
Dimensionality-Aware Redundant SIMT Instruction
Elimination

Tsung Tai Yeh

yeh14@purdue.edu
Purdue University

West Lafayette, Indiana, U.S.A.

Roland N. Green

green349@purdue.edu
Purdue University

West Lafayette, Indiana, U.S.A.

Timothy G. Rogers

timrogers@purdue.edu
Purdue University

West Lafayette, Indiana, U.S.A.

Abstract
In massively multithreaded architectures, redundantly ex-

ecuting the same instruction with the same operands in

different threads is a significant source of inefficiency. This

paper introduces Dimensionality-Aware Redundant SIMT

Instruction Elimination (DARSIE), a non-speculative instruc-

tion skipping mechanism to reduce redundant operations

in GPUs. DARSIE uses static markings from the compiler

and information obtained at kernel launch time to skip re-

dundant instructions before they are fetched, keeping them

out of the pipeline. DARSIE exploits a new observation that

there is significant redundancy across warp instructions in

multi-dimensional threadblocks.

For minimal area cost, DARSIE eliminates conditionally re-

dundant instructions without any programmer intervention.

On increasingly important 2D GPU applications, DARSIE

reduces the number of instructions fetched and executed

by 23% over contemporary GPUs. Not fetching these in-

structions results in a geometric mean of 30% performance

improvement, while decreasing the energy consumed by

25%.

CCS Concepts. • Computer systems organization →

Single instruction, multiple data.
Keywords. GPU, redundant instructions

ACM Reference Format:
Tsung Tai Yeh, Roland N. Green, and Timothy G. Rogers. 2020.

Dimensionality-Aware Redundant SIMT Instruction Elimination.

In Proceedings of the Twenty-Fifth International Conference on Archi-

tectural Support for Programming Languages and Operating Systems

(ASPLOS ’20), March 16–20, 2020, Lausanne, Switzerland. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3373376.3378520

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00

https://doi.org/10.1145/3373376.3378520

0%
5%

10%
15%
20%
25%
30%
35%

Grid-Wide Redundant
Insn

TB-Wide Redundant
Insn

Warp-Wide
Redundant Insn

Vector Insn Scalar Insn

Pe
rc

en
ta

ge
 o

f E
xe

cu
te

d
In

sn
Figure 1. Redundant instructions in each GPU thread group-

ing level, averaged across the applications listed in Table 1.

1 Introduction
Graphics Processing Units (GPUs) run thousands of concur-

rent scalar threads based on programmer-defined parallelism.

Programmers define a three-dimensional grid of thread-

blocks (TBs) for each kernel. TBs are three-dimensional ar-

rangements of scalar threads, grouped into warps by the

hardware for Single Instruction Multiple Thread (SIMT) exe-

cution. Although the programming model for GPUs is SIMT,

the underlying datapath is Single Instruction Multiple Data

(SIMD). Each warp has a set of private vector registers that

store per-thread scalar values in each vector lane. It is well

known that grouping threads into warps can create redun-

dancy among the scalar values in vector registers [9, 19, 50].

However, little work has explored identifying and removing

redundancy at other levels of the GPU programming model.

To help understand GPU redundancy, Figure 1 shows the

results of a limit-studymeasuring the fraction of redundantly

executed instructions at the grid, TB, and warp level. Instruc-

tions are classified as redundant at the grid-level when all the

grid’s warp instructions operate on the same vector operands,

implying it need only be executed once for the entire grid.

Similarly, Figure 1 plots redundant instructions for TBs if all

warp instructions within a TB use the same vector operands.

Warp-wide redundancy occurs if all scalar threads in a warp

operate on the same scalar value. We find that the most

significant opportunity for redundancy elimination exists

at the TB level, where on average 33% of instructions need

only be executed once per TB. Furthermore, we find that

much of this redundancy can be attributed to the thread ID

layout in the GPU programming model. GPU languages like

https://doi.org/10.1145/3373376.3378520
https://doi.org/10.1145/3373376.3378520

CUDA and OpenCL express parallelism defined along mul-

tiple (x, y, and z) axes, which helps programmers naturally

map multi-dimensional data to multi-dimensional thread

grids. However, this dimensionality has a significant impact

on redundancy.

To demonstrate how common multi-dimensional redun-

dancy is, we surveyed 133 applications [4, 6–8, 12, 21, 33–

35, 41, 42, 44] running on a commodity NVIDIA Volta GPU.

Over 33% of the applications surveyed demonstrated multi-

dimensional TB characteristics that create implicit redun-

dancy. Interestingly, we find that this characteristic is more

pervasive in applications that make use of optimized libraries

(CUDNN, CUBLAS, etc.), where 60% were multi-dimensional.

Furthermore, in the apps that have at least one kernel that

wasmulti-dimensional, an average of 71% of the application’s

execution time is spent in those kernels.

Unlike warp-wide redundant operations that are local to

one vector instruction, TB- and grid-wide redundant instruc-

tions occur across different vector instructions, each of which

occupies space in the instruction pipeline. Eliminating these

vector instructions frees space in the pipeline, and reduces

pressure on the memory system. In practice, grid-wide re-

dundancy is both difficult to eliminate and less common than

TB-wide redundancy. Therefore, we focus this paper on the

elimination of TB-wide redundant instructions to improve

both performance and energy-efficiency.

We find that most TB-level redundant instructions can-

not be fully identified during static compilation, where the

size and dimensionality of TBs is not yet known. The layout

of thread indices in multi-dimensional TBs creates redun-

dancy in the registers storing thread IDs. This redundancy

propagates into dependent instructions, but only if certain

TB-sizing conditions are met. A per-kernel runtime check of

a TB’s dimensions can be used to determine if conditionally

redundant instructions are definitely redundant and avoids

expensive vector register comparisons at runtime. Based on

these observations, we propose Dimensionality-Aware Redun-

dant SIMT Instruction Elimination (DARSIE), a TB-centric in-

struction skipping mechanism that identifies TB-redundant

instructions using a combination of static compiler mark-

ings and runtime TB-sizing information. Once identified, TB-

redundant instructions are skipped by the hardware before

they are fetched. DARSIE uses a novel multithreaded regis-

ter renaming and instruction synchronization technique to

share the values from redundant instructions among warps

in each TB.

Value sharing and instruction elimination is challenging

to solve solely in the compiler or hardware. Alone, the com-

piler is not able to efficiently coordinate value sharing and

instruction skipping between parallel warps. Likewise, it is

expensive for hardware to detect redundancy in warp-wide

vector registers, and complex to orchestrate a reactive mech-

anism that identifies skippable future instructions. DARSIE

therefore uses a combined compiler/hardware approach to

avoid these problems.

Contemporary GPUs from NVIDIA and AMD use a scalar

functional unit and register file to perform operations on

warp-wide redundant data identified by the compiler [2, 14].

Research has also sought to address warp-level redundancy

by masking off lanes in the vector pipeline and skipping

partial warp instructions when the SIMD width is less than

the warp size [9, 19, 50]. Other work has proposed adding

expensive value comparison hardware to the pipeline to

remove redundancy at the issue stage, or reduce register file

space via compression [20, 22]. In contrast, we use insights

gained from creating a taxonomy of redundancy in TBs to

identify both new opportunities for instruction skipping and

ways to offload redundancy identification to the compiler.

This allows DARSIE to avoid expensive value comparisons

in hardware, and improve performance by skipping entire

vector instructions before they are fetched in the frontend

of the pipeline.

This paper makes the following contributions:

• We introduce a new taxonomy of redundancy for

GPUs, focusing on the TB granularity. We show that

the composition of TB-wide redundancy is highly de-

pendent on the dimensions of the TB, and that thread

index layouts in multi-dimensional TBs create ample

implicit redundancy.

• We combine a static compiler pass, that marks con-

ditionally redundant instructions, with runtime TB-

sizing information to non-speculatively identify redun-

dancy without value comparison hardware.

• We propose DARSIE, which combines our redundancy

identification software with novel instruction skip-

ping hardware to ensure that redundant instructions

are fetched and executed only once per-TB. DARSIE

leverages multithreaded register renaming and selec-

tive warp synchronization to share vector registers be-

tween warps in a TB, allowing TB-redundant instruc-

tions to be skipped in the fetch stage of the pipeline.

Through aggressive instruction skipping, DARSIE is able

to reduce the number of instructions fetched and executed

in 2D applications by 23%, improving performance by 30%,

while decreasing energy consumption by 25%.

