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Abstract
The gap between processor and memory performance has 
become a focal point for microprocessor research and 
development over the past three decades. Modern archi-
tectures use two orthogonal approaches to help alleviate 
this issue: (1) Almost every microprocessor includes some 
form of on-chip storage, usually in the form of caches, to 
decrease memory latency and make more effective use of 
limited memory bandwidth. (2) Massively multithreaded 
architectures, such as graphics processing units (GPUs), 
attempt to hide the high latency to memory by rapidly 
switching between many threads directly in hardware. This 
paper explores the intersection of these two techniques. 
We study the effect of accelerating highly parallel work-
loads with significant locality on a massively multithreaded 
GPU. We observe that the memory access stream seen by 
on-chip caches is the direct result of decisions made by 
the hardware thread scheduler. Our work proposes a hard-
ware scheduling technique that reacts to feedback from 
the memory system to create a more cache-friendly access 
stream. We evaluate our technique using simulations and 
show a significant performance improvement over previously 
proposed scheduling mechanisms. We demonstrate the 
effectiveness of scheduling as a cache management tech-
nique by comparing cache hit rate using our scheduler and 
an LRU replacement policy against other scheduling tech-
niques using an optimal cache replacement policy.

1. INTRODUCTION
Have you ever tried to do so many things that you could not 
get anything done? There is a classic psychological princi-
pal, known as unitary-resource theory, which states that the 
amount of attention humans can devote to concurrently 
 performed tasks is limited in capacity.16 Attempting to divide 
this attention among too many tasks at once can have a det-
rimental impact on your performance. We explore a similar 
issue in the context of highly multithreaded hardware and 
use human multitasking as an analogy to help explain our 
findings. Our paper studies architectures which are built to 
efficiently switch between tens of tasks on a cycle- by-cycle 
basis. Our paper asks the question: Even though massively 
multithreaded processors can switch between these tasks 
quickly, when should they?

Over the past 30 years, there has been a significant 
amount of research and development devoted to using on-
chip caches more effectively. At a hardware level, cache man-
agement has typically been optimized by improvements to 
the hierarchy,3 replacement/insertion policy,14 coherence 
protocol,19 or some combination of these. Previous work 
on hardware caching assumes that the access stream seen  
by the memory system is fixed. However, massively multi-
threaded systems introduce another dimension to the 
problem. Every clock cycle, a hardware thread scheduler 
must choose which of a core’s active threads issues next. 
This decision has a significant impact on the access stream 
seen by the first level caches. In a massively multithreaded 
system, there are often many threads ready to be scheduled 
on each cycle. This paper exploits this observation and uses 
the thread scheduler to explicitly manage the access stream 
seen by the memory system to maximize throughput.

The primary contribution of this work is a Cache‑
Conscious Wavefront Scheduling (CCWS) system that 
uses locality information from the memory system to 
shape future memory accesses through hardware thread 
scheduling. Like traditional attempts to optimize cache 
replacement and insertion policies, CCWS attempts to 
predict when cache lines will be reused. However, cache 
way-management policies’ decisions are made among a 
small set of blocks. A thread scheduler effectively chooses 
which blocks get inserted into the cache from a pool of 
potential memory accesses that can be much larger than 
the cache’s associativity. Similar to how cache replace-
ment policies effectively predict each line’s re-reference 
interval,14 our proposed scheduler attempts to change 
the re-reference interval to reduce the number of inter-
fering references between repeated accesses to high 
locality data. Like cache tiling techniques performed in 
software by the programmer or compiler25 that reduce the 
cache footprint of inner-loops by restructuring the code, 
CCWS reduces the aggregate cache footprint primarily by 
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dynamically throttling the number of threads sharing the 
cache in hardware.

The importance of fine-grained thread scheduling on 
cache management is a concern to any architecture where 
many hardware threads can share a cache. Some examples 
include Intel’s Knights Corner,11 Orcale’s SPARC T4,24 IBM’s 
Blue Gene/Q,9 and massively multithreaded graphics pro‑
cessing units (GPUs) such as those produced by AMD and 
NVIDIA. In this work, we study the effect of thread schedul-
ing on GPUs since they represent the most extreme exam-
ple of a many-thread architecture. However, our techniques 
could be extended and applied to any design where many 
threads share a cache.

