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Abstract—The advent of hardware ray tracing (RT) units has
brought unprecedented realism to real-time rendered computer
graphics. However, the potential of these units extends beyond
graphics, offering acceleration for various computational tasks
such as tree traversal and nearest-neighbor search. We introduce
RayFlex, a first-of-its-kind open-source RTL implementation of
a hardware ray tracer datapath designed to facilitate research in
general-purpose programmable RT units. RayFlex’s architecture
is both extensible and flexible, thanks to two core design concepts:
the parameterized RayFlex Skid Buffer module and the “defined-
once-instantiated-everywhere” Shared RayFlex Data Structure.
This makes RayFlex an ideal testing ground for academic
research and exploration. Our implementation allows researchers
to explore various design choices, fostering a realistic understand-
ing of hardware ray tracer design trade-offs. Through compre-
hensive case studies, we demonstrate the versatility of RayFlex
in evaluating different pipeline configurations and extending its
functionality to support additional computational tasks. We show
that by extending the functionality of a baseline RT unit datapath
with an area cost of 36% and a power overhead of about 20%, the
RT unit can calculate the Euclidean distance and cosine distance
of vectors of arbitrary dimension, thereby accelerating a broader
range of data-analytics workloads. The source code of RayFlex
is available at https://github.com/purdue-aalp/rayflex.

Index Terms—Ray tracing, pipelined architecture, GPU.

I. INTRODUCTION

In 3D computer graphics, ray tracing (RT) is a rendering
technique that generates photorealistic scenes by simulating
the behavior of light rays [1]. The algorithm casts rays from
the eye (camera) into a scene and calculates the intersections
between the ray and objects; secondary rays are then cast from
intersection points to model the effect of reflection, refraction,
and shadows [2]. Ray tracing has been widely used in visual
effects for still CGI images and movies for decades [3], but its
high computational cost and divergent control flow in graphic
processing units (GPUs) [4] have restricted it to limited ray
tracing effects in real-time rendering applications [5], [6] until
the recent advent of real-time hardware RT units [7]–[11].
Recent RT units improve the efficiency of ray tracing on GPUs
by offloading intersection tests to fixed function datapaths,
thus mitigating the SIMT divergence problem and freeing up
general-purpose GPU cores for concurrent tasks [12]–[14].

The RT unit is programmed through graphics libraries like
Vulkan, Optix, and DirectX [15]–[18]. Programmers create an
Acceleration Structure (AS) - typically a Bounding Volume
Hierarchy (BVH) tree that groups triangle primitives of a scene

into nested Axis-Aligned Bounding Boxes - and leverage the
fixed function RT unit to efficiently traverse this Accelera-
tion Structure to test for ray-box or ray-primitive intersec-
tions [19]–[25]. Figure 1 shows the structure of the BVH tree.
However, ray tracing is not the only workload that the RT
unit can accelerate: a variety of publications recently show
that many non-graphic problems can be cast to the ray tracing
model and use the RT unit for acceleration [26]–[35]. On the
hardware side, recent work in GPU microarchitecture [13],
[14] proposed extending the hardware RT unit to accelerate
nearest neighbor search and B-tree search in non-graphic
workloads. This trend is reminiscent of the early days of
general-purpose GPU programming when programmers made
use of the graphics API to compute matrix multiplications [36]
- what followed was an evolution of the GPU architecture
and programming model which eventually enabled the GPU
for general-purpose workloads. We envision a similar trend
of generalization of the hardware RT unit. Therefore, an
open model of the hardware RT unit would be beneficial and
facilitate architecture research of the ray tracing unit.

Vulkan-Sim [19] is currently the only public GPU archi-
tecture simulator that models detailed hardware ray tracing.
Vulkan-Sim has a timing model that provides cycle-level simu-
lation of the RT unit and focuses on the warp management and
memory accesses of hardware ray tracing. However, for the
low-level datapath that performs BVH operations (coordinate
transformations, ray-box intersection tests, and ray-triangle
intersection tests), Vulkan-Sim takes a black-box approach by
simply assuming a fixed latency and omits internal details of
the circuit.

To shed light on the internals of the RT unit datapath
and facilitate research in this area, we introduce RayFlex, a
hardware RT unit datapath modeled at the register transfer
level using Chisel [37]. It implements a fixed-latency pipeline
that executes all aforementioned BVH operations, and the
pipeline can be easily modified to support more operations,
for instance, Euclidean and cosine distance calculation used
by nearest neighbor search algorithms [14].

This paper describes the architecture of RayFlex. RayFlex is
designed to be simple and extensible: (1) The IO interface is
largely decoupled from the implementation of the datapath,
allowing the user to explore different node configurations.
For example, Rayflex can easily model a 4-wide BVH tree
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specified by the AMD RDNA2/3 Instruction Set Architectures
(ISAs) [7], [38] or a 6-wide BVH tree used in Mesa [13]. (2)
The functional unit (FU) pool in each stage can be modified
separately so that users can study the trade-off between a
shared FU pool design and a disjoint pipeline design or
evaluate new operations beyond the ray-box or ray-triangle
intersection tests. (3) RayFlex’s datapath is designed as an
elastic pipeline built from parameterized skid buffers modules,
enabling the easy addition or deletion of pipeline stages and
eliminating the need for a centralized controller. (4) A Shared
RayFlex Data Structure is defined once and instantiated for all
pipeline stage registers, keeping the code complexity low. (5)
The precision and format of intermediate floating numbers are
parameterized, enabling easy evaluation of different rounding
strategies. (6) The module can be integrated with other open-
source chip design frameworks such as Chipyard [39], the
Vortex GPU [40], or CGRA frameworks [41], [42].