2 A taxonomy of GPU redundancy
To help understand why redundancy occurs across vector

registers in the same TB, we introduce a new taxonomy of

GPU redundancy. We claim that TB-wide redundancy has

three classes: uniform redundancy, affine redundancy and

unstructured redundancy. Uniform redundancy occurs when

every lane in every warp of the TB contains the same scalar

value for a particular named register. This typically occurs

with shared constants and TB-invariant registers, like TB

IDs and dimensions. Affine redundancy occurs when vector

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
BI

N PT FW SR
1

LI
B

IM
N

LM BP

DC
T8

x8

FW
S HS CP

CO
NV

TE
X

M
M

1D-Benchmarks 2D Benchmarks

N
or

m
al

ize
d

 R
ed

un
da

nt
 In

st
ru

ct
io

ns

Uniform Red. Affine Red. Unstructured Red. Non-Red.

Figure 2. Fraction of dynamically executed TB-redundant

instructions. Instructions executed in diverged control flow

are considered non-redundant.

registers in different warps have the same value, which can

also be represented as a (base,stride) pair. This redundancy

occurs naturally in multi-dimensional TBs where consecu-

tive lanes have consecutive threadId values, replicated in the

private register space of each warp in the TB. Unstructured

redundancy occurs when registers have the same vector

values in each warp of the TB, but those values have no

discernible pattern. In this paper, we show that all three

types of redundancy can be non-speculatively identified at

kernel launch time and can be eliminated without expensive

runtime comparison hardware.

Figure 2 plots the breakdown of TB-redundant instructions

under our new taxonomy for a set of benchmarks using ei-

ther 1 or 2 dimensional TBs. Instructions are classified based

on the type of redundancy in their source registers, and appli-

cations are subdivided by their TB dimensionality. Figure 2

shows that both affine and unstructured redundancy is per-

vasive in 2D TBs, but largely absent in 1D. The non-uniform

redundancy in 2D TBs stems from the layout of the tid.x

register. Consecutive threads within a warp are assigned

consecutive tid.x values. When the TB’s x dimension is <=
the warp size, the per-lane values in the tid.x register repeat.

For example, with a warp size of 4, and a TB with dimensions

4×4, the value in each of the 4 warp’s tid.x register is (0,1,2,3).

Furthermore, accesses to memory based on affine redundant

addresses create unstructured redundancy. We observe that

both affine and unstructured instructions can be marked con-

ditionally redundant during static compilation, and definitely

redundant when the TB’s dimensions are known at kernel

launch time.

Uniform redundancy is simple and can typically be traced

back to a collection of known constant and intrinsic variables.

These values are often TB invariant, such as TB IDs, and TB

dimensions. We observe that most uniform redundancy is

definitely redundant, and common in both apps with 1D and

2D TBs, as seen in Figure 2.

Affine and unstructured redundancy is more subtle and

stems primarily from the GPU’s threadId register values.

Furthermore, they are directly related to the dimensions of

an application’s TBs. As Figure 2 shows, apps with 1D TBs

have little to no affine or unstructured redundancy. However,

it accounts for a significant portion of total instructions

executed for apps with 2D TBs.

To understand how the TB dimensions affect redundancy,

consider Figure 3. This pseudo-assembly code reads an inte-

ger value from an array with base address 10 and is indexed

by each thread’s tid.x value. We use a warp size of 4 with

this example as well. Figure 3 (a) details the output register

values for each instruction in a 1D threadblock with two

warps. Each output register is classified based on the pattern

it creates across all warps in the TB. In 1D TBs, the tid.x

register is laid out sequentially across warps. This creates

register values that are affine across the TB (TB-affine), but

not redundant between warps. The two instructions that

compute the address for the array lookup are also affine

and not redundant because they are based on a 1D tid.x.

The load instruction reads from the affine address, and the

value loaded into R3 is input data-dependent. R3 is neither

redundant nor affine in the TB.

Figure 3 (b) illustrates what happens to the same code

when the TB is 2D (x=4,y=2). In multi-dimensional TBs,

threadIds are assigned to warps by varying the x dimen-

sion first, and consecutive threads in a warp will be assigned

consecutive tid.x IDs. Both warp 0 and warp 1 have tid.x

registers that are affine within the warp, and redundant

between warps (affine redundant) in this example. The re-

sulting values computed for R1 and R2 are, therefore, also

affine redundant. Since the address computed is redundant

between the two warps in the TB, both instructions that

load R3 will produce the same value. R3 is an example of

unstructured redundancy. Each warp has an identical value,

but there is no clear pattern in the values themselves since

they are input data-dependent. In this paper, we classify pat-

terns that cannot be represented with a single <base,stride>

pair as unstructured redundancy.

Although Figure 3 is a simple example, the conditions un-

der which affine and unstructured redundancy occurs can

be generalized. For 2D TBs, each warp’s tid.x register will

be redundant if the x-dimension is <= the warp size and a

power of 2. We refer to this as conditional redundancy, since

it depends on TB’s dimensions that are known at kernel

launch time. While this redundancy starts at the threadId

registers, it propagates throughout the program through reg-

ister dependencies. Furthermore, memory instructions that

load values from definitely or conditionally redundant ad-

dresses will take on the redundancy characteristics of the

address they load. These observations also apply to 3D TBs,

where both the tid.x and tid.y registers can be conditionally

Instructions Output Register Value

MUL R1, tid.x, 4

ADD R2, R1, #10

LD R3, MEM[R2]

Output
Reg. Type

Affine Red.

Unstructured
Red.

Output Register Value

[0,4,8,12] [16,20,24,28]TB-Affine

Output
Reg. Type

[0,4,8,12] [0,4,8,12]
Warp 0 Warp 1

TB-Affine

Unrelated

[10,14,18,22] [26,30,34,38] [10,14,18,22] [10,14,18,22]

Warp 0 Warp 1

Affine Red.

[7,3,0,90] [7,3,0,90][7,3,0,90] [55,8,22,1]

(a) 1D threadblock (xdim=8,ydim=1) (b) 2D threadblock (xdim=4,ydim=2)

tid.x=[0,1,2,3] tid.x=[4,5,6,7]

Warp 0 Warp 1

tid.x=[0,1,2,3] tid.x=[0,1,2,3]

Warp 0 Warp 1

Memory
Address: [10,14,18,22,26,30,34,38]
Value: [7 , 3, 0,90,55, 8,22,1]

Figure 3. Pseudo-assembly code to read from an integer array with a base address of 10 using tid.x as the index with 1D and

2D TBs. Values in output registers for each instruction are classified based on the pattern they make across the TB. 1D TBs

create affine values that are not redundant, while 2D TBs create both affine and unstructured redundant values.

Fetch Decode

W1	I-Buffer

WN	I-Buffer

W1	PC

I-Cache

WN	PC

Fetch	
Scheduler

Decode
Logic

Issue

Issue	
SchedulerIssue	

Scheduler

Vector
Register	
Read

Operand	
Collector

RF	BankVector	RF	
Bank

SIMD
EXE
+
WB1

2

3 5

4

Figure 4. Baseline GPU microarchitecture

redundant. This is the first work to observe that this redun-

dancy can be identified prior to execution and optimized out

by hardware at runtime.

3 Baseline
Figure 4 presents our baseline microarchitectural model.

Each cycle, a fetch scheduler (1 in Figure 4) in the fron-

tend of the pipeline initiates a fetch for one of the warps

assigned to the core. This scheduler uses loose-round-robin

(LRR) prioritization, and initiates instruction cache (I-cache)

fetches based on which warps have empty instruction buffer

(I-Buffer 2) entries. Each warp has a two-entry I-buffer that

is used to decouple the SIMT frontend (which fetches one PC

for an entire 32-thread warp) from the SIMD backend. Each

cycle, multiple issue schedulers select at most two instruc-

tions from one warp each for execution. Warps are statically

partitioned among these issue schedulers.

Once selected to issue, instructions must read their source

operands (32-element vector registers with 32-bit elements)

from a highly banked register file (4). To avoid excessive

bank conflicts and facilitate high bandwidth, an operand col-

lector [27] schedules register file reads in a way that limits

stalls. These operand collectors are the inputs to the execu-

tion stage of the pipeline. The mapping between <named

vector register, warp ID> pairs and physical vector register

contents is programmable, and based on a mapping table

initialized when a TB is launched on an SM. This is neces-

sary since each warp can be assigned a different number of

registers at compile time.

There is little documentation on how this register map-

ping is achieved, so we make the assumption that blocks of

registers are assigned to warps using a simple base register +

length mapping table. This avoids storing a unique <named

vector register, warp> pair for each physical vector register.

We also assume this mapping is done in the operand col-

lection phase. Contemporary GPUs (like the Pascal card we

model) do not have scoreboard logic embedded in the core,

but rather encode dependencies in their instruction stream.

Variable-cycle memory instructions are controlled via depbar

instructions that ensure source registers read by instructions

have received responses to their memory requests before a

dependent instruction is issued.

4 Dimensionality-Aware Redundant
SIMT Instruction Elimination

DARSIE ensures that TB-redundant instructions are fetched

and executed only once in each TB. As all instructions are 64-

bits in length, redundant ones can be skipped in the frontend

of the pipeline by simply adding eight to the program counter.

