr))(tEntry.args) // warp executes the
task
34 if (laneld == 0) then
35 if lastWarpInBlock() then // only 1 thread per
threadblock performs this
36 if (tEntry.SMSize > 0) then // dealloc sM
37 | markSMForDealloc(warpTable[warpld].SMindex)
38 if (tEntry.sync) then
39 | releaseBarld[tEntry.barld]
40 threadfence_block()
41 if (atomicDec(€doneCtr[entryld]))) then
42 \tEntryready < 0; // free the task entry
43 warpTabIe[WarpId].exec <0 // warp is free now
Table 2: WarpTable entry fields
warpld maintains the warp ID of the warp, for the current
task. It is used to generate the threadID in the get-
Tid() function.
eNum refers to the task entry in the TaskTable, which is
being executed by the warp. This reference allows
each warp to obtain the task kernel arguments.
SMindex | indicates the shared memory starting location for the
corresponding threadblock.
barld maintains the barrier ID that the warp should syn-
chronize on. It is only valid for tasks that request
threadblock synchronization.
exec acts as a flag for the warp to begin task execution. It
is also used to query the warp status.

to inconsistencies if the scheduler warp is simultaneously al-
locating the shared memory. To overcome this issue, the
last executing warp of each threadblock requesting shared
memory marks the shared memory region to be freed, and
before performing any future shared memory allocation, the
scheduler warp first deallocates all memory blocks marked
for freeing (Line 22). The allocation/deallocation mecha-
nism is described in Section 5.1.

Algorithm 2: Parallel Warp Schedule Function

Input: tid - thread number, baseWarpld - base warp number
getting scheduled, eNum - number of the TaskTable
column entry, index - starting address of the shared
memory for the threadblock, barld - barrier Id for the
threadblock, warpCtr - count of the number of warps
to be scheduled

1 Function pSched (baseWarpld, eNum, indez, barld,
warpCtr)

2 threadDone <~ 1 // private per thread

3 |i < tid; // private per thread

4 |while (1) do

5 if (i < numEntriesPerPool) then

6 threadDone «+ 0

7 if (lwarpTable[tid].ezec) then

8 if (id < (atomicDec(warpCtr)) >= 0) then
9 warpTable[i].warpld < id + baseWarpld
10 warpTable[i].eNum < eNum
11 warpTable[i].SMindex <« index
12 warpTable[i].barld <+ barld
13 threadfence_block()
14 warpTable[i].exec + 1
15 if (*warpCtr <= 0) then threadDone « 1
16 if (_all(threadDone == 1) = true) then //

Synchronize threads in the scheduler warp

17 | break
18 i« i+ 32
19 if (i > numEntriesPerPool) then i <+ tid

Scheduling is performed by the threads of the scheduler
warp in parallel, through the PSched function (Algo. 2).
Note that the scheduler warps across different MTBs oper-
ate concurrently. The threads in the scheduler warp find
free executor warps for a given task by checking their exec
flags. If a free warp is found, a counter holding the num-
ber of warps that are yet to be scheduled is decremented
atomically. If the result is positive, then the corresponding
warp is scheduled (Lines 7-14). This counter resides in the
GPU shared memory, speeding up the atomic operations.
Note that both branches on lines 7 and 8 are divergent, i.e,
different threads may have different branch outcomes. The
threads with a false branch outcome may repeatedly execute
the outer while loop, in spite of the other threads finding free
warps. To remedy this problem, all threads in the scheduler
warp must be synchronized after each iteration of the while
loop. We achieve this using _all(), a CUDA warp-level vote
function, as opposed to the usual CUDA API for synchro-
nization, _syncthreads() which will synchronizes all MTB
threads.

S.  SUPPORTING NATIVE CUDA
FUNCTIONALITY

As tasks in Pagoda are launched by the MasterKernel,
native CUDA shared memory and synchronization manage-
ment cannot be used. This section describes how Pagoda
supports these functionalities.



5.1 Shared Memory Management

CUDA lacks support for software-driven dynamic shared
memory allocation once a kernel has been launched. Tasks
in Pagoda piggyback on the MasterKernel, and hence can-
not directly use the shared memory. A need therefore arises
for software management of the shared memory. Each MTB
reserves shared memory when it starts execution, and allo-
cates this memory to threadblocks of one or more tasks, and
frees it after the tasks finish execution.

Our software allocator/deallocator manages small, con-
tiguous regions of shared memory with low overhead.