Academic research in computer architecture often presents
proof-of-concept designs highlighting their first-order gains,
which calls for a low-maintenance, high-extensibility code
base that facilitates rapid prototyping. RayFlex is designed
with this in mind. In Section III, we introduce the parame-
terized RayFlex Skid Buffer module and a Shared RayFlex
Data Structure. These two key design concepts contribute to
RayFlex’s extensibility and ease of development.

In Section IV, we present our test cases for the functional
correctness of RayFlex, we discuss the performance validation
of RayFlex, and we highlight the complementary nature of
RayFlex with Vulkan-Sim. Because the architecture of the
hardware RT unit datapath used in commercial products is
undisclosed, and because of the opaque software implemen-
tation of vendor-specific ray tracing pipelines, it isn’t easy to
correlate the throughput and initiation interval of RayFlex with
RT units in real hardware. However, we reason that real GPUs
likely contain hundreds of RT units equivalent in computing
power to a RayFlex datapath.

To demonstrate the utility of RayFlex, in Section V
we present two case studies to evaluate (1) a unified
pipeline for all BVH operations versus disjoint pipelines
and (2) an extended RT unit that additionally sup-
ports the calculation of Euclidean and cosine distances.
We present the evaluation methodology and results in
Sections VI and VII before a brief discussion of related work
in Section VIII and a conclusion in Section IX.

This paper makes the following contributions:
• A first-of-its-kind RTL implementation of the hardware

RT unit datapath implemented in Chisel. Its extensible
architecture allows researchers to study a variety of
design choices for the RT unit datapath.

• Two case studies evaluating the trade-offs of a unified
pipeline and an extended RT unit datapath.

II. BACKGROUND

A. Ray Tracing

GPUs render scenes from a collection of 3-dimensional
primitives (typically triangles). To perform ray tracing, the
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Fig. 1: Left: The surface of this bunny consists of many
triangle primitives. Triangles are grouped into nested Axis-
Aligned Bounding Boxes to form a Hierarchical Bounding
Volume (BVH). Right: Nested boxes become parents and
children in the BVH tree.

GPU tests individual rays against the coordinates of primitives
for intersection. Since each frame can be rendered from
hundreds of thousands (if not millions) of primitives and
millions of rays, it is imperative to perform this test efficiently.
To this end, triangle primitives are grouped hierarchically into
a tree of nested Axis-Aligned Bounding Boxes (AABB) so
the scene can be searched hierarchically for any intersection.
This tree is called the Bounding Volume Hierarchy (BVH),
as illustrated in Figure 1. When traversing the BVH, ray-box
intersection tests are performed on internal nodes and ray-
triangle intersection tests are performed on leaf nodes.

B. RT Unit

The RT Unit manages the traversal of the BVH by (1)
scheduling memory requests to retrieve BVH node data and
(2) using the RT unit datapath to test for intersections. The
compute-intensive nature of intersection tests justifies the use
of a fixed-function pipeline. An AMD patent [43] describes
the methods and system for hardware ray tracing which has
inspired the design of RayFlex. Figure 2 shows the high-level
diagram of the RT unit, of which the highlighted structure is
modeled in this paper. A detailed model of the RT unit can
be found in Vulkan-Sim [19]. A brief description of both the
patent and Vulkan-Sim is given in Section IV-B.

C. Intersection Tests

The computation runtime of ray tracing is dominated by
ray-box and ray-triangle intersection tests.

1) Ray-Box: Ray-box intersection tests determine which
nodes to traverse to next in the hierarchy. The slab method [6],
[44]–[46] is the most commonly used and prevalent algorithm
to compute the intersection of a ray and AABB. The general
structure of the slab method is shown in Algorithm 1. For
brevity, lines 1-4 show the computation along a single dimen-
sion, but it is important to note that each step is performed
across the x, y, and z coordinates. The inputs to the algorithm
include a three-dimensional ray consisting of an origin and
direction with a parametric time parameter t. The slab method
computes the intersection of a ray with the box by computing
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Fig. 2: The GPGPU architecture and the RT Unit’s position.

the intersection of the ray along each axis pair of planes. An
intersection occurs if and only if the intervals overlap. The
box is defined by a pair of three-dimensional points indicating
their maximum and minimum corners. We first translate these
points to the ray origin using six addition operations (lines 1
and 2). Next, the minimum and maximum t parameter values
are computed for each of the three dimensions by dividing the
box coordinate by the ray direction (lines 3 and 4). A common
optimization is to pre-compute the ray’s inverse direction and
instead use multiplication for this step (6 multiplications). We
are left with three intervals corresponding to the t parameter
values that the ray passes through each of the box’s axis planes.
A fourth interval is provided as input to define the ray’s extent,
t r beg and t r end. The tmin value (line 5) corresponds to
the distance at which the ray enters the box and the tmax
value (line 6) corresponds to the distance the ray exits the
box. Therefore, line 7 returns the result of the intersection test
and the distance at which the intersection occurred.