1.1. The effect of increasing your capacity
One solution to increase multitasking capability is to simply 
increase the amount of information you can pay attention to 
at once. Increasing the size of the GPU’s cache is one option 
our full paper22 explores in more detail. However, no mat-
ter what size of cache is used, it will always have a limit and 
our work is focused on maximizing performance based on 
this limitation. Figure 1 highlights the potential benefit of 
increasing the attention capacity of a GPU. Figure 1 shows 
the speedup attained by increasing the level one data (L1D) 
cache size by 256× (from 32KB to 8MB) on the economically 
important server applications listed in Table 1. Our full 
paper22 describes these applications in more detail. All of 
these applications see a 3× or more per formance improve-
ment with a much larger L1 data cache, indicating there is 
significant locality and that these programs and they would 
benefit from caching more information.

Given that our workloads have significant locality, 
the next question is where does it come from? To under-
stand this, first we must explain the concept of a wavefront 
(or warp). A wavefront is a collection of threads whose 
instructions are executed in lock-step by a GPU. Each static 

assembly instruction is implicitly executed across multiple 
lanes when it is run. The number of threads in a wavefront is 
a value native to each machine. Our baseline hardware archi-
tecture has a wavefront size of 32. A consequence of this is 
that a single load/store instruction can access as many as 
32 different cache lines when executed. We study the local-
ity of our highly cache-sensitive benchmarks in Figure 2 
which presents the average number of hits and misses per 
thousand instructions (PKI) using an unbounded L1D cache. 
The figure separates hits into two classes. We classify local-
ity that occurs when data is initially referenced and re-refer-
enced from the same wavefront as intra‑wavefront locality. 
Locality resulting from data that is initially referenced by 
one wavefront and  re- referenced by another is classified as 
inter‑wavefront locality. Figure 2 illustrates that the majority 
of data reuse observed in our highly cache-sensitive bench-
marks comes from intra-wavefront locality. If we were to 
think about this result in the context of a human trying to 
multitask, it means that each of your tasks require a large 
amount of information that is not shared with other tasks.

1.2. Primary goals of CCWS
Based on the observation that tasks do not share much data, 
we design CCWS with the principal goal of capturing more 
intra-wavefront locality. To this end, CCWS acts as a dynamic 
thread throttling mechanism that prevents wavefronts from 
issuing memory instructions when their accesses are predicted 
to interfere with intra-wavefront locality already present in the 
cache. CCWS detects if threads require more exclusive access 
to cache through memory system feedback from a lost local-
ity detector ( G  in Figure 6 which gives a high-level view of our 
baseline architecture explained in more detail in Section 2). 
The lost locality detector observes when the L1D has been 
oversubscribed by storing the L1D’s replacement victim tags 
in wavefront private sections. It uses these tags to determine if 
misses in the L1D could have been avoided by giving the wave-
front that missed more exclusive cache access. The lost locality 
detector provides feedback akin to remembering that you were 
supposed to do a small errand but no longer remember what the 
errand was. You can use this information to reduce the num-
ber of tasks you are juggling at once because you realize you 
have exceeded the capacity of your attention. Interpreting this 
feedback is performed by CCWS’s locality scoring system (H ). 
The locality scoring system decides which wavefronts should 
be permitted to issue memory instructions, throttling those 

Figure 1. Performance using a round-robin scheduler at various L1D 
cache sizes for highly cache-sensitive workloads, normalized to a cache 
size of 32K. All caches are 8-way set-associative with 128B cache lines.
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Figure 2. Average hits and misses per thousand instructions (PKI) 
using an unbounded L1 data cache (with 128B lines) on highly cache-
sensitive benchmarks.

Table 1. GPU compute benchmarks (CUDA and OpenCL)

Highly cache sensitive

Name Abbreviation Name Abbreviation

BFS graph  
 traversal5

BFS Kmeans5 KMN

Memcached10 MEMC Garbage  
 collection2

GC
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that are predicted to cause interference. Changing the thread 
scheduler to improve cache effectiveness introduces a new 
challenge not encountered by traditional cache management 
techniques. The goal of the scoring system is to maximize 
throughput, not just cache hit rate. Typically, massively multi-
threaded architectures hide long latency operations by issuing 
instructions from more threads. The CCWS scoring system 
balances the trade-off between increasing latency tolerance 
and reducing the need for latency hiding. Increasing the num-
ber of actively interleaved threads improves latency tolerance, 
while interleaving less threads decreases the frequency of 
long latency events. This is like trying to find the right balance 
between not doing too many things at once while still manag-
ing to do more than one thing at a time.