Unlike many general-purpose allocators that rely on freel-
ists [39], Pagoda’s algorithm is motivated by the buddy sys-
tem mechanism [13] to reduce overhead. Threads of the
scheduler warp in the MTB are responsible for performing
the allocations and deallocations.

Alloc 8K

Figure 3: Allocating 8K of shared memory in Pagoda: The
value in each node represents the size of the shared memory block.
Note that not all levels of the tree are shown here. The white
nodes are free blocks and the shaded nodes are allocated blocks.

Figure 4: Deallocating 4K of shared memory in Pagoda: An-
cestors of the current node are marked free only if the sibling is
free.

Data Structure: The memory blocks are represented as
nodes in a tree, as shown in Fig. 3. This tree is arranged
as an array in the shared memory itself, allowing fast ac-
cess. Each level in the tree corresponds to memory blocks
of a given size. The lowest node in the tree represents 512
bytes of memory, which is the smallest allocation granular-
ity in our mechanism. The parent of a given node represents
a memory block twice as large. Thus, the total number of
nodes in the tree is 128, small enough to fit in the shared
memory. A marked node means the block is allocated, oth-
erwise, it is free. An invariant of this data structure is that
if a node is marked, then its parent must be marked as well.

Allocation: Fig. 3 shows a case where a completely free
tree receives an 8K allocation request. The first step is to
find the tree level at which node sizes are no smaller than the
request. The static mapping of blocks allows our mechanism
to search for a free node on such a level of the tree, an
operation which is performed in parallel by the threads of the
scheduler warp. One of these threads that finds such a free
node marks it. The next operation is to mark all descendants
and ancestors of this node. Since the tree contains only
128 nodes, threads of the scheduler warp each check four
nodes, and mark them if they are either the descendants or
ancestors of the allocated node.

Deallocation: Fig. 4 shows an example where a block
of 4K needs to be freed. First, the threads of the sched-
uler warp work in parallel to unmark all descendants of this
node. Next, the first thread of the scheduler warp unmarks
the node itself, and keeps going up the tree unmarking the
parent as long as the sibling node is unmarked as well. Recall
that both allocation and deallocation are carried out only by
the scheduler warp, and hence no locking is necessary while
performing them.

5.2 Sub-Thread Block Synchronization

CUDA __syncthreads() synchronizes threads within a
threadblock. If this function is used directly within the
Pagoda kernel code, the synchronization may lead to un-
defined behavior. This would occur because the MTB may
be running two different threadblocks simultaneously, and
hence all threads in the MTB may not reach the _sync-
threads() barrier.

A naive solution to this issue would force all threadblocks
running on the MTB to reach the same barrier. How-
ever, this would lead to excessive wait times in threadblocks
that do not require synchronization. Pagoda presents a
sub-threadblock barrier, where only the threads of a given
threadblock can synchronize. Pa-goda achieves this using
named barriers (using bar.sync instruction) in the PTX pro-
gramming model [23]. Each threadblock of a task that an-
notates the synchronization requirement in the TaskTable
entry is provided a unique barrier ID during the scheduling
of the threadblock (Algo. 1, Line 19). When a threadblock
encounters the syncBlock() function, this barrier ID is used
for synchronization. The PTX model allows for only 16 such
barriers. The Pagoda design therefore needs to recycle these
IDs once the threadblock is finished.

6. EVALUATION

The following subsections detail our experimental setup
and results.

6.1 Experimental Setup

The GPU experiments are run on a node with an NVIDIA
Maxwell Titan X GPU, which contains 3072 1000MHz GPU
cores with 12GB RAM. The machine runs Ubuntu 14.04,
with 24GB RAM and an Intel core-i7 4.0GHz quad-core
CPU. We enabled 32 concurrent kernels in the HyperQ by
setting the CUDA_DEVICE_MAX_CONNECTIONS envi-
ronment variable to 32. All CUDA and Pagoda benchmarks
are compiled using nvce from CUDA 7.5, with -O3. The
MasterKernel, along with all task kernels, are forced to use
at most 32 registers in the Pagoda versions. The PThreads
and sequential programs are compiled with gcc -O8 and are
executed on two hyperthreaded Intel Xeon E5-2660 CPUs
each having 10 cores running at 2.6GHz.

Table 4 details the applications used in this study. We
chose benchmarks from various application domains, such as
signal and image processing, network security, and scientific
computing where narrow tasks arise often. Table 3 shows
the workload characteristics of the benchmarks.