Algorithm 1 Slab Ray-box Intersection Method

1: box hi← box hi− ray origin
2: box lo← box lo− ray origin
3: t min← box lo÷ ray dir (or box lo ∗ ray inv)
4: t max← box hi÷ ray dir (or box hi ∗ ray inv)
5: tmin← max(t min x, t min y, t min z, t r beg)
6: tmax← min(t max x, t max y, t max z, t r end)
7: return tuple(tmin <= tmax, tmin)

2) Ray-Triangle: Ray-triangle intersection tests are per-
formed at the leaf nodes of the BVH. To this end, the
watertight method [47] achieves high accuracy and efficiency
using single-precision floating-point operations. Here, we only
provide a high-level summary of this algorithm since a full

description is verbose and already given in Appendix A of
Reference [47]. First, it renames the x, y, and z axes in a
winding preserving way so that the greatest component of
the ray direction is on the z-axis. It then performs an affine
transformation on both the ray and the triangle such that the
ray becomes the unit ray on the z-axis with origin (0, 0, 0)
and direction (0, 0, 1). Finally, the barycentric coordinate of
the ray’s intersection with the triangle plane is calculated, from
which the intersection distance can be derived and represented
in the form of a numerator-denominator pair. It is worth
noting that the renaming of axes and the affine transform
matrix are the sole properties of the ray and require floating
point divisions, therefore they can be pre-calculated at ray
instantiation before BVH traversal.

III. FUNCTIONALITY AND DESIGN

A. Connection to the Instruction Set Architecture

The IO specification of RayFlex is designed in reference
to the latest RDNA3 ISA. RDNA3 defines a CISC-style
SIMT IMAGE_BVH_INTERSECT_RAY instruction [38] for
intersection tests. We summarize its activity in Figure 3. The
ray data is directly passed by vector registers as operands of
the instruction; the BVH node data is passed by a pointer.
Depending on the node type, either one ray-triangle test or
four ray-box tests are performed for each ray. Triangle tests
return the intersection distance and triangle ID; box tests return
the hit statuses and pointers to the four children boxes sorted
by their order of intersection. In Figure 3, only the highlighted
actions are performed by RayFlex. We follow the assumption
that the management of warp threads is a duty of the higher-
level RT unit [19], threads (rays) are individually fed to a
single-lane datapath [13], [14], i.e., RayFlex does not execute
in SIMD fashion (although jobs from individual threads can
be pipelined).

The IO specification of RayFlex takes one opcode, one ray,
one triangle, and four boxes as input. Each cycle, depending
on the opcode, either the triangle or box data is valid. Each
box is defined by six floating point numbers (FPs) representing
the minimum vertex and maximum vertex’s coordinates. Each
triangle is defined by nine FPs representing the three vertices’
coordinates. Each ray is defined by three FPs for the origin
point, three FPs for the direction vector, three FPs for the
element-wise inverse of the direction vector, and one FP for
the extent of the ray. As such, our ray format adheres to that
specified by the RDNA3 ISA, but we additionally introduce
six more FPs to the ray for the 3-dimensional k and S values
to simplify the calculation done in RayFlex; these values
correspond to the renaming of axes and the affine transform
matrix which are pre-calculated at the time of ray creation as
explained in Section II-C2. The ISA does not specify the box
and triangle formats, so we define our own as convenient.

B. BVH Operations

1) Ray-Box Intersection: During BVH traversal, the ray is
tested for intersection against each of the children boxes of
a box in which it has intersected. The RDNA3 ISA allows
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IMAGE_BVH_INTERSECT_RAY instruction. The highlighted
activities happen inside RayFlex.

testing a ray against four children box nodes with a single
instruction.

Figure 4a shows the high-level data flow of the
IMAGE_BVH_INTERSECT_RAY instruction when perform-
ing ray-box intersection tests. The first three steps 1 2 3
perform four parallel ray-box tests, which we described in
Section II-C1. The last step 4 sorts the four boxes by their
order of intersection; a sorting network can finish this step
using just five comparators [48].

2) Ray-Triangle Intersection: Figure 4b shows the high-
level data flow of the watertight triangle intersection algo-
rithm [47]. It can be broken down into the following steps:
steps 1 2 perform renaming of the axes so that the ray
direction has its greatest component on the z-axis; step 3
calculates the shear constants for the affine transform; steps
4 5 apply the affine transform to the triangle; step 6

calculates the barycentric coordinates of the intersection of
the unit ray and the triangle plane; steps 7 8 9 calculate the
distance of intersection.

The first three steps (shaded in gray) are pre-computed in the
general-purpose GPU core at ray creation time. As explained at
the end of Section II-C2, the axis rotation and shear constants
are the sole properties of the ray and involve divisions to
calculate; therefore, it is sensible to treat such computation
as part of the ray-instantiation routine and leverage the SIMD
hardware of the GPU to perform these steps. Consequently, we
avoid adding division units to RayFlex and reduce the pipeline
depth.

C. Elastic Pipeline and Skid Buffers

The datapath of RayFlex adopts the elastic pipeline archi-
tecture [49], [50]. Pipeline stages use the two-phase bundled
data convention [51] (aka. the “valid-ready handshake proto-
col” [52]) to transfer data and propagate back pressure.

The building block of the pipeline of RayFlex is the RayFlex
Skid Buffer module [53], shown in Figure 5a. It manages
the synchronization with producer and consumer stages and
encapsulates a chunk of programmer-supplied logic. We note
that the programmer-supplied logic can be stateful, so one can
use accumulators in the logic to sum the data from multiple
beats. The RayFlex Skid Buffer module is parameterized by
two data types, T and U, which represent the input and output
data types of the programmer-supplied logic, respectively.
Despite the parameterization, Chisel treats all RayFlex Skid
Buffer modules like a single class. This makes programmatic
handling of pipeline stages simple.