1.3. The effect of intelligently managing  
your attention
Intelligently managing how your attention is allocated can 
increase your multitasking effectiveness. In the context of 
our problem, this is equivalent to improving the cache’s 
replacement policy. To contrast the effects of hardware 
thread scheduling and replacement policy, consider Figures 
3 and 4. They present the memory accesses created by two 
different thread schedulers in terms of cache lines touched. 
In this example, we assume each instruction generates four 
memory requests and we are using a fully associative, four-
entry cache with a least recently used (LRU) replacement pol-
icy. Figure 3 illustrates what happens when the scheduler 
attempts to fill empty cycles by executing another wavefront. 
In Figure 3, no wavefront will find its data in cache because 
the data will have been evicted by requests from other wave-
fronts before the wavefront is scheduled again. In fact, even 
if a Belady optimal replacement policy 4 were used, only 
4 hits in the cache are possible. The scheduler in Figure 4 
is aware of the data reuse present in each wavefront’s access 
stream and has rearranged the wavefront’s issue order to be 
more cache-friendly. The scheduler in Figure 4 chooses to 
schedule the memory accesses from wavefront 0 together, 

even if it means leaving the processor idle while the requests 
for wavefront 0 return. This results in 12 cache hits, captur-
ing every redundant access made by the wavefronts.

1.4. The effect of doing less all the time
Another simple way to decrease interference among tasks is 
to place a hard limit on the number of tasks performed at 
once. Our paper proposes a simple mechanism called Static 
Wavefront Limiting (SWL) that does something similar. SWL is 
implemented as a minor extension to the wavefront schedul-
ing logic where a cap is placed on the number of wavefronts  
that are actively scheduled when the program is launched. 
Figure 5 shows the effect that limiting the number of wavefronts 
actively scheduled on a core has on the cache performance and 
system throughput of our highly cache-sensitive applications.

Figure 5 shows that peak throughput occurs at a mul-
tithreading value less than maximum concurrency, but 
greater than the optimum for cache miss rate (which limits 
concurrency to a single wavefront). In SWL, the program-
mer must specify a limit on the number of wavefronts when 
launching the kernel. This technique is useful if the user 
knows or can easily compute the optimal number of wave-
fronts prior to launching the kernel.

Our full paper22 demonstrates that the optimal number of 
wavefronts is different for different benchmarks. Moreover, 
we find this number changes in each benchmark when its 
input data is changed. This dependence on benchmark and 
input data makes an adaptive CCWS system that adapts to 
locality in threads as they are run desirable.

2. GPU ARCHITECTURE
Our work studies modifications to the GPU-like accelerator 
architecture illustrated in Figure 6. The workloads we study 
are written in OpenCL or CUDA. Initially, an application 
begins execution on a host CPU which launches a kernel 
containing a large number of threads on the GPU. Our base-
line system uses GPGPU-Sim 3.x.1

Our work focuses on the decision made by the wavefront 
issue arbiter (WIA) ( A  in Figure 6). An in-order scoreboard 
( B ) and decode unit ( C ) control when each instruction in 
an instruction buffer (I-Buffer D ) is ready to issue. The WIA 
decides which of these ready instructions issues next.

Figure 3. Example access pattern (represented as cache lines 
accessed) resulting from a throughput-oriented round-robin 
scheduler. The letters (A,B,C, . . . ) represent cache lines accessed. 
Wi indicates which wavefront generated this set of accesses. For 
example, the first four accesses to cache lines A,B,C,D are generated 
by one instruction in wavefront 0.

Cache line 0 hitsA,B,C,D E,F,G,H I,J,K,L A,B,C,D E,F,G,H I,J,K,L

W0 W1 W2 W0 W1 W2

Figure 4. Example access pattern resulting from a hardware 
scheduler aware of its effect on the caching system. The red boxes 
highlight where scheduling improves locality by changing memory 
access order.
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Cache line 12 hits
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Figure 5. Average misses per thousand instructions (MPKI) and 
harmonic mean (HMEAN) performance improvement of highly 
cache-sensitive benchmarks with different levels of multithreading. 
Instructions per cycle (IPC) is normalized to 32 wavefronts.
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As mentioned previously, each memory instruction can 
generate more than one memory access. Modern GPUs 
attempt to reduce the number of memory accesses generated 
from each wavefront using an access coalescer ( E ) which 
groups the lane’s memory requests into cache line-sized 
chunks when there is spatial locality across the wavefront. 
Applications with highly regular access patterns may gen-
erate as few as one or two memory requests that service all 
32 lanes. Our baseline GPU includes a 32K L1 data cache ( F ) 
which receives memory requests from the coalescer.