6.2 Comparison against Runtime
Mechanisms
Fig. 5 shows that Pagoda obtains higher performance than

other runtime schemes, namely, PThreads on the CPU,
CUDA-HyperQ and GeMTC on the GPU. The speedup



Table 3: Benchmark Characteristics

Benchmark Source Task Input Set per % Time % Time May Re- De-
Type Task(each task Num- | spent in spent in benefit quires fault
is one image, ber data copy compu- from thread- Reg-
signal, ma- of (CUDA- tation Shared block ister
trix or network Tasks | HyperQ) (CUDA- Mem- syn- Count
packet) HyperQ) ory chro-
niza-
tion
Mandel- Quinn [27] Irregular | 64 X 64 images 32K 24 76 X X 28
brot(MB)
FilterBank(FB) Regular Signals of width 32K 35 65 X 4 21
StreamlIt [35] 2K
Beam- Regular Signals of width 32K 13 87 X X 34
Former(BF') Streamlt [35] 2K
Image Convolu- CUDA Regular 128 x 128 images | 32K 30 70 X X 25
tion(CONYV) SDK [19]
DCT8x8(DCT) CUDA Regular 128 x 128 images | 32K 81 19 v v 33
SDK [21]
Matrix- CUDA Regular 64 X 64 matrix 32K 51 49 v v 30
Mul(MM) SDK [22]
Sparse LU OpenMP Irregular | 32 X 32 matrix 273K 3 97 X X 17
Decomposi- Task
tion(SLUD) Suite [4]
3DES NIST [5] Irregular | Network packets 32K 74 26 X X 26
sized 2K-64K

Table 4: Benchmark Description

Mandelbrot sets are used in fractal analysis [6]. Each pixel
value of the image is calculated in parallel; however, the
required computation per pixel is highly irregular. There-
fore, computation over each pixel is represented as a task
that has low degree of parallelism.

This is a standard matrix multiplication implementation,
refactored from the NVIDIA SDK samples [22]. We used
small matrix sizes, with each multiplication running as a
task to simulate the behaviour seen in an earthquake en-
gineering simulator [16]. The behaviour arises from con-
current simulation of various structures, each of which is
represented by different but small matrix sizes.

FB

Filterbank is a signal processing algorithm that separates
input signals into multiple sub-signals with a set of filters.
Multiple radios generate signals, processing each of them
represents a task. Each task contains small amount of
parallelizable computation.

BF

Beam former is a signal processing method used to control
the direction of signal reception and transmission. Many
independent signal beams receive inputs asynchronously.
Processing individual inputs generate a narrow task.

SLUD

This is a sparse matrix solver using multi-frontal
method [15]. A matrix is divided into multiple regular
sub-matrices. Sparse LUD is represented as a task-based
application owing to the irregularity in the computation
size among different iterations of a parallel loop.

3DES

It is used to encrypt electronic data [5]. Network routers
encrypt multiple packets as they arrive, each of which is
represented as a narrow task. We use NetBench [17] to
generate varied sizes of network packets that 3DES en-
crypts.

DCT

The Discrete Cosine Transform (DCT) [21] is commonly
used for compression, e.g, JPEG (image), MP3 (audio),
and MPEG (video) use it. Online surveillance systems
gather image streams from multiple cameras, and operate
on images from different streams in parallel [10]. Process-
ing each image represents a narrow task.

CONV

Convolution filters [19] are used in blur and edge detection
mechanisms in image processing. Each filter operation
represents a task, which operates in parallel across pixels.

MPE

Pagoda is able to run multi-programmed workloads,
where multiple applications generate narrow tasks asyn-
chronously. To evaluate such a setup, we built a multi-
programmed benchmark of our own. Multi-programmed
environments often encounter heterogeneity in workloads.
To simulate that, we chose 1) 3DES and Mandelbrot,
which contain irregular computations, 2) Filterbank,
which requires threadblock-level synchronization, and 3)
Matrix multiplication, which uses shared memory. Each
of the benchmarks contained 8K tasks, totalling 32K
tasks.