The self-synchronizing feature of the elastic pipeline elimi-
nates the need for a global controller that dictates the stop-
and-go of individual stages and decouples the control of
pipeline stages from their functionality. Despite the higher
area overhead of registers, we hope RayFlex’s elastic pipeline
makes it convenient for researchers to maintain and modify
the datapath architecture.

D. Unified Datapath Pipeline

RayFlex’s pipeline has a throughput of 1 operation per cycle
and a fixed latency of 11 cycles. Figure 4c shows the mapping
from BVH operation steps (annotated with circled numbers
from Figures 4a and 4b) to pipeline stages. The logic of each
stage is encapsulated in an instance of the RayFlex Skid Buffer
module. For blank stages (e.g., stages 5 to 9 of the Ray-Box
operation), the RayFlex Skid Buffer modules copy the input
to output. Below, we highlight several design choices.

• Steps that contain arithmetic operations that cannot be
parallelized are spread to consecutive stages (e.g., step 8
of the ray-triangle operation is mapped to three stages);

• Steps that can be parallelized map to the same stage (e.g.,
steps 7 and 8 of the ray-triangle operation share the same
stages);

• Steps that are sequential may be merged to one stage if
doing so does not worsen the critical path (e.g., merging
steps 3 and 4 of the ray-box operation to the same stage
does not lengthen the critical path of RayFlex).

As reflected from the allocation of hardware assets, RayFlex
implements a unified pipeline by sharing functional units at
each stage between ray-box and ray-triangle operations. We
will study an alternative design in the Case Study Section V-B,
where we reserve private FUs for each operation.

E. Shared RayFlex Data Structure

In pipelined datapaths, the data registered at each stage is
typically unique to that particular stage - at first sight, it is
unnecessary and wasteful to keep a data field that was only
used by the 1st stage in any subsequent stage’s register or vice
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(b) RayFlex’s pipeline consists of a chain of RayFlex Skid Buffer modules. The first
stage converts the input format to a wide Shared RayFlex Data Structure (SRFDS), and
the last stage converts the SRFDS to output format. All intermediate stages use the same
SRFDS.

Fig. 5: The pipeline architecture of RayFlex.

versa, reserve a data field that will not be produced until the
last stage in any earlier stage’s register.

However, we argue that manually specifying unique data
structures for individual stages at the high level is a cum-
bersome process and undermines the extensibility and ease
of maintenance of a research-oriented datapath like RayFlex.
Instead, we define a very wide data structure containing all
data fields that need to be registered at any stage of the entire
pipeline. We instantiate pipeline registers (skid buffers) of this
same data structure everywhere through the pipeline (except
at the first and last stage, where the IO specification has to

be met). We call this data structure the “Shared RayFlex Data
Structure” of the pipeline.

Figure 5b illustrates the Shared RayFlex Data Structure
running through a pipeline: except at the first and last stage
where RayFlex performs the conversion between the internal
Shared RayFlex Data Structure and the external IO data layout,
the same data structure is used at all stages. The parameter-
ized RayFlex Skid Buffer module introduced in Section III-C
simplifies the creation of such a pipeline.

At the pre-synthesis RTL, it is legal for any stage to read
any Shared RayFlex Data Structure field in its input and write
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to any Shared RayFlex Data Structure field in its output.
However, a sane implementation of the stage logic refrains
from reading and writing fields irrelevant to that stage; in
return, unused wires and registers will eventually be identified
as dead nodes and eliminated during the synthesis process. The
result of eliminating dead nodes is manifested in the dashed
arrows.

When defining a stage logic at the Chisel level, we first
directly assign the input Shared RayFlex Data Structure to the
stage output register. After that, we may define custom logic
to overwrite any data field that is supposed to be produced by
this stage.

The benefit of this Shared RayFlex Data Structure is two-
fold. First, a single data structure is “defined once and used
everywhere,” thus simplifying the pipeline design and lower-
ing the labor overhead of adding new features or inserting
new stages. Second, it complements the convenience of the
elastic pipeline: the researcher can dedicate more time to the
implementation of stage logic and reduce the time spent on
managing the timing or interfaces of individual stages.

F. Floating Point Value Format and Rounding

RayFlex processes single-precision floating point numbers.
While the IO specification takes the standard FP32 format,
internally, floating point values are represented by a special
recorded format that introduces an extra bit to the exponent
field. This format simplifies the implementation of floating
point circuits [54]. We introduce a pair of extra stages at the
input and output to convert between the standard FP32 and
internal formats.

At each step of computation, the result of a full-precision
arithmetic operation gains extra bits in both the exponent
and significand. RayFlex performs rounding after every ad-
dition/multiplication. The rounding circuit is not trivial and
adds to the overall area/power.

While currently unexplored by this project, it is possible
to forgo rounding at some or all stages to trade for a better
area/frequency. We envision two potential challenges of this
choice:

First, the design of a unified pipeline might become com-
plicated when its functionality is extended to support new
operations. Take, for example, the baseline ray-box and ray-
triangle operations. At pipeline stage 6, the ray-box data
has undergone one round of addition and one round of
multiplication, whereas the ray-triangle data has undergone
three additions and two multiplications. Their data will have
different precision levels if no rounding was performed; if
somehow we want to perform multiplication on the ray-box
data at stage 7, then we need to align the precision of both
data before sending them to the same functional unit. Although
this is programmatically possible in Chisel [55], doing so
complicates the code structure.