3. CACHE-CONSCIOUS WAVEFRONT 
 SCHEDULING (CCWS)
The goal of CCWS is to dynamically determine the number 
of wavefronts allowed to access the memory system and 
which wavefronts those should be. Figure 7 presents a more 
detailed view of CCWS’s microarchitecture. At a high level, 
CCWS is a wavefront scheduler that reacts to access level 
feedback ( 1  in Figure 7) from the L1D cache and a victim 
tag array (VTA) at the memory stage.

CCWS’s scheduling decisions are made by the locality 
scoring system ( 6 ). The intuition behind why the scoring 
system works is illustrated in Figure 8. Each wavefront is 
given a score based on how much intra‑wavefront locality 
it has lost. These scores change over time. Wavefronts with 
the largest scores fall to the bottom of a small sorted stack 
(e.g., W2 at T1), pushing wavefronts with smaller scores above 
a cutoff (W3 at T1) which prevents them from accessing the 
L1D. In effect, the locality scoring system reduces the num-
ber of accesses between data re-references from the same 
wavefront by removing the accesses of other wavefronts.

3.1. Effect on baseline issue logic
Figure 7 shows the modifications to the baseline WIA ( 2 ) 
 and memory unit ( 3 ) required for CCWS. CCWS is imple-
mented as an extension to the system’s baseline wavefront 

Figure 6. Overview of our GPU-like baseline accelerator architecture. InstWi denotes the next instruction ready to issue for wavefront i. 
N is the maximum number of wavefront contexts stored on a core. I-Buffer: instruction buffer.
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lost-locality score, VTA: victim tag array, I-Buffer: instruction buffer.

prioritization logic ( 4 ). This prioritization could be done 
in a greedy, round-robin, or two-level manner. CCWS oper-
ates by preventing loads that are predicted to interfere with 
intra-wavefront locality from issuing through a Can Issue 
bit vector ( 5 ) output by the locality scoring system ( 6 ). 
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wavefronts with the smallest LLS from issuing load instruc-
tions. Wavefronts whose LLS rise above the cumulative LLS 
cutoff ( a  in Figure 8) in the sorted heap are prevented from 
issuing loads.

The LLS cutoff test block (14) takes in a bit vector from 
the instruction buffer, indicating what wavefronts are 
attempting to issue loads. It also takes in a sorted list of 
LLSs, performs a prefix sum, and clears the Can Issue bit for 
wavefronts attempting to issue loads whose LLS is above 
the cutoff. In our example from Figure 8, between T0 and T1, 
W2 has received a VTA hit and its score has been increased. 
W2’s higher score has pushed W3 above the cumulative LLS 
cutoff, clearing W3’s Can Issue bit if it attempts to issue a 
load instruction. From a microarchitecture perspective, 
LLSs are modified by the score update logic (15). The update 
logic block receives VTA hit signals (with a WID) from the 
LLD which triggers a change to that wavefront’s LLS. In 
Figure 8, between T1 and T2 both W2 and W0 have received 
VTA hits, pushing both W3 and W1 above the cutoff. Between 
T2 and T3, no VTA hits have occurred and the scores for W2 
and W0 have decreased enough to allow both W1 and W3 to 
issue loads again. This illustrates how the system naturally 
backs off thread throttling over time. Our paper explains the 
scoring system in more detail.

4. EVALUATION
We model CCWS in GPGPU-Sim1 (version 3.1.0). The simu-
lator is configured to model an NVIDIA Quadro FX5800, 
extended with L1 data caches and an L2 unified cache simi-
lar to NVIDIA Fermi. We also evaluate L1 data cache hit 
rate using the Belady-optimal replacement policy,4 which 
chooses the line which is re-referenced furthest in the future 
for eviction. Belady replacement is evaluated using a trace-
based cache simulator that takes GPGPU-Sim cache access 
traces as input. We ran our experiments on the highly cache-
sensitive applications listed in Table 1. The full version of 
our paper22 provides additional data on a collection of mod-
erately cache-sensitive and cache-insensitive workloads and 
gives more details on our experimental setup.