However, detecting and marking redundancy, sharing values

of skipped instructions, properly handling redundant load

instructions, and handling branches with the potential for

divergence requires more care. Therefore, we start by pre-

senting DARSIE’s operation at a high level in Section 4.1.

Here, we introduce our extensions to the compiler that marks

instructions as either redundant, conditionally redundant, or

non-redundant. This is explained in full detail in Section 4.2.

We next describe our changes to the microarchitecture, ex-

plained fully in Section 4.3. We additionally describe how

DARSIE handles the skipping of load instructions, and its

Warp 0 Warp 1 Warp 2
PC0: LD R1(v1), tx

Trename3

Trename5

PC0: LD R1(v1), tx
Trename1

Trename4

Legend
Issued Instruction Skipped Instruction

Trename6

Time

Trename2

PC1: ADD R2 R1(v1), ty

PC2: ADD R2(v2), R1(v1), 4

PC3: BRA R1.ne 4

PC1: ADD R2 R1(v1), ty

PC2: ADD R1(v2), R1(v1), 4

PC3: BRA R1.ne 4

PC0: LD R1(v1), tx
PC1: ADD R2 R1(v1), ty
PC2: ADD R1(v2), R1(v1), 4

PC3: BRA R1.ne 4

Barrier Barrier Release

R1: TB-redundant register tx: TB-redundant register

Figure 5. DARSIE’s Instruction Skipping Flow: Branch in-

structions always force a TB-wide barrier to determine what

the majority-path is. In this example, TBs are three warps

wide.

operation in the presence of divergence. These are explained

fully in Sections 4.4 and 4.5 respectively.

4.1 High level operation
DARSIE operates by first declaring PCs as skippable. Using a

novel compiler pass, we detect when values are conditionally-

redundant across a TB. At kernel-launch time, every static

PC in the program is marked at as either TB-redundant or

not. The hardware itself treats uniform, affine redundant, and

unstructured redundant instructions the same. Section 4.2 de-

tails these compiler markings. The compiler analysis also as-

sumes that warps in a TB are executed in lock-step, such that

there is only one version of each TB-redundant instruction at

any given time. There are two options in hardware to ensure

that warps read the correct version of a TB-redundant reg-

ister without enforcing costly lock-step execution on every

instruction: (1) Synchronize the warps in the TB when any

warp writes to a TB-redundant register. This ensures there

is only ever one live version of a particular TB-redundant

register. (2) Store multiple versions of each TB-redundant

register such that each warp can progress at a different pace.

As long as warps are executing on the same control-flow path

(hence executing the same instructions in the same order),

the correct register version for each warp can be attained

by keeping track of writes to the register. When warps in

the TB take different control flow paths, DARSIE continues

operating on the path taken by the majority of warps. To

avoid excessive synchronization, DARSIE adopts solution

(2).

In hardware, DARSIE elects a single warp from a TB to

execute a redundant instruction, and share the result with

other warps in the TB. We call the warp that executes the

instruction the leader warp. Warps that skip the instruction

and read the value are referred to as follower warps. Sub-

sequent instructions in follower warps that are dependent

on the result of an eliminated instruction access the leader

warp’s values through a multithreaded register renaming

mechanism. The existing programmable GPU register map-

ping mechanism helps facilitate this process, as each warp

has a configurable number of physical registers based on the

per-thread register demands of an application. Our updates

to this mechanism are described in Section 4.3.1.

Figure 5 provides a visual overview of DARSIE’s opera-

tion. In Figure 5, warp 0 becomes the leader for instruction

PC0 at Tr ename 1 because it arrives first. Warp 0 executes

the instruction and stores the result as R1(v1), since this is

the first write to R1. At time Tr ename 2, warp 1 skips PC0,

updating its register mapping table to point to R1(v1) which

warp 0 just produced. Warp 1 then executes PC1, which is a

true vector instruction (since ty is not TB-redundant). Warp

0 does the same. At timeTr ename 3, warp 0 writes to R1 again.

Each time a redundant register is written, we create a new

version of the register tagged with the number of times it

has been written by this TB. At this point, there are now 2

active versions of R1 across this TB. At Tr ename 4, warp 2

finally reaches PC0, skips the instruction then executes PC1

using the old (v1) version of R1. Warp 2 uses R1(v1) for its

source operand because there has only been 1 write to R1

in warp 2’s instruction stream. Warp 2 then skips PC2, and

increments the number of writes the warp has seen to R1.

At Tr ename 5, warp 1 skips PC2. Since all the warps in the

TB are done with R1(v1), it can be released. Warp 1 executes

the branch instruction, then waits for all other warps in the

TB to reach this branch. Synchronization at branches is nec-

essary to ensure that all warps skipping instructions in a TB

execute on the same control-flow path. Warps that diverge

off the majority control-flow path are no longer considered

for skipping. Similarly, warps with intra-warp control-flow

divergence do not participate in instruction skipping. Note

that, except at branch instructions, the warp scheduling or-

der in DARSIE is not prescribed. The scheduler will still make

throughput-oriented decisions. The ordering in this example

is therefore one of many that are possible.

4.2 Compiler annotations
DARSIE’s static compilation phase detects both definitely

and conditionally redundant registers and instructions. In re-

lation to our taxonomy described in Section 1 and Section 2,

uniform redundant values are always definitely redundant.

Affine and unstructured redundant values are conditionally

redundant. The compiler starts by identifying all the intrin-

sic values known to be uniform across a TB. The values we

consider in this work are: blockIdx, blockDim, scalar con-

stants, global kernel input parameters and the base value of

shared memory. These values are all marked as definitely

redundant. Next, the compiler marks intrinsic registers that

are conditionally redundant. Based on our observations in

 // Loading Parameters and thread ID PC DR 0x000 cvt.u32.u16 $r2, %ctaid.y; ... CR 0x068 cvt.u32.u16 $r4, $r0.lo // $r0.lo: tid.x ... CR 0x0f0 add.u32 $10, $r4, 0x0000040c ... CR 0x108 shl.b32 $ofs3, $r10, 0x00000007 ... // Start of loop V 0x150 l0x00000150: ld.global.u32 $11, [$r1] // Unrolled Loop CR 0x178 mov.u32 $r0, s[$ofs3+0x0000]; CR 0x180 add.u32 $ofs4, $ofs3, 0x00000080; V 0x188 mad.f32 $r10, s[$ofs2+0x0000], $r0, $r10; CR 0x190 mov.u32 $r0, s[$ofs4+0x0000]; CR 0x198 add.u32 $ofs4, $ofs3, 0x00000100; V 0x200 mad.f32 $r10, s[$ofs2+0x0004], $r0, $r10; ... V 0x480 set.le.s32.s32 $p0/$o127, $r8, $r9; V 0x488 add.u32 $r1, $r1, 0x00000080; V 0x490 add.u32 $1, $1, 0x0000080; V 0x498 add.u32 $r5, $r6, $r5 V 0x500 @$p0.ne bra 10x00000150; // End of loop ...

Figure 6. Example of compiler marking TB-redundant in-

structions for matrix multiply kernel. DR:Definitely Redun-

dant, CR:Conditionally Redundant

Section 2, both the threadIdx.x and threadIdx.y registers

are conditionally redundant and depend on the TB dimen-

sions known at runtime. All studied applications use 2D

TBs at most, as is typical for GPU workloads. We therefore

limit the analysis to only threadIdx.x. All other registers

are considered true vector registers. The compiler then cre-

ates the program-dependence graph and iteratively prop-

agates our redundancy information through registers and

instructions. Unlike previous works that focus exclusively

on finding affine and uniform instructions [11, 19, 45], we

introduce and exploit conditional redundancy as well. As

detailed in Section 1, conditionally redundant instructions

comprise a significant portion of total executed instructions

for applications with 2D TBs. Load instructions that access

redundant or conditionally redundant addresses (and their

corresponding output registers) are also marked. If more

than one of our three redundancy definitions (redundant,

conditionally redundant or vector) reaches a source operand

of an instruction, we assign the weakest of the definitions.

This analysis assumes that warps within the TB proceed

through the program in lock-step. Since enforcing this re-

quirement can be expensive (or impossible if warps traverse

different control-flow paths), we rely on hardware to create

the illusion that warps leveraging DARSIE are proceeding

in lockstep (described in Section 4.3.3) with respect to TB-

redundant operations.