Second, the final result produced by the hardware can
deviate from the “golden” result produced by a software
implementation due to the unusual rounding approach and,
as a result, complicate verification.

G. Summary

We have presented the functionality and design of RayFlex.
We introduced the IO specification and its connection to
the RDNA3 intersection test instruction. We described the
data flow of ray-box and ray-triangle intersection tests. We
introduced the RayFlex Skid Buffer, the Shared RayFlex Data
Structure, and the floating point formats of RayFlex.

We reiterate the two key design concepts of RayFlex.
(1) The Shared RayFlex Data Structure leverages the logic
synthesizers’ dead node elimination feature. It allows the RTL
designer to define-once and use-everywhere a single data
structure for passing intermediate data through the pipeline.
This makes RayFlex extensible. (2) The RayFlex Skid Buffer
module, parameterized by two data types each representing its
input and output data bundle, constitutes the entire pipeline. By
encapsulating arbitrary logic blocks inside this same module
class (notwithstanding the possibly different class parameters),
the RTL designer can easily manage all pipeline stages of
RayFlex programmatically.

IV. VALIDATION

A. Functional Correctness

RayFlex is meant to be a realistic representation of the
hardware RT unit datapath found in commercial hardware, it is
therefore necessary to guarantee the functional correctness of
RayFlex. To this end, we define twenty test cases to verify the
functional correctness of RayFlex against a golden software
implementation that serves as our ground truth.

Nine test cases target the ray-box intersection. We note
that for cases where the ray is coplanar with one of the box
surfaces, our hardware implementation and the gold reference
treat them as misses. The reason is that at the numerical level
if a component of a ray’s direction vector is zero, positive or
negative infinity may be used to represent the inverse of that
value. When an FP functional unit multiplies infinity by zero
(as in the case the ray is coplanar with a surface), the result
is NaN, which returns false for all <,≤,=,≥, > operations
with any other number.

Test cases for ray-box intersection: (1) Ray originating
from within the box (hit), (2) ray from outside the box and
pointing away (miss), (3) ray from a surface of the box and
pointing away (miss), (4) ray from a corner of the box and
pointing away (miss), (5) ray from a corner of the box and
pointing along an edge (miss), (6) ray from outside, pointing
towards the box (hit), (7) ray hits two boxes in a row, (8) ray
hits three boxes in a row and misses a fourth box off its path,
(9) ray from outside the box, overlapping with an edge of the
box (miss).

Eleven test cases target the ray-triangle intersection. Our
implementation and gold reference adopt backface culling,
which means the ray has to intersect the triangle on the “front”
side to register a hit, i.e., a hit implies −−→rdir · (

−−→
AB×

−→
AC) > 0.

Coplanar rays and triangles always miss. A non-coplanar ray
intersecting the triangle at the edge or vertex is considered to
be hitting the triangle.
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Test cases for ray-triangle intersection: (1) ray hits the
back of triangle (miss), (2) ray hits the front of triangle, (3)
ray hits an edge of triangle from the front side (hit), (4) ray
hits a triangle vertex from the front side (hit), (5) ray misses
the triangle, (6) ray is parallel to the normal vector of the
triangle but has no intersection (miss), (7) ray hits a far-away
triangle, (8) ray hits the front of triangle at an oblique angle,
(9) coplanar ray hits the edge of triangle (miss), (10) ray
(aligned with a different axis compared to case #2) hits the
front of triangle, (11) coplanar ray originating from within the
triangle hits edge of triangle (miss).

B. RayFlex Performance Relative to Hardware and Simulation

Functional correctness alone does not mean RayFlex is a
realistic representation of what real hardware does in com-
mercial products; highly correlated performance metrics are a
more convincing proof. We have nonetheless refrained from
performing a quantitative performance validation of RayFlex
for the two reasons described in this section.

First, we could not find any public report explicitly disclos-
ing the architecture of the hardware RT unit datapath, it would
therefore be misleading to claim RayFlex as any equivalent
representation or substitute of its counterpart in commercial
products. An AMD patent [43] inspired our work on RayFlex;
while this patent specifies how the BVH tree is traversed and
how ray and node data from active threads in a wave (also
known as a warp, which is typically a collection of 32 or 64
threads) are serialized into individual “transactions” tested for
intersection in a MIMD (multiple instruction multiple data)
fashion, the patent does not claim exactly how intersection
tests are performed for each transaction. It specifically declares
that the tests could be performed by various kinds of proces-
sors, e.g., general purpose processors, digital signal processors,
ASICs, FPGAs, etc., and/or a state machine. RayFlex should
be considered one manifestation of the processor for the
intersection tests.

Second, it is challenging to measure the throughput and
initiation interval of the hardware RT unit datapath in real
hardware, not only because it is not easy to program the RT
unit at the lowest level directly but also because of the opaque
implementation of vendor-specific ray tracing pipelines and
data structures. For example, the BVH structure is not publicly
documented and we have reason to believe they are more com-
plex than what is shown in Figure 1 to support more complex
features like motion-blur [56] and micro-meshes [57].