is calculated over the entire execution time, i.e, it mea-
sures both compute and data copy times. The performance
increase is attributed to the high utilization achieved by
Pagoda. The GeMTC versions do not use shared memory,
since GeMTC has no support for it. We could not imple-
ment SLUD in GeMTC; GeMTC needs the number of tasks
to be pre-defined, which is not the case in SLUD. GeMTC
launches work in batches, where batch comprises a SuperK-
ernel that runs tasks. The default GeMTC design used 32
threads per SuperKernel threadblock, obtaining only 50%
occupancy. We hence modified GeMTC to use more threads;
from 64 threads onwards, GeMTC can obtain 100% occu-
pancy. Our evaluation uses 128 threads per task for Hy-
perQ, GeMTC, and Pagoda, which was heuristically chosen
because GeMTC performs reasonably well in this configu-
ration (Fig. 7). GeMTC performs worse than HyperQ in
MB and 3DES because these applications contain irregular
workloads. Speedup achieved by all GPU schemes is low
in DCT because the application is data copy bound. For
a fair comparison with the CPU, we implemented OpenMP
with data parallelism, OS-based task scheduling, Python-
based thread pooling, and PThreads-based task parallelism.
PThreads obtained the best results, which we include in
Fig. 5.

Fig. 6 presents weak-scaling results. It compares exe-
cution times when the task count is varied. For low task
counts, none of the schemes occupy the entire GPU, and
hence HyperQ and GeMTC perform fairly well. However,
once the task count grows beyond 512, Pagoda obtains
higher performance because of increased utilization.

6.3 Comparison against Static Task Fusion

Static task fusion combines multiple tasks into a mono-
lithic large task [37, 8]. It is clear that such mechanisms
perform the best if all tasks start and end together. Bene-
fits from Pagoda come into play when the computations of
tasks would not end together, due to irregularities. Here,
we compare the speedups achieved by Pagoda, static fusion,
PThreads, and CUDA-HyperQ when task compute work-
loads vary. To obtain such irregularity, we generated in-
put sizes of different tasks in a pseudo-random manner. We
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could not fuse SLUD since the number of tasks is not known
statically. Each application contained 32K tasks. Each sub-
task in the statically fused task uses 256 threads. We chose
this number heuristically, since selecting the best thread
count per task is infeasible in static fusion. On the other
hand, the runtime schemes of Pagoda/CUDA-HyperQ al-
low for dynamic thread count selection, based on the size of
the irregular task. The tasks in Fig. 9 use between 32 and
256 threads for Pagoda/CUDA-HyperQ. The Pagoda perfor-
mance is superior to all other schemes. Pagoda achieves a ge-
ometric mean speedup of 1.79x over static fusion. Note that
the static fusion approach represents the upper-bound per-
formance from batch-scheduling systems such as GeMTC,
since the execution time is bounded by the longest running
task.

Pagoda’s performance gain depends on the input size,
thread counts per task, and the number of tasks. Fig. 6
showed the impact of the number of tasks. Next, we an-
alyze the impact of thread counts on the GPU compute
time, while keeping the task input sizes fixed and varying
the work done per thread. Fig. 7 compares benchmark exe-
cution times with a varying number of threads per task. No
shared memory was used in either of the program versions
because GeMTC does not support it. Pagoda outperforms
both CUDA-HyperQ and GeMTC on all configurations. The
performance benefits of Pagoda over HyperQ decrease with
thread count because the underutilization becomes less se-
vere. Generally, Pagoda performance increases with thread
counts owing to the increased pipelined processing bene-
fits. Pagoda’s performance on FB decreases at higher thread
counts because synchronization in that benchmark incurs a
higher penalty when more threads must synchronize. The
GeMTC performance does not change much with the thread

count. This is explained since each batch, or SuperKernel,
contains a fixed number of total threads.

6.4 Understanding Pagoda’s Utility

Fig. 8 studies Pagoda’s compute time versus HyperQ on
two representative benchmarks wherein both the input size
and thread counts are varied. The HyperQ configurations
use 256 threads per threadblock. The evaluation uses 32K
tasks. For most inputs, Pagoda gains significant speedups
over HyperQ owing to the increased underutilization, until
the thread count is greater than 512. Afterwards, Pagoda
benefits diminish, since HyperQ can then better utilize the
GPU without having to pay the Pagoda scheduling cost.
However, in certain cases after further increasing the thread
count, e.g., CONV with input size 256x256 and 64K threads,
Pagoda starts to significantly outperform HyperQ. We at-
tribute this behavior to the warp-level scheduling in Pagoda
against the threadblock-level scheduling in CUDA. CUDA
prohibits a new threadblock from launching until all warps of
the previous threadblock finish, where Pagoda can schedule
a warp from a new threadblock as soon a warp in a running
threadblock completes.