Promoting conditionally redundant registers to definitely

redundant requires runtime information about a TB’s di-

mensions. For example, if the there are 32 threads in the

x-dimension, then the tid.x value per warp will vary from [0

to 31]. Likewise, if there are 16 threads in the x-dimension,

each warp will have tid.x IDs [0 to 16]. In both cases, values

based on tid.x will be redundant across the TB, and repeat for

every warp. Conditionally redundant instructions are eval-

uated at kernel launch time based on the kernel’s specified

TB size, and are static for the duration of the kernel. This

marking could either be implemented in the GPU driver’s

JIT-ing finalization pass, or determined with a minor hard-

ware modification that compares conditionally redundant

instructions to the launched TB size. Supporting CUDA dy-

namic parallelism, where the GPU launches kernels to itself

is possible with latter option, as the code does not need to

be recompiled. In either case, the check simply tests if the

kernel has 2D TBs, and that the width of the x-dimension

is a power of 2, and less than or equal to the warp size. If

so, conditionally redundant instructions are marked as def-

initely redundant, or are otherwise marked as true vector

instructions. We note that the majority of multi-dimensional

GPU applications meet the above x-dimension criteria. Of

the 128 unique 2D kernels from the application surveyed in

Section 1, only one fails to meet this requirement.

Figure 6 illustrates the compiler annotations made for

the matrix multiply kernel. Note that this code is register-

allocated PTXPlus code, which is used for all our experiments.

As shown in Figure 6, the value threadIdx.x propagates to

the register $ofs3. Thus, the unrolled loop in the program

contains 2 redundant instructions and one true vector oper-

ation. This highlights the granularity at which redundancy

elimination takes place using DARSIE.

The compiler can only mark static instructions as being

skippable based on an analysis that assumes that threads

in a TB are executing in lock-step. It is up to the hardware

fetch scheduler to ensure that all warps in the TB skip the

same version of the redundant instruction. For example, if

a redundant instruction is in a loop, all threads skipping

the instruction must be on the same iteration of the loop.

This ensures that dependencies between loop iterations are

maintained for each warp. Ordering is enforced using either

register-versioning or forcing the hardware to barrier when

TB-redundant registers are written.

We note that the compiler changes in DARSIE do not

change the instruction stream in any way, other than adding

hints about redundancy. This is dissimilar to techniques like

DAC [45] that completely transform the compiled code into a

format requiring hardware support for affine and non-affine

instruction streams. If the hardware does not support DAR-

SIE, the markings are simply ignored. Likewise, the hardware

does not require the compiler to support DARSIE. Binaries

compiled without DARSIE markings will run seamlessly on

DARSIE hardware, but without instruction skipping.

We encode the three-state <vector, conditionally redun-

dant, redundant> classification in two bits of the GPU’s vir-

tual ISA (PTX in NVIDIA) that is produced by the static com-

piler. GPUs employ a two-step compilation process where

the virtual ISA in the binary is transformed into the real

machine instruction set (known as SASS) when the kernel

is launched. Although the encoding of SASS is proprietary,

reverse engineering efforts indicate that there are many un-

used bits in this 64-bit RISC-like ISA [31]. We use one of

these extra bits to encode if an instruction is TB-redundant

or not, which is known when the SASS is loaded into the

GPU. Two bits would be required to maintain the three states

of redundancy if the decision is delayed until after the code

is JIT compiled.

4.3 DARSIE microarchitecture
Figure 7 shows the changes to the microarchitecture needed

to support DARSIE. We add the instruction skipping hard-

ware in the fetch stage, consisting of a PC coalescer (A in

Figure 7), a PC Skip Table (B) and fixed-size adders to allow

each PC to be incremented by 8 (C).

4.3.1 Remapping registers . To enable dynamic remap-

ping of vector registers, we add a register renaming table that

is probed prior to looking up the register in the baseline’s lin-

ear register renaming table (D). This allows follower warps

to read register values produced by leader warps. Registers in

contemporary GPUs are not mapped on a per-thread basis,

but rather on a per-warp basis. There is a 1:1 correspon-

dence between vector lanes and threads within the warp,

and cross-lane communication is generally not supported

outside of special instructions. DARSIE does not change this

assumption and remaps whole vector registers. Our regis-

ter renaming table contains one entry for every currently

renamed register in each warp. The register rename table,

version table, and physical register freelist implement the

versioning detailed in Figure 5.

The register rename table maps <warp,reg#> pairs to this

warp’s <reg#,version#> pair. A separate version table (E)

stores the <reg#,version#> to physical registermapping. Both

the version and rename table are banked on a per-TB basis.

When a kernel with TB redundancy is launched, we allocate

a portion of the physical register file space for renaming.

Many GPU applications are not limited by the register file

size, so this allocation will not typically affect occupancy.

How much register space to consume could be made on an

application basis. In this work, we allow DARSIE to consume

up to 32 vector registers per TB for renaming. DARSIE uses

as many registers as it can before affecting occupancy when

registers are limited.

We allocate our renamed register space in a strided fashion

across the vector RF banks at kernel launch and maintain

a physical register freelist (F). Physical registers are freed

when a register version number is no longer in flight for

Free list

Vector Register Read

Operand
Collector

RF BankVector RF
Bank

Instruction Skipper

Fetch

W1 PC

WN PC

PC Skip
Table

PC
Coalescer

.

.

.

+8

+8

.

.

. A
Register Rename Table

...
<warp,reg#> <reg#,version#>

BC D

Decode

Fetch
Scheduler

Majority
Path

Masks

Skip Logic

Version Table
<reg#,version#> preg#

E

...

preg#...
F

Figure 7. Detailed breakdown of DARSIE uarch operation.

the TB. When the freelist empties, synchronization must

be performed to ensure all required versions of a register

are available. Our evaluation accounts for the increase in

register bank conflicts that occur when all follower warps

attempt to read from the renamed register’s space.

4.3.2 PC skip table . DARSIE skips instructions in the

front of the pipeline before the I-cache is probed. To achieve

this, we add hardware that acts in parallel with the fetch

scheduler, to skip some instructions while initiating a fetch

for another. This effectively increases our throughput at fetch

without increasing thewidth of any of existing structures like

the fetch scheduler and I-cache. The instruction skipper relies

on our compiler annotations to decide which instructions

should be skipped, and the PC Skip table (B) controls the

skipping logic. Each entry in the Skip PC table contains five

fields:

1. PC : The program counter that should be skipped

2. Warps waiting bitmask : A mask that indicates

which warps are waiting at this PC to skip it. Required

if synchronizing between warps.

3. Majority-path bitmask: A mask with 1-bit per warp

in a TB that indicates which warps are executing on

the majority-path.

4. IsLoad: A bit that is 1 if this instruction is a load in-

struction. This is necessary since load instructions

must be removed from the Skip PC Table if a store is

executed, or if global atomics/synchronization events

occur.

5. LeaderWB: A bit that is 1 if the leader warp has writ-

ten back the redundant-register value. To ensure cor-

rect operation, follower warps must wait for the leader

to writeback before they can leave the skippable in-

struction.

4.3.3 Achieving the illusion of lockstep execution .
Our skipping mechanism is dependent on all warps having

the same branch history as the leader warp (i.e., all warps

following the same control-flow path). To ensure this condi-

tion, we synchronize TBs at branch instructions. The path

with the majority of warps will continue skipping. Warps on

any other path will not. We store 1-bit per warp to indicate

if it is on the TB-majority path. When warps deviate from

the path, their bit is cleared. These bits are all set back to

one upon the execution of syncthreads instructions which

require the entire TB to be in sync.

4.3.4 PC coalescer. A PC coalescer is used to minimize

the skip table read port requirements (A). The PC coalescer

acts like the global memory coalescer in the load/store unit,

except instead of coalescing global memory addresses to

cache lines, it coalesces PCs based on exact matches. This

helps limit the number of accesses made to the Skip PC Table

each cycle. The PC skip table contains one entry for each PC

currently being skipped. We experimentally determine that

the PC coalescer reduces the port requirement on the PC

skip table to 2, while providing both reasonable throughput

and minimal area and energy overheads.

4.3.5 Instruction skipping flow . After TB-redundant
instructions are decoded, the PC skip table is probed to see

if they are currently being skipped. If there is no PC skip

table entry and the accessing warp is on the majority-path, it

becomes the leader warp. Upon the creation of a new leader

warp, an entry is created in the PC skip table, a new physical

register is taken from the freelist and allocated in the version

table, the LeaderWB bit is cleared, and the leader updates its

register’s version number in the register renaming table. If

there are no other entries in the freelist, the warps waiting

bitmask is updated to indicate that this instruction will act as

a synchronization point. Only warps on the majority control-

flow path can skip instructions. When the leader writes back

a TB-redundant value, it updates the LeaderWB bit.

When another warp in the TB gets to the PC being skipped,

the PC skip table is probed, and an entry is found. If the warps

waiting bitmask is empty, and the leaderWB bit is set, this

follower warp is able to skip the instruction. If the warps

waiting bitmask has a non-zero value, it is updated to indicate

that the new warp is now waiting for all other warps in the

TB to reach the TB-skippable instruction. The follower warp

then updates its version number in the register renaming

table to reflect the fact that it needs to read a newer version

of this register. If this was the last warp in the TB using a

particular register version number, the physical register is

returned to the freelist. The PC of the skipping warp is then

incremented by 8 (C). If synchronization is necessary, the

warp is removed from the fetch scheduler.