However, we can still perform a quick check to compare the
throughput of RayFlex with real RT units. The NVIDIA Turing
GPU is the first commercial product to include a hardware RT
unit and it can yield 100 tera-ops of compute per second for
ray-tracing [11]. To calculate how many operations each RT
unit can perform every cycle, we look at the Quadro RTX
6000 card and find it contains 72 RT units and runs at a
clock speed of 1455 MHz. This means every unit can perform
100e12/72/1455e6 ≈ 955 operations per cycle. Figure 4c
indicates that the RayFlex pipeline can perform a maximum
of 125 operations per cycle (we optimistically assume all

functional units are active and treat each multiplier, adder,
and comparator as contributing one operation per cycle, and
we treat each QuadSort unit as containing five comparators; we
do not consider the computation done in the format converters
of the first and last stage). This result indicates that each of
the 72 RT units in the Quadro RTX 6000 card likely contains
at least 955/125 ≈ 7.6 independent processors equivalent in
computing power to a RayFlex datapath. Given these high-
level numbers, a designer can leverage RayFlex to model a
full RT unit with equivalent throughput through a combination
of clocking the unit at a higher rate and instantiating several
parallel RayFlex pipelines. When implementing a full RT unit
the number of parallel datapaths is a tunable design decision,
as indicated in AMD’s patented RT unit design [43].

RayFlex is complementary to Vulkan-Sim [19], the high-
level simulator for ray tracing workloads. Vulkan-Sim provides
an open implementation of the Vulkan ray tracing pipeline
(commonly kept in obscurity by GPU manufacturers) and
defines a performance model of the RT unit. The whole
RT unit includes the fixed-function datapath for intersection
tests and the warp management and memory scheduling logic
necessary for the recursive traversal of the BVH tree. Despite
providing an extensive model, Vulkan-Sim treats the intersec-
tion test datapath as an opaque functional unit whose latency
and throughput values can be arbitrarily defined. In contrast,
RayFlex zooms in on the implementation details of the data-
path (module highlighted in Fig 2). Researchers interested in
studying the ray tracer datapath can use RayFlex as the testing
ground to determine how much hardware is required to realize
certain functionalities and the latencies/bandwidths.

The original Vulkan-Sim paper [19] models the functional
unit for intersection tests as described by Liu et al. [12] which
assumed a 2-cycle latency. Vulkan-Sim instantiates sufficient
instances of the unit to avoid the need for adding another
queue, so their RT functional unit pool’s initiation interval is
likely no worse than one ray per cycle. We conclude that the
configurations used by Vulkan-Sim are more optimistic than
those indicated by RayFlex.

V. CASE STUDIES

We present two case studies using RayFlex to extend the
datapath for new operations and examine an alternative disjoint
pipelines architecture.

A. Adding New Operations

There have been many reports of people successfully us-
ing the hardware RT unit to accelerate non-graphics work-
loads [26]–[35], it is therefore interesting to consider extending
the functionality of the hardware RT unit so that it can
accelerate such workloads more efficiently. One of the most
common types of program that the hardware RT unit can
accelerate is the hierarchical search: the searched dataset is
typically represented as a collection of spheres in the 3-
dimensional space and hierarchically grouped into a BVH tree,
and the query point is expressed as a ray in this space with
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a tiny extent. A search hit is indicated by the intersection of
the query ray with any sphere.

To improve the utility of the hardware RT unit in such
non-graphics workloads, Barnes et al. [14] propose extending
the RT unit datapath to calculate the Euclidean distance
(Figure 6a), cosine distance (aka. angular distance, Figure 6b),
and key comparison in arbitrary dimensional space. They
note the high overlap of functional units involved in these
operations with the existing ray-box/ray-triangle intersection
tests: just a few more adders, multipliers, and accumulators
are necessary to support the new operations.

In this case study, we evaluate such a feature-enhanced
pipeline by adding the necessary functional units for both
the Euclidean and cosine distance calculation and evaluate the
power and area overhead in Section VII-A. The mapping of
the data flow graph of new operations to the pipeline stages
is shown in Figure 6c.

The IO specification of the extended pipeline builds
on the IO specification of the original RayFlex. Without
touching the fields for the ray-box/ray-triangle operations, we
add the following input fields: two sixteen-element vectors
of FP32 values euclidean_a and euclidean_b, one
sixteen-element bitmask euclidean_mask, one boolean
value reset_accumulator; we add the following output
fields: an FP32 value euclidean_accumulator,
a boolean value euclidean_reset, an FP32
value angular_dot_product, an FP 32 value
angular_norm, and a boolean value angular_reset.

Among the inputs, euclidean_a and b are each 16 FP32
values representing the Euclidean coordinates of points in the
sixteen-dimensional space, but RayFlex can process points
of arbitrarily high dimension by digesting their values over
multiple beats: the boolean reset_accumulator should
be set on the last beat of a pair of very-high dimension
vectors. Finally, the euclidean_mask is a bit mask that
can invalidate any dimension of euclidean_a and b.

Among the outputs, euclidean_accumulator is an
FP32 value for the squared value of the Euclidean distance
between the two input vectors. angular_dot_product
and angular_norm are the two value (FP32) calculated
for accelerating cosine distances. The two boolean signals
euclidean_reset and angular_reset correspond to
the input reset_accumulator signal from eleven cycles
ago, which indicates that the current beat of the output is the
last beat of a pair of very-high dimension vectors.

We note that reset_accumulator is the only syn-
chronous signal that can clear the accumulator registers for
Euclidean or cosine distance operations. Consequently, a pair
of very long vectors that take multiple cycles to transmit
to the RayFlex for Euclidean or cosine distance calculation
can be interspersed by any amount of ray-box or ray-triangle
operations so long as the reset_accumulator signal is
not set until the last beat of the vector data. Likewise, multi-
cycle Euclidean and multi-cycle cosine jobs can intersperse
each other because they use separate accumulators.