6.5 Task Latency Analysis

Fig. 10 compares the average latency obtained per task
in Pagoda with that in a statically fused task. We use two
representative applications: 3DES, which contains irregular
tasks, and MM, which contains regular tasks. Each task in
a statically fused kernel, or in a batch-based system such as
GeMTC, can only finish when all tasks in the fused kernel
or batch have finished. Therefore, their achieved average
latency increases with the number of tasks. On the other
hand, the average latency of each Pagoda task remains the
same for any number of launched tasks.
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6.6 Benefits of the Continuous Spawning and
Concurrent Pipelined Task Processing
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Figure 8: Effects of varying threads per task for different
input sizes: For small thread counts, Pagoda outperforms Hy-
per@ in all input sizes. For large thread counts, Pagoda may still
outperform HyperQ owing to its finer grain of scheduling.

pares GeMTC, Pagoda Batching, and Pagoda, which per-
forms continuous spawning and concurrent, pipelined task
processing. The total task count is 32K, and each task
contains 128 threads. The performance difference between
GeMTC and Pagoda batching demonstrates the benefits
achieved by concurrent task processing. The performance
difference between Pagoda and Pagoda Batching demon-
strates the benefits achieved by continuous, pipelined task
spawning. This mechanism is enabled by Pagoda’s Task-

3
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5% ipelined ing achieve significant benefits. CONV i
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Figure 10: Average Latency of Tasks: Pagoda achieves much
lower latency compared to static fusion.

both continuous spawning and concurrent, pipelined task process-
ing. Pagoda-batching only performs concurrent task processing.
GeMTC performs neither. Pagoda outperforms GeMTC in all
cases.



Table 5: Compute performance comparison of tasks run in
Pagoda with and without shared memory allocation: FEach
version runs 32K tasks. DCT tasks have 64 threads, MM tasks
contain 256 threads. Only the compute time is compared. The
shared memory usage offers considerable benefits.

Pagoda with Shared Pagoda without
Bench- | Memory Shared Memory
mark

Speedup Achieved Speedup

over HyperQ Occu- over HyperQ | Achieved

using Shared pancy using Shared Occu-

memory memory pancy
DCT 1.35x% 25% 1.25x 97%
MM 1.51x 97% 1.20x 97%

6.7 Pagoda Shared Memory Analysis

Pagoda performs software management of the GPU
shared memory, as described in Section 5.1. To compare
the obtainable performance benefits from the use of shared
memory, we show performance results on the DCT and MM
benchmarks. These two codes can potentially benefit from
the use of shared memory. We created two versions for each:
with and without using shared memory. Table 5 compares
the speedups achieved by these versions over the CUDA-
HyperQ versions, which also use the shared memory. The
shared memory requirement may reduce the achieved occu-
pancy; yet, Pagoda shared memory versions achieve perfor-
mance benefits. None of the other static-fusion or runtime
batching solution offer shared memory utilization, and miss
out on such benefits.

7. RELATED WORK

Task-based models [1, 3] employ a runtime system which
governs task executions on various engines, such as CPUs
and GPUs. These systems, however, always execute narrow
tasks on CPUs, believing that their low parallelism degree
cannot overcome the overhead of memory copies.

Static task fusion is the preliminary approach to deal
with GPU underutilization. Wang et. al. [37] present a
mechanism where such fusion achieves higher utilization, re-
sulting in energy benefits. KernelMerge [8] statically fuses
kernels, and explores round-robin and fair-partitioned exe-
cution schemes for these kernels. The GPU programming
models, such as CUDA and OpenCL, allocate same re-
sources to each thread. Therefore, the resource usage in
static fusion schemes gets limited by the requirements of
the most resource-hungry task. A more sophisticated ap-
proach is therefore to perform fusion at the runtime. Two
approaches [28, 25] perform kernel consolidation leveraging
concurrent GPU kernel execution. They launch multiple
concurrent kernels, where resources not being used by one
kernel can be yielded to another. The first approach [28§]
relies on a threadblock-level launching scheme. The second
approach [25] presents a compiler scheme that transforms
kernels so that they can automatically support any thread-
block configuration. This ability helps in finding the best
sharing configuration for different kernels. Zhong et. al. [41]
present an approach where a large kernel is split into in-
dependent smaller kernels that co-execute to achieve better
utilization. Kato et al. [11] propose a software scheduler at
the device driver layer to prevent interference among con-
currently running GPU applications, trading off response
latency for throughput. However, all these approaches are
restricted by the 32 kernel limit imposed by CUDA-HyperQ),
and fail to efficiently execute narrow tasks.