As more warps from the same TB reach the PC to be

skipped, their PCs are incremented, and their registers’ ver-

sions updated. If synchronization is necessary, we determine

if all the warps on the majority control-flow path have ar-

rived at the instruction to be skipped by matching the warps

waiting bitmask with the majority-path bitmask for this TB.

Once all follower warps in the TB have skipped the instruc-

tion, it is removed from the PC Skip Table.

When warps leave the majority path, they copy their re-

dundant register values into their warp-private space, and

clear their state in the register renaming and version table.

We also note that the execution of warps is different than

execution of individual scalar threads, in that a warp may

proceed in both branch directions using the SIMT stack. Our

technique is not applied in the presence of SIMD divergence

(see Section 4.5). If SIMD divergence is encountered on a

branch, the warp is no longer considered for skipping and is

removed from the majority path.

4.4 Skipping load instructions
Skipping load instructions presents a unique challenge since

memory dependence information is not embedded in the

decoded instruction. Without complex and potentially ex-

pensive memory dependence tracking hardware, we cannot

guarantee that a store instruction does not update mem-

ory at the location a skipping load instruction reads. To

simplify the design, complexity and size of our proposed

hardware, DARSIE avoids the memory dependence problem

by removing load PCs from the skip table when one of two

events happens: (1) This TB executes any store instruc-
tion: Stores are relatively infrequent, so we conservatively

assume that any store can update memory referenced by any

load instruction to be skipped. (2) Any global communica-
tion primitives are executed: Our baseline GPU does not

guarantee any particular memory ordering between TBs exe-

cuting on different SMs, or TBs on the same SM, unless global

communication primitives are used. When we detect that

an SM executes any instruction used to perform global com-

munication, such as global atomic instructions, we remove

all global load PCs from the skip table. In our benchmarks,

and the in the bulk of contemporary GPU workloads, these

global communication primatives are not used.

4.5 Handling SIMD divergence
DARSIE specifically targets highly regular code that does not

exhibit large levels of SIMD divergence. This is the common

case for GPU applications. We therefore simplify our design

by not skipping instructions with inactive threads in its ac-

tive mask. While we note that divergent workloads exist,

prior work from industry has shown them to be a minority

of contemporary applications run by GPU customers [36].

We evaluated the effects of allowing diverged instructions to

be considered redundant, but found that it provided minimal

returns. We note that warp-level control-flow divergence

is different from SIMD divergence. Warp-level divergence

indicates that the entire warp took a different execution path,

and not just some threads within a warp. If warp-level di-

vergence occurs, instruction skipping is still possible among

warps that traverse the majority control-flow path.

5 Methodology
We use GPGPU-sim v4.0 [1] and GPUWattch [24] to esti-

mate the performance and energy consumption of DARSIE

respectively. We simulate our applications using PTXPlus,

Table 1. Applications studied

Name Abbr. TB
dim

Name Abbr. TB
dim

binomial-

Option [32]

BIN (256,1) ImageDenois-

ingNLM [32]

INLM (16,16)

pathfinder [8] PT (1024,1) Backprop [8] BP (16,16)

fastWalsh-

Transform [32]

FW (256,1) DCT8x8 [32] DCT (8,8)

SRADV1 [8] SR1 (512,1) Floyd-

Warshall [7]

FWS (16,16)

LIB [4] LIB (256,1) HotSpot [8] HS (16,16)

CP[4] CP (16,8)

convolution-

Texture [32]

CONVTEX (16,16)

MatrixMul [32] MM (32,32)

C: CUDA SDK [32], P: Parboil benchmark [41], R: Rodinia benchmark suite [8], I:

GPGPU-sim distribution benchmark [4]. P: Pannotia benchmark [7]

Table 2. Baseline GPU

Parameters Values

GPU Pascal (GTX1080Ti), 28 SMs, 64 warps/SM

32 thread blocks/SM

SM 32 SIMD Width, 2K vector registers per SM

Scheduler 4 warp scheduler/SM, GTO scheduling

L1 96KB shared memory/SM

Register 14.2pJ/read 25.9pJ/write [24]

and extension of NVIDIA’s virtual ISA PTX that is converted

from the native machine ISA SASS. We use the NVIDIA

GTX-1080Ti Pascal GPU as our baseline. Table 2 describes

our baseline, and is verified to have a 90% correlation to the

real card. We swept different warp schedulers and observed

that these regular applications are insensitive to scheduler

choice, with GTO being the best performing option. We

implement DARSIE’s compiler pass inside GPGPU-Sim on

register-allocated PTXPlus code, similar to the methodology

used by Wang et al. [45]. We use Cacti 7.0 [47] to model the

energy and area overhead of DARSIE’s additional hardware

components. The PC skip table has 2 read ports, 1 write port

and 1 entry per TB. Each SM also contains a register rename

table, which has 32 entries per TB, based on the maximum

number of registers renamed in our applications. We com-

pare DARSIE as described in Section 4 with two previously

proposed techniques:

Uniform Vector (UV): UV [50] is a recently proposed tech-

nique to remove redundant inter-warp instructions. UV

makes use of an instruction reuse buffer [40] to eliminate

instructions that read uniform scalar register values. UV pre-

vents instructions from executing at the issue stage of the

pipeline after being loaded into the instruction buffer. It does

not consider non-uniform redundant vectors, and does not

skip memory operations. We choose this technique to com-

pare against because it is the only related work to remove

redundancy without major pipeline modification. A more

detailed description of UV is located in Section 7.

Idealized Decoupled Affine Computation (DAC): DAC-

IDEAL [45] proposes a compiler and hardware mechanism

that detects affine (not necessarily redundant) operations.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6

BI
N PT FW SR
1

LI
B

G
M
EA

N
-1
D

IM
N
LM BP

DC
T8
x8

FW
S

HS CP

CO
N
VT

EX

M
M

G
M
EA

N
-2
D

1D-Benchmarks 2D-Benchmarks

Sp
ee
du

p

BASE UV DAC-IDEAL DARSIE DARSIE-IGNORE-STORE

2.161.68

1.31.25

Figure 8. Performance of DARSIE against prior work.

Speedup is normalized to the baseline GPU.

0%
10%
20%
30%
40%
50%
60%

U
V

DA
C-

ID
EA

L
DA

RS
IE U
V

DA
C-

ID
EA

L
DA

RS
IE U
V

DA
C-

ID
EA

L
DA

RS
IE U
V

DA
C-

ID
EA

L
DA

RS
IE U
V

DA
C-

ID
EA

L
DA

RS
IE U
V

DA
C-

ID
EA

L
DA

RS
IE

BIN PT FW SR1 LIB 1D-
GMEAN

Pe
rc

en
ta

ge
 o

f
in

st
ru

ct
io

n
re

du
ct

io
n

Uniform Affine Unstructured 75%

19%

Figure 9. Percent reduction in 1D benchmark instructions

versus the baseline

The DAC compiler separates instructions into affine and non-

affine streams, and synchronizes the two when the vector

stream reads values from the affine stream. We model an

idealized version of DAC by detecting affine instructions at

runtime, and assuming that all affine instructions (both re-

dundant and otherwise) will be executed only once. We also

assume there is no synchronization cost between affine and

non-affine instruction streams. This implementation was

validated to be as good or better at instruction reduction

compared to the original results in [45]. We choose DAC-

IDEAL to compare against because it covers both uniform

and affine redundancy, and is the most recently proposed

technique.

6 Experimental Results
The following subsections evaluate the performance and

energy-efficiency of DARSIE, the effects of synchronization

and provide an area estimate.

0%
10%
20%
30%
40%
50%
60%

U
V

D
AC

-ID
EA

L
D

AR
SI

E
U

V
D

AC
-ID

EA
L

D
AR

SI
E

U
V

D
AC

-ID
EA

L
D

AR
SI

E
U

V
D

AC
-ID

EA
L

D
AR

SI
E

U
V

D
AC

-ID
EA

L
D

AR
SI

E
U

V
D

AC
-ID

EA
L

D
AR

SI
E

U
V

D
AC

-ID
EA

L
D

AR
SI

E
U

V
D

AC
-ID

EA
L

D
AR

SI
E

U
V

D
AC

-ID
EA

L
D

AR
SI

E

IMNLM BP DCT8x8 FWS HS CP CONVTEX MM 2D-
GMEAN

Pe
rc

en
ta

ge
 o

f
in

st
ru

ct
io

n
re

du
ct

io
n

Unstructured Affine Uniform

17%

56%

Figure 10. Percent reduction in 2D benchamrk instructions

versus the baseline

6.1 Performance and energy
Figure 8 compares the speedup of UV [50], DAC-IDEAL [45],

and DARSIE over our baseline GPU. DARSIE achieves a geo-

metric mean speedup of 1.3, significantly better than UV

(1.02) and DAC-IDEAL (1.11) for benchmarks with 2D TBs.