Ha et al. [13] likewise propose adding point-to-point dis-
tance calculation to the RT unit’s functionality and note their
minimal changes to the existing datapath.

B. Disjoint Pipelines

The implementation details of the hardware RT unit data-
path in commercial products are anything but public, so any
proposal to extend the datapath has to make assumptions on
the baseline architecture. This paper follows the design choice
of RayCore [58] and HSU [14], which use a unified pipeline
for both BVH operations to improve functional unit reuse. In
contrast, TTA [13] assumes disjoint (i.e., separate) pipelines,
so each operation mode has its own pool of functional units.
We therefore use RayFlex to evaluate an alternative design
where ray-box and ray-triangle data still enter the same
pipeline, but the two operations use private FUs at each
stage. This means the datapath needs to provision more FUs.
In addition, we investigate the joint effects of adding new
operations to a disjoint-pipeline design. We present the results
in Section VII-B.

VI. METHODOLOGY

We implement RayFlex with Chisel (version 5.0.0) and
develop test benches using the chiseltest library [59]. The RTL
design is verified at the behavioral level with special cases and
hundreds of thousands of random test cases, covering all ray-
box, ray-triangle, Euclidean, and cosine operations described
in Sections III and V.

RayFlex sources floating point functional units from the
Berkeley Hardfloat library [54], [60].

We use a 15nm process design kit [61] to synthesize the
design in the Cadence Genus Synthesis tool (ver. 21.11).
Unless otherwise specified, the design synthesis is performed
with a clock of 1GHz. The area and power information are
extracted from Genus reports. We use VCD-format stimulus
files each collected from a real testbench of 100 random test
cases to calculate power.

This paper explores a design space of three dimensions:

1) Various target clock frequencies (from 500MHz to
1500MHz);

2) A “baseline” pipeline that supports only ray-box and
ray-triangle operations, and an “extended” pipeline that
additionally supports Euclidean and cosine distance cal-
culation [14];

3) A “unified” pipeline in which functional units (FUs) are
shared among operations in each stage, and a “disjoint”
pipelines design in which each operation uses its own
FUs (however, all operations enter the same pipeline).

VII. EVALUATION

This section examines the overhead of incorporating new
functionality into the datapath in both the unified pipeline and
the disjoint pipelines configuration.
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Fig. 6: The dataflow and pipeline stages of two new operations.

Fig. 7: Circuit area versus (1) various target clock frequencies, (2) whether or not the pipeline supports new operations
(“baseline” vs “extended”), and (3) whether or not functional units are shared at each stage (“unified” vs “disjoint”).

A. Area

Figure 7 shows the circuit area when synthesized at various
clock frequencies. Most notably, the circuit area does not
show much sensitivity to the target clock frequency in our
evaluated range. The baseline-unified design has the lowest
area; making it “disjoint” adds about 13% overhead, extending
it with support for Euclidean and cosine distance calculations
adds about 36% overhead; finally, making it both “disjoint”
and “extended” adds about 92% overhead, or 70% overhead
compared with the baseline-disjoint design.

The circuit area is decomposed into four categories: se-
quential, inverter, buffer, and logic. The sequential and logic
components dominate the total area in all cases, so, we focus
on these two components.

We first examine the consequence of moving from the
unified pipeline design to disjoint pipelines, with all other vari-
ables fixed. The “sequential” area stays almost constant, but
the “logic” area increases by about 18% and 74% for “base-
line” and “extended”, respectively. This increase in “logic”

area is primarily due to the provisioning of more private FUs.

We then study the effects of adding new functionalities (go-
ing from “baseline” to “extended”). This results in an increase
in the “sequential” and “logic” areas. (1) The fluctuations in
the “logic” area show sensitivity to the FU sharing strategy:
the “logic” area grows by just around 17% in the shared
pipeline but grows by 72% in the disjoint pipelines. This
unsurprising observation reflects the compounding benefit of
introducing new operations to the unified datapath. The more
operations the shared pipeline can support, the more area-
efficient it is. (2) The “sequential” area surprisingly grows by
about 64% regardless of the functional unit-sharing strategy.
Our explanation for this consistently high overhead is that
we designed RayFlex to use disjoint pipeline registers for
each operation regardless of the FU-sharing strategy. As a
result (despite the dead node elimination performed during
synthesis), at each stage during any active cycle, only a portion
of stage registers contain valid data for the active operation,
and other registers hold invalid data.
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Fig. 8: Power consumption when executing different opera-
tions at full throughput.

We have deliberately chosen to store intermediate data in
disjoint pipeline registers in favor of a clean and simple archi-
tecture, resulting in a high overhead of the “sequential” area
when new operations are added. Alternatively, it is possible to
share pipeline registers among operations. This can be done by
using the .asTypeOf method on the Shared RayFlex Data
Structure (described in Section III-E) to cast it into the correct
data layout for distinct operation modes (similar to accessing a
union in C/C++). Additionally, this alternative design unlocks
an interesting opportunity for optimization: Since “dead” bits
of the Shared RayFlex Data Structure are eliminated during
synthesis, the layout pattern of individual data structures for
each operation should be optimally aligned to maximize the
amount of dead node elimination. The goal is to map fields
with the same lifetime to the same position in the Shared
RayFlex Data Structure. On the other hand, the worst case
occurs when every bit of the Shared RayFlex Data Structure
remains live in all stages due to any operation; in this case,
dead node elimination cannot eliminate any bit of the Shared
RayFlex Data Structure.