Runtime systems that virtualize GPU resources can nat-
urally overcome the hardware-imposed kernel limit. Ad-
ditionally, they offer low execution latencies compared to
static fusion. Closest to our work is GeMTC [14]. Like
the MasterKernel in Pagoda, GeMTC runs a SuperKernel
that virtualizes GPU resources. The use of large dameon-
like kernels is similar to persistent threading [9]. Unlike the
MasterKernel, the SuperKernel does not guarantee an oc-
cupancy of 100%, and therefore may face underutilization.
Secondly, the GeMTC design uses a single FIFO queue for
its batch-based task launching scheme, resulting in signif-
icant task scheduling overhead. Third, GPU-specific func-
tionalities, such as the shared memory and threadblock-level
synchronization remain unsupported.

GPU researchers have exploited pipelining [29] to overlap
data transfers with kernel computations. The distinguishing
factor in the Pagoda pipelined task processing is that it over-
laps spawning, which comprises the CPU finding a free task
entry and performing a data copy, with GPU scheduling,
which is only a sub-part of the overall task processing. Yang
et. al. [40] showed that fusing cross-kernel threadblocks
can obtain better shared memory performance. Pagoda’s
shared memory management schedules threadblocks as long
as shared memory is found at runtime.

Prior research has explored preemptive hardware tech-
niques to improve GPU utilization in the presence of con-
current low occupancy kernels [38, 26, 34]. In contrast to
these works, which require hardware changes, Pagoda pro-
vides a software only solution that runs on contemporary
GPU hardware and could be applied to any future GPU
hardware that supports the CUDA programming model.

Virtualizing GPU resources has also been explored to im-
prove GPU utilization via multi-tenancy in cloud comput-
ing. Sengupta et al. [30] focus on virtualizing the GPU as
a whole in a cloud with multiple GPUs. Becchi et al. [2]
study a virtual memory system that isolates the memory
spaces of concurrent kernels and allows kernels whose aggre-
gate memory footprint exceeds the GPU’s memory capacity
to execute concurrently. By contrast, Pagoda virtualizes the
compute resources of a single GPU at the granularity of a
warp.

8. CONCLUSION

The paper has presented Pagoda, a GPU runtime sys-
tem that overcomes underutilization in the presence of nar-
row tasks. Pagoda virtualizes GPU resources via Mas-
terKernel, a continually executing daemon on the GPU.
Pagoda launches tasks on the GPU as long as free warps
are available. Unlike previous work, Pagoda supports most
functionality of the native CUDA model. A key distinc-
tion in Pagoda is the task spawning and scheduling mech-
anism. It contains a novel data structure, called Task-
Table, that greatly reduces CPU-GPU handshaking during
task spawning. Pagoda achieves concurrent task schedul-
ing, and overlaps task spawning, scheduling, and execution
through pipelining. The experimental evaluation showed
that Pagoda achie-ves a geometric mean speedup of 1.51x
over CUDA- HyperQ, 1.69x over GeMTC, and 5.70x over
20-core CPU PThreads. The evaluation also showed that
Pagoda can outperform static fusion schemes by 1.79x, and
achieves much lower latency per task. We believe that the
Pagoda design makes it easier for narrow task applications
to exploit GPUs, and will encourage the growth of non-
traditional workloads on GPUs.



9.
1]

[10]

[11]

[12]

REFERENCES

C. A. Augonnet, S. Thibault, R. Namyst, and

P.-A. W. Wacrenier. Starpu: A unified platform for
task scheduling on heterogeneous multicore
architectures. Concurr. Comput. : Pract. Exper.,
23(2):187-198, Feb. 2011.

M. Becchi, K. Sajjapongse, I. Graves, A. Procter,

V. Ravi, and S. Chakradhar. A virtual memory based
runtime to support multi-tenancy in clusters with
GPUs. In Proceedings of the 21st International
Symposium on High-Performance Parallel and
Distributed Computing, HPDC ’12, pages 97-108, New
York, NY, USA, 2012. ACM.

J. Bueno, J. Planas, A. Duran, R. M. Badia,

X. Martorell, E. AyguadAl’, and J. Labarta.
Productive programming of GPU clusters with ompss.
In Parallel Distributed Processing Symposium
(IPDPS), 2012 IEEE 26th International, pages
557-568, May 2012.

A. Duran, X. Teruel, R. Ferrer, X. Martorell, and

E. Ayguade. Barcelona openmp tasks suite: A set of
benchmarks targeting the exploitation of task
parallelism in openmp. In Proceedings of the 2009
International Conference on Parallel Processing, ICPP
’09, pages 124-131, Washington, DC, USA, 2009.
IEEE Computer Society.