DARSIE-IGNORE-STORE doesn’t reset the skip table in the

occurrence of store instructions. DARSIE significantly out-

performs the two alternatives because of the elimination of

the unstructured redundancy in 2D benchmarks. As men-

tioned in Section 1, neither UV nor DAC-IDEAL remove

unstructured redundancy. UV is typically limited by fetch

throughput since it can only remove uniform redundancy at

the issue stage. DARSIE has significantly higher instruction

skipping bandwidth because it can skip multiple instructions

in a single fetch cycle with only an increment of the PC. DAC-

IDEAL’s performance with 1D TB applications is roughly

equal to DARSIE’s since it is similarly able to remove all uni-

form and affine-redundant instructions. To evaluate the effect

store instructions have on performance, DARSIE-IGNORE-

STORE doesn’t reset the skip table when store instructions

occur and demonstrates that the performance impact is min-

imal. Further investigation reveals that stores usually occur

at the end of the register-use chain. Therefore; the value

in the register is typically not used again after the store,

so clearing it’s redundancy data has little effect on DAR-

SIE’s performance. Since DARSIE remaps follower warps

to the same register bank, it does cause additional register

file bank conflicts. However, we find that artificially remov-

ing all DARSIE-induced bank conflicts results in just a 1%

performance improvement.

The performance gain of DARSIE is not always pro-

portional to the number of instructions eliminated. Some

memory-bound applications have a high number of redun-

dant compute operations, but few redundant memory ac-

cesses. For example, DARSIE improves the performance of

FWS by 13%, despite the fact that 21% of its instructions are

skipped. This is because memory operations dominate the

application runtime but are not redundant. Conversely, MM

0%

10%

20%

30%

40%

50%

60%

BI
N PT FW SR
1

LI
B

G
M

EA
N

-1
D

IM
N

LM BP

DC
T8

x8

FW
S HS CP

CO
N

VT
EX

M
M

G
M

EA
N

-2
D

1D-Benchmarks 2D-Benchmarks

Pe
rc

en
ta

ge
 o

f
En

er
gy

 R
ed

uc
tio

n

BASE UV DAC-IDEAL DARSIE
53%

65%

25%28%

Figure 11. Percent Energy Reduction versus the baseline

has a significant number of unstructured-redundant accesses

to shared memory. MM tiling causes multiple warps in one

TB to access the same shared memory blocks with affine

memory addresses. This results results in excessive affine

and unstructured redundancy.

Figures 9 and 10 plot the number of instructions elim-

inated by DARSIE and prior work. In Figure 10, DARSIE

decreases instructions by a geometric mean of 17% in 2D TB

benchmarks. UV [50] is able to remove uniform redundant

instructions, but doesn’t improve performance. UV removes

instructions in the execute stage of the pipeline, requiring

them to still be fetched and decoded. In applications like

LIB, the fetch bandwidth becomes the bottleneck. Since both

DARSIE and DAC eliminate instructions before they are

fetched, they are able to see significant performance gains

in LIB. DAC-IDEAL [45] eliminates redundant instructions

by a geometric mean of 11%. We make the idealized assump-

tion that DAC-IDEAL is able to remove all affine values in

both 2D and 1D applications, but is not able to remove the

unstructured redundancy we identify in this paper. We also

assume that DAC-IDEAL is able to remove non-redundant

affine values that occur in 1D applications for example, tidx.x

in Figure 3(a). Only DARSIE removes unstructured redun-

dant instructions, which accounts for the improvements over

UV and DAC-IDEAL in 2D TB benchmarks. As a result, DAR-

SIE is able to match the performance of DAC-IDEAL on 1D

benchmarks, while outperforming DAC in 2D applications.

Figure 11 shows the total energy consumption of UA, DAC-

IDEAL and DARSIE is normalized to the baseline GPU. DAR-

SIE reduces energy by a geometric mean 25%, while UV

and DAC-IDEAL reduce energy by a geometric mean of 7%

and 20% respectively. This improvement can be traced back

to our microarchitecture preventing redundant instructions

from even probing the I-cache and saves energy throughout

the pipeline. The overhead of DARSIE is only 0.95% of the

dynamic energy consumption. Most of the overhead comes

from accessing the PC Skip Table, majority path mask and

register rename table. This minimal energy overhead stems

0

0.2

0.4

0.6

0.8

1

1.2

0

0.5

1

1.5

2

2.5

3
BI
N PT FW SR
1

LI
B

G
M
EA

N
-1
D

IM
N
LM BP

DC
T8
x8

FW
S

HS CP

CO
N
VT

EX

M
M

G
M
EA

N
-2
D

1D-Benchmarks 2D-Benchmarks

Sp
ee
du

p

BASE DARSIE DARSIE-NO-CF-SYNC SILICON-SYNC

1.3

2.35
2.85

1.39

Si
lic
on

Sp
ee
du

p

Figure 12. Effects of Synchronization.

from the small size of the added hardware (roughly 82 bytes

for the majority path mask, and 84 bytes per TB bank).

6.2 Effect of Synchronization
Figure 12 presents the performance of an idealized DARSIE,

DARSIE-NO-CF-SYNC, that has no DARSIE-related synchro-

nization. To measure the effect of DARSIE’s synchroniza-

tion overhead, without any of DARSIE’s benefits, on a real

machine, we instrumented the applications with __sync-

threads() calls at basic-block boundaries and measured their

performance. SILICON-SYNC in Figure 12 plots the effect

synchronization has on performance on a silicon NVIDIA

Pascal Titan X GPU. The overhead in most applications is

small. Interestingly, many of the 2D applications already had

__syncthread() operations at basic block boundaries, lim-

iting DARSIE’s synchronization effects. On LIB, there is a

50% performance reduction becasue the baseline application

contains no __sycthreads(). However, the 75% instruction

reduction DARSIE provides (Figure 10) on LIB makes up for

the overhead.

6.3 Area Estimation
The three major sources of area in DARSIE are the PC Skip

Table, majority path mask and register renaming/version

tables. One PC Skip Table entry includes a PC value, the

warp waiting bitmask (which consists of one bit for each

warp that can be allocated on one TB), a bit to indicate if this

instruction is a memory load (IsLoad) and a bit to indicate

if the leader warp’s output register has been written back

(LeaderWB). One TB is allocated 8 PC skip table entries that

are replaced dynamically. These fields consume 82 bits: 48

bits for the PC + 32 bits for the warp mask (since there are

at most 32 warps can be allocated by one thread block) + 1

bit for the IsLoad flag + 1 bit for LeaderWB. The PC Skip

Table is 256 entries based on their being at most 32 TBs

in one SM, and consumes 20092 bits (2624 bytes). DARSIE

allocates one majority path mask entry for one TB in one

SM. These fields cost 32 bits for the warp bitmask. The total

size of majority path mask is 32 × 32 = 1024 bits (128 bytes).

We conservatively estimate that each entry in the register

rename and version table consists of 21 bits: 8 bits for the

named register (CUDA allows 255 potential named registers

per thread) + 8 bits for physical register tag + 5 bits for the

version numbers. DARSIE allocates 32 entries for one TB,

based on the max register usage of our workloads (32). These

entries therefore consume: 21 × 32 (entries per TB) × 32

(TBs in one SM) = 21504 bits (2688 bytes). Altogether, the

additional structures consume an additional 5.31 kB (2.1% of

the Pascal GPU register file size).

7 Related Work
Instructions operating on identical data has long been ob-

served in CPUs [5, 25, 26, 29, 40, 46]. Recent GPU work [9–

11, 19, 45, 49, 50, 52] has targeted the removal of GPU in-

structions. Recent work by Wang and Lin [45] proposes De-

coupled Affine Computation (DAC) that uses the compiler

to identify and isolate an affine instruction stream that is

run on a separate pipeline from the SIMT instruction stream.

DAC captures the run-ahead effect of Decoupled Access

Execution [39] as well as achieves a reduction in SIMT in-

structions by computing affine base + stride values only as

needed in the affine stream. In contrast, DARSIE exploits

redundant instructions, which are fundamentally different

than affine instructions. The unstructured redundancy elimi-

nated by DARSIE cannot be eliminated with affine function

units. Xiang et al. [50] identified inter-warp uniform values

in the decode stage, and skips selective, uniformly redundant

instructions using an instruction reuse buffer [40]. Unlike

Xian et al.’s design, DARSIE skips redundant instructions be-

fore they are fetched, based on the pre-emptive detection of

TB-level redundancy. Kim et al. [19] presents a fine-grain(FG-

SIMT) execution engine to tackle instructions composed of

affine and uniform value structures. This FG-SIMT architec-

ture aims to improve performance and energy efficiency for

irregular kernels, focusing primarily on scalar instructions.