B. Power Consumption

Figure 8 shows the total power consumption of RayFlex
when processing data for each operating mode at full through-
put. The power numbers are measured for RayFlex synthesized
with a target clock frequency of 1000MHz. In all cases, the
power is between 60mW and 85mW.

We first examine the effect of adding new operations (Eu-
clidean and cosine distance) to the unified pipeline. Compared
with the baseline, the extended datapath increases the power
consumption of the ray-box and ray-triangle intersection tests
by 18% and 20%, respectively. This is the power overhead
of the additional pipeline stage registers introduced to support
new operations.

We then examine the effect of using private FUs for each
operation, i.e., we take the baseline “unified” pipeline and
make it “disjoint”. For ray-box and ray-triangle operations,
the change in power is within +/-2.5% which we consider
minuscule. For Euclidean and cosine operations, however, the
power consumption reduces by 9% and 3% respectively.

Fig. 9: Power consumption of ray-triangle operations when
RayFlex is synthesized at various target clock frequencies.

Why do ray-box and ray-triangle operations see minimal
change in power consumption despite the introduction of
additional FUs? This is because RayFlex gates the input port
of each FU (mostly adders and multipliers) with a multiplexer
which always feeds zero to the FU unless the operation needs
the output of this FU. This minimizes the dynamic power
consumption of RayFlex. With the technology library [61] we
use, the amount of static power is an order of magnitude
smaller than the amount of dynamic power, therefore, the
power overhead of adding more FUs is minimal.

What is more surprising is the 9% decrease in power
consumption by Euclidean operations in the “disjoint” design.
A stage-by-stage breakdown of power consumption shows that
all power savings come from stage 3 where RayFlex uses
multipliers to calculate the element-wise product of vectors;
the fluctuation of power in all other stages remains minimal.
After careful analysis and hypothesis testing, we conclude that
this decrease of power in stage 3 is the result of the logic
synthesizer specializing some of the multipliers (y=a*b) into
squarers (y=a*a) which have lower area and power cost [62].
The Euclidean operation performs 16 squares at this stage,
and the cosine operation performs 8 squares and 8 general
multiplications; the disjoint pipelines design therefore gives
the synthesizer the opportunity to specialize and simplify some
multipliers into squarers. Indeed, once we intentionally perturb
the logic in stage 3 of the disjoint pipelines design such that
none of the multipliers receive both inputs from the same
wires, this decrease in power consumption disappears, and the
power of Euclidean operations increases by 1.9% compared
with the baseline.

C. Power Sensitivity to Target Clock Frequency

Figure 9 focuses on the power consumption of RayFlex
running ray-triangle operations when the circuit is synthesized
at various target clock frequencies. The power consumption
follows a nearly linear trend in the evaluated frequency range.
The power difference between “unified” and “disjoint” remains
small (within the range of +/-4%) across the frequency range,
and the power difference between “baseline” and “extended”
varies between 14% and 22%.
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VIII. RELATED WORK

Simulators for RT. Vulkan-Sim [19] studies the functional
and timing behavior of the hardware RT unit in an execution-
driven approach by interfacing with the Vulkan library. It fo-
cuses on the warp management and memory accesses involved
in hardware ray tracing but does not model the internals of
the RT unit datapath. Zatel [63] reduces the simulation time
of Vulkan-Sim by means of sampling.

RT-accelerated applications. Beyond graphics workloads,
a number of works have leveraged the RT unit for accelera-
tion. RTNN [26], RT-kNNS Unbound [34], Arkade [33], RT-
DBSCAN [35], and Fast Radius Search [28] reformulate the
nearest neighbor search problem to match the ray tracing pro-
gramming interface. RTIndeX [27] reformulates the indexing
of the database with the ray tracing model. Reference [29]
accelerates force-directed graph drawing. Reference [30] ac-
celerates the calculation of mesh point locations in unstruc-
tured volume rendering. Reference [31] uses hardware RT
units to accelerate a particle tracking program. Reference [32]
reduces the problem of dependence analysis and coherence of
implicitly parallel programming systems to ray tracing.

Extended hardware RT units. HSU [14] and TTA [13]
propose extending the hardware RT unit datapath with minimal
changes in exchange for better programmability and applica-
bility to a broader range of workloads (e.g., tree traversal).
TTA+ [13] decomposes the fixed function RT unit datapath
into a pool of individual programmable operation units.

IX. CONCLUSION

A wide variety of workloads can be accelerated by the
hardware RT unit in general-purpose GPUs. Recently, we
have seen several proposals extending the hardware RT unit
for better programmability and utility to a broader range of
workloads. We feel the need to release an open-source RTL
design of the RT unit datapath to shed light on the internals of
this relatively novel module and facilitate research in this area.
Hence, we introduce RayFlex, a first-of-its-kind open-source
RTL implementation of the RT unit datapath. We explain that
the architecture of RayFlex is designed to be extensible and
friendly to researchers interested in studying the datapath.
We present two case studies where we extend the datapath
with support for calculating Euclidean and cosine distance and
compare it against an alternative “disjoint pipelines” design.
As we detail our design choices and evaluate our case studies,
we shed light on some interesting alternative design choices
that can be explored by future work, for example, floating
point rounding strategies and shared pipeline stage registers.

AVAILABILITY

The source code of RayFlex is hosted on GitHub:
https://github.com/purdue-aalp/rayflex.
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