P. FIPS. 46-3: Data encryption standard (des).
National Institute of Standards and Technology,
25(10):1-22, 1999.

Fraqtive. [Online]. Available:
http://fragtive.mimec.org/, 2016. (accessed March 5,
2016).

N. K. Govindaraju, B. Lloyd, Y. Dotsenko, B. Smith,
and J. Manferdelli. High performance discrete fourier
transforms on graphics processors. In Proceedings of
the 2008 ACM/IEEE conference on Supercomputing,
page 2. IEEE Press, 2008.

C. Gregg, J. Dorn, K. Hazelwood, and K. Skadron.
Fine-grained resource sharing for concurrent GPGPU
kernels. In Proceedings of the 4th USENIX Conference
on Hot Topics in Parallelism, HotPar’12, pages 10-10,
Berkeley, CA, USA, 2012. USENIX Association.

K. Gupta, J. A. Stuart, and J. D. Owens. A study of
persistent threads style GPU programming for
GPGPU workloads. In Innovative Parallel Computing
(InPar), 2012, pages 1-14. IEEE, 2012.

A. S. Kaseb, E. Berry, Y. Koh, A. Mohan, W. Chen,
H. Li, Y. H. Lu, and E. J. Delp. A system for
large-scale analysis of distributed cameras. In Signal
and Information Processing (GlobalSIP), 2014 IEEE
Global Conference on, pages 340-344, Dec 2014.

S. Kato, K. Lakshmanan, R. Rajkumar, and

Y. Ishikawa. Timegraph: GPU scheduling for
real-time multi-tasking environments. In Proceedings
of the 2011 USENIX Conference on USENIX Annual
Technical Conference, USENIXATC’11, pages 2-2,
Berkeley, CA, USA, 2011. USENIX Association.

S. Kim, S. Huh, Y. Hu, X. Zhang, E. Witchel,

A. Wated, and M. Silberstein. GPUnet: Networking
abstractions for GPU programs. In Proceedings of the
11th USENIX Conference on Operating Systems

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]

(21]

(22]

23]

[24]

(25]

[26]

Design and Implementation, OSDI’14, pages 201-216,
Berkeley, CA, USA, 2014. USENIX Association.

K. C. Knowlton. A fast storage allocator. Commun.
ACM, 8(10):623-624, Oct. 1965

S. J. Krieder, J. M. Wozniak, T. Armstrong,

M. Wilde, D. S. Katz, B. Grimmer, I. T. Foster, and
I. Raicu. Design and evaluation of the GeMTC
framework for GPU-enabled many-task computing. In
Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing,
HPDC ’14, pages 153-164, New York, NY, USA, 2014.
ACM.

J. W. H. Liu. The multifrontal method for sparse
matrix solution: Theory and practice. SIAM Reuv.,
34(1):82-109, Mar. 1992.

F. McKenna. Opensees: A framework for earthquake
engineering simulation. Computing in Science
Engineering, 13(4):58-66, July 2011.

G. Memik, W. H. Mangione-Smith, and W. Hu.
Netbench: A benchmarking suite for network
processors. In Proceedings of the 2001 IEEE/ACM
international conference on Computer-aided design,
pages 39-42. IEEE Press, 2001.

A. Morrison and Y. Afek. Fast concurrent queues for
x86 processors. SIGPLAN Not., 48(8):103-112, Feb.
2013.

NVIDIA. Texture-based Separable Convolution.
[Online]. Available: http:
//docs.nvidia.com/cuda/cuda-samples/#graphics,
2007. (accessed March. 5, 2016).

NVIDIA. Hyper-Q Example. [Online]. Available:
http://docs.nvidia.com/cuda/samples/6_Advanced/
simpleHyperQ/doc/HyperQ.pdf, 2012. (accessed
March. 5, 2016).

NVIDIA. The White Paper of Discrete Cosine
Transform for 8x8 Blocks with CUDA. [Online].
Available: http://docs.nvidia.com/cuda/samples/3_
Imaging/dct8x8/doc/dct8x8.pdf, 2012. (accessed
March. 5, 2016).

NVIDIA. CUDA. [Online]. Available: http:
//docs.nvidia.com/cuda/cuda-c-programming-guide/,
2015. (accessed March 5, 2016).

NVIDIA. PTX. [Online]. Available: http:
//docs.nvidia.com/cuda/parallel-thread-execution/,
2016. (accessed March 5, 2016).