Lee et al. [22] proposes compressing GPU vector registers

to save energy. Esfeden et al. [3] proposes a register pack-

ing mechanism using renaming to that helps save energy

and increase performance by combining reads to multiple

registers into a single access. GPU compiler work on scalar-

ization [10, 18, 23, 51] discovers invariant instructions, and

re-allocates registers to improve performance.

Recent approximate computing research [30, 48] concen-

trates on removing the execution of similar value structures

to reduce energy consumption. Daniel et al. [48] observed

operand value similarity within a warp. Their approximating

warp micro-architecture [48] can both detect value similar-

ity, and reduce the execution of identical data across SIMT

lanes. G-scalar [28] found that 45% of divergent instructions

are eligible for scalarization. G-scalar [28] compares values

of the registers and compresses them to reduce the usage

Table 3. Comparison of DARSIE to related work

WIR [20] G-Scalar[28] UV [50] GP-SIMT [19] DAC [45] DARSIE

Uniform Redundany ✓ ✓ ✓ ✓ ✓ ✓
Affine Redundancy ✓ ✓ ✓

Unstructured Redundancy ✓
Min. Pipeline Modifications ✓ ✓

of the register file. Concurrent work on Warp Instruction

Resuse (WIR) [20] saves energy by reusing registers with

identical operand values across warps through a signature-

based renaming mechanism. Unlike DARSIE, WIR relies on a

complex, hardware-based redundancy detection mechanism,

and is still bottlenecked on fetch/issue bandwidth.

Volkov [43] restructured GPU programs to reduce their

occupancy and improve performance. They manually col-

lapsed code for a particular application, and demonstrated

that an increase in register density resulted in improved per-

formance. Yang et al. [51] performed a similar merging to

manage parallelism in an optimizing pass of the compiler.

Work on TB compaction uses TB-wide synchronization [13]

to help orchestrate thread packing in code.

Contemporary GPUs are designed to perform well when

executing regular kernels with limited control-flow diver-

gence. As a result, these regular applications are the most

commonly run in the field today [36]. Although these appli-

cations can be computationally-dense, we demonstrate that

they also execute a significant number of redundant opera-

tions. In contrast to the body of orthogonal work on improv-

ing GPUs in the presence of irregular, cache- and scheduling-

sensitive workloads [15–17, 37, 38], DARSIE is designed to

target common contemporary workloads which prior work

has demonstrated are insensitive to locality-optimizing tech-

niques that focus on scheduling [37].

8 Conclusion
In this paper we detail the root cause of massively multi-

threaded redundancy at the programming language level,

and quantitatively explore how much redundancy exists

at the grid, threadblock and warp levels. We show that

a significant portion of redundancy in GPU applications

is TB-wide. Moreover, we observe that much of the seem-

ingly unstructured redundancy that occurs at runtime can be

non-speculatively identified based on TB sizing information

known at kernel launch time. Using a novel compiler pass

for conditional redundancy and an aggressive instruction-

skipping microarchitecture that skips instructions in fetch,

our proposed DARSIE design both increases performance

and decreases energy consumption by 30% and 25% respec-

tively.

DARSIE is a vertical solution that delegates each aspect

of complexity to the appropriate system level. Static compi-

lation techniques are first leveraged to propagate our newly

observed conditionally redundant registers, then simple TB

sizing information available at kernel launch time finalizes

the static compiler’s incomplete picture. Our light-weight

hardware modifications then provides what the compilation

system cannot: the illusion of TB-wide lockstep execution, ef-

ficient access to warp-private registers and the ability to skip

instructions from multiple warps before they are fetched.

Acknowledgments
This work was supported by the Applications Driving Ar-

chitectures (ADA) Research Center, a JUMP Center co-

sponsored by SRC and DARPA.

References
[1] Tor M. Aamodt. 2012. GPGPU-Sim 3.x Manual. http://gpgpu-sim.org/

manual/index.php5/GPGPU-Sim_3.x_Manual. (accessed March 30,

2017).

[2] AMD. 2016. AMD Graphics Cores Next (GCN) Architecture. [On-

line]. Available: https://www.amd.com/documents/gcn_architecture_
whitepaper.pdf. (accessed April 5, 2019).

[3] Hodjat Asghari Esfeden, Farzad Khorasani, Hyeran Jeon, Daniel Wong,

and Nael Abu-Ghazaleh. 2019. CORF: Coalescing Operand Register File

for GPUs. In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operation Systems (ASPLOS).

701–714.

[4] Ali Bakhoda, George L Yuan, Wilson WL Fung, Henry Wong, and

Tor M Aamodt. 2009. Analyzing CUDA Workloads Using A Detailed

GPU Simulator. In Proceedings of the International Symposium on Per-

formance Analysis of Systems and Software (ISPASS). 163–174.

[5] J. Adam Butts and Guri Sohi. 2002. Dynamic Dead-Instruction

Detection and Elimination. In Proceedings of the International Con-

ference on Architectural Support for Programming Languages and Oper-

ation Systems (ASPLOS). 199–210.

[6] Cy Chan, Didem Unat, Michael Lijewski, Weiqun Zhang, John Bell,

and John Shalf. 2013. Software Design Space Exploration for Exascale

Combustion Co-design. In International Supercomputing Conference

(ICS). 196–212.

[7] Shuai Che, Bradford M Beckmann, Steven K Reinhardt, and Kevin

Skadron. 2013. Pannotia: Understanding Irregular GPGPU Graph

Applications. In Proceedings of the International Symposium on Work-

load Characterization (IISWC). 185–195.

[8] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. Lee, and

K. Skadron. 2009. Rodinia: A Benchmark Suite for Heterogeneous

Computing. In Proceedings of the International Symposium on Work-

load Characterization (IISWC). 44–54.

[9] Zhongliang Chen and David Kaeli. 2016. Balancing Scalar and Vector

Execution on GPU Architectures. In Proceedings of the International

Parallel and Distributed Processing Symposium (IPDPS). 973–982.

[10] Zhongliang Chen, David Kaeli, and Norman Rubin. 2013. Character-

izing Scalar Opportunities in GPGPU Applications. In Proceedings of

the International Symposium on Performance Analysis of Systems and

Software (ISPASS). 225–234.

http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim_3.x_Manual
http://gpgpu-sim.org/manual/index.php5/GPGPU-Sim_3.x_Manual
https://www.amd.com/documents/gcn_architecture_whitepaper.pdf
https://www.amd.com/documents/gcn_architecture_whitepaper.pdf

[11] Sylvain Collange, David Defour, and Yao Zhang. 2009. Dynamic

Detection of Uniform and Affine Vectors in GPGPU Computations. In

European Conference on Parallel Processing(Euro-Par). 46–55.

[12] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith,

Philip C. Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter.

2010. The Scalable Heterogeneous Computing (SHOC) Benchmark

Suite. In Proceedings of the 3rd Workshop on General-Purpose Computa-

tion on Graphics Processing Units (GPGPU). 63–74.

[13] W. W. L. Fung and T. M. Aamodt. 2011. Thread Block Compaction

for Efficient SIMT Control Flow. In Proceedings of the International

Symposium on High-Performance Computer Architecture (HPCA). 25–

36.

[14] Zhe Jia, Marco Maggioni, Jeffrey Smith, and Daniele Paolo Scarpazza.

2019. Dissecting the NVIDIA Turing T4 GPU via Microbenchmarking.

arXiv preprint arXiv:1903.07486 (2019).

[15] Adwait Jog, Onur Kayiran, Nachiappan Chidambaram Nachiappan,

Asit K. Mishra, Mahmut T. Kandemir, Onur Mutlu, Ravishankar Iyer,

and Chita R. Das. 2013. OWL: Cooperative Thread Array Aware

Scheduling Techniques for Improving GPGPU Performance. In Pro-

ceedings of the International Conference on Architectural Support for

Programming Languages and Operation Systems (ASPLOS). 395–406.

[16] Adwait Jog, Onur Kayiran, Asit K. Mishra, Mahmut T. Kandemir,

Onur Mutlu, Ravishankar Iyer, and Chita R. Das. 2013. Orchestrated

Scheduling and Prefetching for GPGPUs. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA). 332–343.

[17] Onur Kayundefinedran, Adwait Jog, Mahmut Taylan Kandemir, and

Chita Ranjan Das. 2013. Neither More nor Less: Optimizing Thread-

Level Parallelism for GPGPUs. In Proceedings of the International Con-

ference on Parallel Architectures and Compilation Techniques (PACT).

157–166.

[18] A. Kerr, G. Diamos, and S. Yalamanchili. 2012. Dynamic Compilation

of Data-parallel Kernels for Vector Processors. In International Sym-

posium on Code Generation and Optimization (CGO). 23–32.