The data in Figures 9 and 10 is collected using GPGPU-
Sim for the following mechanisms:

LRR: Loose round-robin scheduling. Wavefronts are priori-
tized for scheduling in round-robin order. However, if a 
wavefront cannot issue during its turn, the next wavefront 
in round-robin order is given the chance to issue.

The intersection logic block ( 7 ) selects the highest priority 
ready wavefront that has issue permission.

3.2. Lost intra-wavefront locality detector (LLD)
To evaluate which wavefronts are losing intra-wavefront 
locality, we introduce the LLD unit ( 8 ) which uses a victim 
tag array (VTA) ( 9 ). The VTA is a highly modified variation of 
a victim cache.15 The entries of the VTA are subdivided among 
all the wavefront contexts supported on this core. This gives 
each wavefront its own small VTA (10). The VTA only stores 
cache tags and does not store line data. When a miss occurs 
and a line is reserved in the L1D cache, the wavefront ID 
(WID) of the wavefront reserving that line is written in addi-
tion to the tag (11). When that line is evicted from the cache, 
its tag information is written to that wavefront’s portion of 
the VTA. Whenever there is a miss in the L1D cache, the VTA 
is probed. If the tag is found in that wavefront’s portion of 
the VTA, the LLD sends a VTA hit signal to the locality scoring 
system (12). These signals inform the scoring system that a 
wavefront has missed on a cache line that may have been a hit 
if that wavefront had more exclusive access to the L1D cache.

3.3. Locality scoring system operation
Returning to the example in Figure 8, there are four wave-
fronts initially assigned to the compute unit. Time T0 cor-
responds to the time these wavefronts are initially assigned 
to this core. Each segment of the stacked bar represents a 
score given to each wavefront to quantify the amount of 
intra-wavefront locality it has lost (which is related to the 
amount of cache space it requires). We call these values lost‑
locality scores (LLS). At T0 we assign each wavefront a con-
stant base locality score. LLS values are stored in a max heap 
(13) inside the locality scoring system. A wavefront’s LLS 
can increase when the LLD sends a VTA hit signal for this 
wavefront. The scores each decrease by one point every cycle 
until they reach the base locality score. The locality scoring 
system gives wavefronts losing the most intra-wavefront 
locality more exclusive L1D cache access by preventing the 

Figure 8. Locality scoring system operation example. LLS: lost-
locality score.
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4.2. Detailed breakdown of wavefront locality
Figure 11 breaks down L1D accesses into misses, inter-
wavefront hits, and intra-wavefront hits for our evaluated 
the schedulers. In addition, it quantifies the portion of 
intra-wavefront hits that are a result of intra-thread local-
ity. It illustrates that the decrease in cache misses using 
CCWS and Best-SWL comes chiefly from an increase in 
intra-wavefront hits. Moreover, the bulk of these hits are 
a result of intra-thread locality. The exception to this rule 
is Breadth First Search (BFS) graph traversal, where only 
30% of intra-wavefront hits come from inter-thread local-
ity and we see a 23% increase in inter-wavefront hits. An 
inspection of the code reveals that inter-thread sharing 
(which manifests itself as both intra-wavefront and inter-
wavefront locality) occurs when nodes in the applica-
tion’s input graph share neighbors. Limiting the number 
of wavefronts actively scheduled increases the hit rate of 
these accesses because it limits the amount of nonshared 
data in the cache, increasing the chance that these shared 
accesses hit.

5. RELATED WORK
Other papers have observed that throttling the number of 
threads running in a system can improve performance. 
Bakhoda et al.1 observe that launching less workgroups 
(or CTAs) on a GPU core without an L1 cache improved per-
formance by alleviating contention for the memory system. 
Guz et al.8 introduce an analytical model to quantify the 
 performance valley that exists when the number of threads 
sharing a cache is increased. They show that increasing 
the thread count increases performance until the aggre-
gate working set no longer fits in cache. Increasing threads 
beyond this point degrades performance until enough 
threads are present to hide the system’s memory latency. 
In effect, CCWS dynamically detects when a workload has 
entered the machine’s performance valley and scales down the 
number of threads sharing the cache to compensate. Cheng 
et al.6 introduce a thread throttling scheme to reduce 
 memory latency in multithreaded CPU systems. They pro-
pose an analytical model and memory task limit throttling 
mechanism to limit thread interference in the memory stage.

