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ABSTRACT
Massively multithreaded GPUs achieve high throughput by
running thousands of threads in parallel. To fully utilize the
hardware, contemporary workloads spawn work to the GPU
in bulk by launching large tasks, where each task is a kernel
that contains thousands of threads that occupy the entire
GPU.

GPUs face severe underutilization and their performance
benefits vanish if the tasks are narrow, i.e., they contain less
than 512 threads. Latency-sensitive applications in network,
signal, and image processing that generate a large number of
tasks with relatively small inputs are examples of such lim-
ited parallelism. Recognizing the issue, CUDA now allows
32 simultaneous tasks on GPUs; however, that still leaves
significant room for underutilization.

This paper presents Pagoda, a runtime system that vir-
tualizes GPU resources, using an OS-like daemon kernel
called MasterKernel. Tasks are spawned from the CPU onto
Pagoda as they become available, and are scheduled by the
MasterKernel at the warp granularity. This level of control
enables the GPU to keep scheduling and executing tasks as
long as free warps are found, dramatically reducing under-
utilization. Experimental results on real hardware demon-
strate that Pagoda achieves a geometric mean speedup of
2.44x over PThreads running on a 20-core CPU, 1.43x over
CUDA-HyperQ, and 1.33x over GeMTC, the state-of-the-
art runtime GPU task scheduling system.
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1. INTRODUCTION
GPGPU computing has demonstrated an ability to ac-

celerate applications that have a high degree of parallelism,
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where iterations of large parallel loops are executed on the
GPU. These applications see significant performance bene-
fits since they can fully utilize the GPU’s hardware resources
by launching enough concurrent threads.

The GPU’s performance benefits start to vanish as the
degree of parallelism lessens. Conventionally, large parallel
loops are offloaded to the GPU, while retaining the execution
of smaller ones on the CPU. The main thesis of this paper
is that despite having a smaller degree of parallelism, appli-
cations can benefit from using the GPU, provided that the
involved task (or CUDA kernel) count is sufficiently high.
Each such task, called a narrow task, has limited paral-
lelism (< 512 data parallel threads in practice). Narrow
tasks emerge in a number of scenarios. One set of such
applications comprises latency-driven, real-time workloads.
E.g. online sensors that generate small inputs, resulting in
tasks with low parallelism; however, many such tasks are
generated in quick succession and require immediate pro-
cessing. These workloads have been characterized as having
mixed task and data parallelism [4]. Secondly, irregular ap-
plications can exhibit narrow tasks. These applications of-
ten contain varying amounts of computation among different
threads, and/or among loop iterations. To reduce load im-
balance, these applications are often represented using many
tasks with low degrees of parallelism [3]. Irregular workloads
may also arise in multi-programmed environments. Differ-
ent applications with low degrees of parallelism can be co-
executed on a node to exploit all the computing resources.
Each of these applications may launch one or more tasks of
different computation sizes, resulting in narrow tasks.

GPU underutilization is the key reason why narrow tasks
are conventionally executed on the CPU. This paper presents
Pagoda, a runtime system that highly improves GPU uti-
lization in the presence of narrow tasks. Pagoda introduces
novel elements of a massively parallel OS to flexibly and
efficiently virtualize and dynamically schedule GPU core re-
sources at the warp granularity, enabling hundreds of tasks
to execute concurrently.

2. PAGODA RUNTIME SYSTEM DESIGN
Pagoda is a CPU/GPU system that overrides the tradi-

tional CUDA kernel launching API. Pagoda’s CPU compo-
nent handles the spawning and mapping of tasks to different
streaming multiprocessors (SMX), while a dameon-like Mas-
terKernel is launched to override CUDA’s default thread-
block scheduler with Pagoda’s software scheduler. Pagoda
tracks the many tasks it is capable of running in a novel
data structure called the TaskTable (shown in Figure 2),
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Figure 1: Overall Performance Comparison: The number of tasks in each benchmark is constant (32K), except SLUD, which
contains 273K tasks. Each GPU task uses 128 threads. The measurement of execution time contains both data copy and compute times.
Pagoda significantly outperforms CUDA-HyperQ(1.43x), 20-core PThreads(2.44x), and GeMTC(1.33x), owing to the higher utilization.
GeMTC sees high overheads when task execution times are low, such as in DCT and 3DES.
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Figure 2: The MasterKernel Composition in the NVIDIA
Tesla K40 GPU: The 30 MasterKernel threadblocks (MTBs)
have 1024 threads and 16 KB shared memory each. TaskTable is
mirrored on both the CPU and GPU. Each entry of the task and
warp table contains multiple flags to record states of scheduling.
Two columns of warp table correspond to one SMX.

which is stored in both CPU and GPU memory. The dis-
tributed Task:Table features a lazy copy mechanism that en-
ables efficient task launching and scheduling. Since Pagoda
overrides CUDA’s default threadblock scheduler, it supports
the native CUDA runtime model by implementing an effi-
cient shared memory allocator in software and by managing
named barriers to emulate the behaviour of syncthreads.

3. EVALUATION
Figure 1 plots the performance of Pagoda and several

other solutions. The GPU implemenations use an NVIDIA
Tesla K40, while the PThreads and sequential implemen-
tations use two hyper-threaded 10 core Intel Xeon CPUs.
Figure 1 shows that Pagoda obtains higher performance
than other runtime schemes, namely, PThreads on the CPU,
and CUDA-HyperQ [2] and GeMTC [1] on the GPU. The
speedup is calculated over the entire execution time, i.e, it
measures both compute and data copy times. The benefit is
attributed to the high utilization achieved by Pagoda. The
GeMTC versions do not use shared memory, since GeMTC
has no support for it. We could not implement SLUD in
GeMTC; GeMTC needs the number of tasks to be pre-
defined, which is not the case in SLUD. SLUD represents
an interesting case where HyperQ is slower than PThreads,

but Pagoda is faster. Speedup achieved by all GPU schemes
is low in DCT since the application is data copy bound. We
tried OpenMP data parallelism, OS-based task scheduling,
Python-based thread pooling, and PThreads-based task-level
parallelism on the CPU to run narrow tasks. PThreads ob-
tained the best results, which we include in Figure 1.

4. CONCLUSION
Pagoda is a GPU runtime system that overcomes under-

utilization in the presence of narrow tasks. Pagoda virtu-
alizes GPU resources via MasterKernel, a persistently ex-
ecuting daemon on the GPU. Pagoda launches tasks on
the GPU as long as some free warps are available. Un-
like previous work, Pagoda supports all functionality of the
native CUDA model. A key distinction in Pagoda is the
task spawning and scheduling mechanism. Pagoda’s novel
TaskTable, which is shared between the CPU and GPU re-
duces handshaking during the spawning process to greatly
reduce overhead.Pagoda achieves concurrent task schedul-
ing, and overlaps task spawning, scheduling, and execution
through pipelining. The experimental evaluation showed
that Pagoda achieves geometric mean speedups of 1.43x over
CUDA-HyperQ, 1.33x over GeMTC, and 2.44x over 20-core
CPU Pthreads. The evaluation also showed that Pagoda
can outperform static fusion schemes by 2.31x, and achieves
much lower latency per task.
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