[19] Ji Kim, Christopher Torng, Shreesha Srinath, Derek Lockhart, and

Christopher Batten. 2013. Microarchitectural Mechanisms to Exploit

Value Structure in SIMT Architectures. In Proceedings of the Interna-

tional Symposium on Computer Architecture (ISCA). 130–141.

[20] Keunsoo Kim and Won Woo Ro. 2018. WIR: Warp Instruction Reuse

to Minimize Repeated Computations in GPUs. In Proceedings of the

International Symposium on High-Performance Computer Architecture

(HPCA). 389 – 402.

[21] M. Kulkarni, M. Burtscher, C. Cascaval, and K. Pingali. 2009. Lonestar:

A Suite of Parallel Irregular Programs. In Proceedings of the Interna-

tional Symposium on Performance Analysis of Systems and Software

(ISPASS). 65–76.

[22] Sangpil Lee, Keunsoo Kim, Gunjae Koo, Hyeran Jeon, Won Woo Ro,

and Murali Annavaram. 2015. Warped-Compression: Enabling Power

Efficient GPUs through Register Compression. In Proceedings of the

International Symposium on Computer Architecture (ISCA). 502–514.

[23] Yunsup Lee, Ronny Krashinsky, Vinod Grover, Stephen W. Keckler,

and Krste Asanovic. 2013. Convergence and Scalarization for Data-

parallel Architectures. In International Symposium on Code Generation

and Optimization (CGO). 1–11.

[24] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed Gi-

lani, Nam Sung Kim, Tor M. Aamodt, and Vijay Janapa Reddi. 2013.

GPUWattch: Enabling Energy Optimizations in GPGPUs. In Proceed-

ings of the International Symposium on Computer Architecture (ISCA).

487–498.

[25] Kevin M. Lepak and Mikko H. Lipasti. 2000. On the Value Locality of

Store Instructions. In Proceedings of the International Symposium on

Computer Architecture (ISCA). 182–191.

[26] Mikko H. Lipasti, Christopher B. Wilkerson, and John Paul Shen. 1996.

Value Locality and Load Value Prediction. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming Languages

and Operation Systems (ASPLOS). 138–147.

[27] S. Liu, J.E. Lindholm, M.Y. Siu, B.W. Coon, and S.F. Oberman. 2010.

Operand Collector Architecture. https://www.google.com/patents/
US7834881 US Patent 7,834,881.

[28] Z. Liu, S. Gilani, M. Annavaram, and N. S. Kim. 2017. G-Scalar:

Cost-Effective Generalized Scalar Execution Architecture for Power-

Efficient GPUs. In Proceedings of the International Symposium on High-

Performance Computer Architecture (HPCA). 601–612.

[29] Guoping Long, Diana Franklin, Susmit Biswas, Pablo Ortiz, Jason

Oberg, Dongrui Fan, and Frederic T. Chong. 2010. Minimal Multi-

threading: Finding and Removing Redundant Instructions in Multi-

threaded Processors. In Proceedings of the International Symposium on

Microarchitecture (MICRO). 337–348.

[30] Joshua San Miguel, Mario Badr, and Natalie Enright Jerger. 2014. Load

Value Approximation. In Proceedings of the International Symposium

on Microarchitecture (MICRO). 127–139.

[31] NIRVANA. 2016. Maxas SASS Assembler. https://github.com/
NervanaSystems/maxas. (accessed Aug 1, 2018).

[32] NVIDIA. 2015. CUDA. [Online]. Available: http://docs.nvidia.com/
cuda/cuda-c-programming-guide/. (accessed March 5, 2017).

[33] NVIDIA. 2016. NVIDIA CUDA SDK 4.2. [Online]. Available: https:
//developer.nvidia.com/cuda-downloads. (accessed March 30, 2017).

[34] NVIDIA. 2018. NVIDIA CUDA SDK 10.0. [Online]. Available: https:
//developer.nvidia.com/cuda-downloads. (accessed April 4, 2019).

[35] PolyBench:. 2016. The Polyhedral Benchmark Suite. [Online]. Avail-

able: http://web.cse.ohio-state.edu/~pouchet/software/polybench. (ac-
cessed March 30, 2017).

[36] Timothy G. Rogers, Daniel R. Johnson, Mike O’Connor, and StephenW.

Keckler. 2015. A Variable Warp Size Architecture. In Proceedings of the

International Symposium on Computer Architecture (ISCA). 489–501.

[37] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2012. Cache-

Conscious Wavefront Scheduling. In Proceedings of the International

Symposium on Microarchitecture (MICRO). 72–83.

[38] Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt. 2013.

Divergence-Aware Warp Scheduling. In Proceedings of the Interna-

tional Symposium on Microarchitecture (MICRO). 99–110.

[39] James E. Smith. 1984. Decoupled Access/Execute Computer

Architectures. ACM Transactions on Computer Systems (TOCS) 2, 4

(Nov. 1984), 289–308. https://doi.org/10.1145/357401.357403
[40] Avinash Sodani and Gurindar S. Sohi. 1997. Dynamic Instruction Reuse.

In Proceedings of the International Symposium on Computer Architecture

(ISCA). 194–205.

[41] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid,

Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-Mei W

Hwu. 2012. Parboil: A Revised Benchmark Suite for Scientific and

Commercial Throughput Computing. Center for Reliable and High-

Performance Computing 127 (2012).

[42] John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.

2014. XSBench-the Development and Verification of a Performance

Abstraction for Monte Carlo Reactor Analysis. The Role of Reactor

Physics toward a Sustainable Future (PHYSOR) (2014).

[43] Vasily Volkov. 2010. Better Performance at Lower Occupancy. In

Proceedings of the GPU technology conference, GTC, Vol. 10. 16.

[44] J. Wang and S. Yalamanchili. 2014. Characterization and Analysis of

Dynamic Parallelism in Unstructured GPUApplications. In Proceedings

of the International Symposium on Workload Characterization (IISWC).

51–60.

[45] Kai Wang and Calvin Lin. 2017. Decoupled Affine Computation for

SIMTGPUs. In Proceedings of the International Symposium on Computer

Architecture (ISCA). 295–306.

[46] Shasha Wen, Milind Chabbi, and Xu Liu. 2017. REDSPY: Exploring

Value Locality in Software. In Proceedings of the International Confer-

ence on Architectural Support for Programming Languages and Opera-

tion Systems (ASPLOS). 47–61.

https://www.google.com/patents/US7834881
https://www.google.com/patents/US7834881
https://github.com/NervanaSystems/maxas
https://github.com/NervanaSystems/maxas
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
http://web.cse.ohio-state.edu/~pouchet/software/polybench
https://doi.org/10.1145/357401.357403

[47] S. J. E. Wilton and N. P. Jouppi. 1996. CACTI: An Enhanced Cache

Access and Cycle Time Model. IEEE Journal of Solid-State Circuits 31,

5 (May 1996), 677–688.

[48] Daniel Wong, Nam Sung Kim, and Murali Annavaram. 2016. Approxi-

mating Warps with Intra-warp Operand Value Similarity. In Proceed-

ings of the International Symposium on High-Performance Computer

Architecture (HPCA). 176–187.

[49] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R. Hsu, , Dong

Qunfeng, and Huiyang Zhou. 2014. A Case for a Flexible Scalar Unit

in SIMT Architecture. In Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS). 93–102.

[50] Ping Xiang, Yi Yang, Mike Mantor, Norm Rubin, Lisa R. Hsu, and

Huiyang Zhou. 2013. Exploiting Uniform Vector Instructions for

GPGPU Performance, Energy Efficiency, and Opportunistic Reliability

Enhancement. In Proceedings of the International Conference on Super-

computing (ICS). 433–442.

[51] Yi Yang, Ping Xiang, Jingfei Kong, and Huiyang Zhou. 2010. A GPGPU

Compiler for Memory Optimization and Parallelism Management. In

Proceedings of the ACM SIGPLANConference on Programming Language

Design and Implementation (PLDI). 86–97.

[52] Ayse Yilmazer, Zhongliang Chen, andDavid Kaeli. 2014. ScalarWaving:

Improving the Efficiency of SIMD Execution on GPUs. In Proceedings of

the International Parallel and Distributed Processing Symposium (IPDPS).

103–112.

	Abstract
	1 Introduction
	2 A taxonomy of GPU redundancy
	3 Baseline
	4 Dimensionality-Aware Redundant SIMT Instruction Elimination
	4.1 High level operation
	4.2 Compiler annotations
	4.3 DARSIE microarchitecture
	4.4 Skipping load instructions
	4.5 Handling SIMD divergence

	5 Methodology
	6 Experimental Results
	6.1 Performance and energy
	6.2 Effect of Synchronization
	6.3 Area Estimation

	7 Related Work
	8 Conclusion
	References