K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman,
R. Xin, S. Ratnasamy, S. Shenker, and I. Stoica. The
case for tiny tasks in compute clusters. In Presented as
part of the 14th Workshop on Hot Topics in Operating
Systems, Berkeley, CA, 2013. USENIX.

S. Pai, M. J. Thazhuthaveetil, and R. Govindarajan.
Improving GPGPU concurrency with elastic kernels.
In Proceedings of the Fighteenth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’13, pages
407-418, New York, NY, USA, 2013. ACM.

J. J. K. Park, Y. Park, and S. Mahlke. Chimera:
Collaborative preemption for multitasking on a shared
GPU. In Proceedings of the Twentieth International
Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS '15, pages
593-606, New York, NY, USA, 2015. ACM.



[27]

[28]

[29]

31]

[32]

M. J. Quinn. Parallel Programming in C with MPI
and OpenMP. McGraw-Hill Education Group, 2003.
V. T. Ravi, M. Becchi, G. Agrawal, and

S. Chakradhar. Supporting GPU sharing in cloud
environments with a transparent runtime
consolidation framework. In Proceedings of the 20th
International Symposium on High Performance
Distributed Computing, HPDC ’11, pages 217-228,
New York, NY, USA, 2011. ACM.

A. Sabne, P. Sakdhnagool, and R. Eigenmann. Scaling
large-data computations on Multi-GPU accelerators.
In Proceedings of the 27th International ACM
Conference on International Conference on
Supercomputing, ICS ’13, pages 443—-454, New York,
NY, USA, 2013. ACM.

D. Sengupta, R. Belapure, and K. Schwan.
Multi-tenancy on GPGPU-based servers. In
Proceedings of the 7th International Workshop on
Virtualization Technologies in Distributed Computing,
pages 3-10, 2013.

M. Silberstein, B. Ford, 1. Keidar, and E. Witchel.
GPUfs: Integrating a file system with GPUs. In
Proceedings of the Eighteenth International Conference
on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’13, pages 485—498,
New York, NY, USA, 2013. ACM.

J. Subhlok, J. M. Stichnoth, D. R. O’Hallaron, and
T. Gross. Exploiting task and data parallelism on a
multicomputer. In Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPOPP 93, pages 13-22, New
York, NY, USA, 1993. ACM.

J. Subhlok and G. Vondran. Optimal use of mixed
task and data parallelism for pipelined computations.
J. Parallel Distrib. Comput., 60(3):297-319, 2000.

I. Tanasic, I. Gelado, J. Cabezas, A. Ramirez,

N. Navarro, and M. Valero. Enabling preemptive

(35]

(36]

37]

(38]

(39]

(40]

41]

multiprogramming on GPUs. In Proceeding of the 41st
Annual International Symposium on Computer
Architecuture, ISCA ’14, pages 193-204, Piscataway,
NJ, USA, 2014. IEEE Press.

W. Thies, M. Karczmarek, and S. Amarasinghe.
Streamit: A language for streaming applications. In
Compiler Construction, pages 179-196. Springer, 2002.
V. Volkov and J. W. Demmel. Benchmarking GPUs to
tune dense linear algebra. In High Performance
Computing, Networking, Storage and Analysis, 2008.
SC 2008. International Conference for, pages 1-11.
IEEE, 2008.

G. Wang, Y. Lin, and W. Yi. Kernel fusion: An
effective method for better power efficiency on
multithreaded GPU. In Green Computing and
Communications (GreenCom), 2010 IEEE/ACM Int’l
Conference on Int’l Conference on Cyber, Physical
and Social Computing (CPSCom), pages 344-350, Dec
2010.

Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang,
and M. Guo. Simultaneous multikernel: Fine-grained
sharing of gpgpus. IEEE Computer Architecture
Letters, PP(99):1-1, 2015.

P. R. Wilson, M. S. Johnstone, M. Neely, and

D. Boles. Dynamic storage allocation: A survey and
critical review. In Proceedings of the International

Workshop on Memory Management, IWMM ’95,
pages 1-116, London, UK, UK, 1995. Springer-Verlag.
Y. Yang, P. Xiang, M. Mantor, N. Rubin, and

H. Zhou. Shared memory multiplexing: A novel way
to improve gpgpu throughput. In Proceedings of the
21st International Conference on Parallel
Architectures and Compilation Techniques, PACT ’12,
pages 283-292; New York, NY, USA, 2012. ACM.

J. Zhong and B. He. Kernelet: High-throughput GPU
kernel executions with dynamic slicing and scheduling.
IEEE Trans. Parallel Distrib. Syst., 25(6):1522-1532,
June 2014.