There is a body of work attempting to increase cache 

GTO: A greedy-then-oldest scheduler. GTO runs a single 
wavefront until it stalls then picks the oldest ready 
wavefront.

2LVL-GTO: A two-level scheduler similar to that described 
by Narasiman et al.20 Their scheme subdivides wavefronts 
waiting to be scheduled on a core into fetch groups (FG) 
and executes from only one fetch group until all wave-
fronts in that group are stalled. Intra- and inter-FG arbi-
tration is done in a GTO manner.

Best-SWL: An oracle solution that knows the optimal num-
ber of wavefronts to schedule concurrently before the ker-
nel begins to execute.

CCWS: Cache-Conscious Wavefront Scheduling with GTO 
wavefront prioritization logic.

The data for Belady-optimal replacement misses per thou‑
sand instructions (MPKI) presented in Figure 10 is generated 
with our trace-based cache simulator:

(scheduler)-BEL: Miss rate reported by our cache simulator 
when using the Belady-optimal replacement policy. The 
access streams generated by running GPGPU-Sim with 
the specified (scheduler) are used.

4.1. Performance
Figure 9 shows that CCWS achieves a harmonic mean 63% 
performance improvement over a simple greedy wavefront 
scheduler and 72% over the 2LVL-GTO scheduler on highly 
cache-sensitive benchmarks. The GTO scheduler performs 
well because prioritizing older wavefronts allows them to 
capture intra-wavefront locality by giving them more exclu-
sive access to the L1 data cache.

CCWS and SWL provide further benefit over the GTO 
scheduler because these programs have a number of unco-
alesced loads, touching many cache lines in relatively few 
memory instructions. Therefore, even restricting to just 
the oldest wavefronts still touches too much data to be con-
tained by the L1D.

Figure 10 shows the average MPKI for all of our highly 
cache-sensitive applications using an LRU replacement 
policy and an oracle Belady-optimal replacement policy 
(BEL). It illustrates that the reason for the performance 
advantage provided by the wavefront limiting schemes is a 
sharp decline in the number of L1D misses. Furthermore, it 
demonstrates that a poor choice of scheduler can reduce the 
effectiveness of any replacement policy.

Figure 10. MPKI of various schedulers and replacement policies for 
the highly cache-sensitive benchmarks.
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hit rate by improving the replacement policy (e.g., Jaleel et 
al.14 among many others). All these attempt to exploit dif-
ferent heuristics of program behavior to predict a block’s 
 re-reference interval and mirror the Belady-optimal4 pol-
icy as closely as possible. While CCWS also attempts to 
maximize cache efficiency, it does so by shortening the 
re-reference interval rather than by predicting it. CCWS 
has to balance the shortening of the re-reference inter-
val by limiting the number of eligible wavefronts while 
still maintaining sufficient multithreading to cover 
most of the memory and operation latencies. Other 
schemes attempt to manage interference among het-
erogeneous workloads,12, 21 but each thread in our work-
load has roughly similar characteristics. Recent work 
has explored the use of prefetching on GPUs.18 However, 
prefetching cannot improve performance when an appli-
cation is bandwidth limited whereas CCWS can help in 
such cases by reducing off-chip traffic. Concurrent to our 
work, Jaleel et al.13 propose the CRUISE scheme which 
uses LLC utility information to make high-level schedul-
ing decisions in multiprogrammed chip multiprocessors 
(CMPs). Our work focuses on the first level cache in a 
massively multithreaded environment and is applied at a 
much finer grain. Scheduling decisions made by CRUISE 
tie programs to cores, where CCWS makes issue-level 
decisions on which bundle of threads should enter the 
execution pipeline next.

Others have also studied issue-level scheduling algo-
rithms on GPUs. Lakshminarayana and Kim17 explore 
numerous warp scheduling policies in the context of a GPU 
without hardware-managed caches and show that, for appli-
cations that execute symmetric (balanced) dynamic instruc-
tion counts per warp, a fairness-based warp and DRAM 
access scheduling policy improves performance. Several works 
have explored the effect of two-level scheduling on GPUs.7, 20 
A two-level scheduler exploits inter-wavefront locality while 
ensuring wavefronts reach long latency operations at dif-
ferent times by scheduling groups of wavefronts together. 
However, Figure 2 demonstrates that the highly cache -
-sensitive benchmarks we studied will benefit more from 
exploiting intra-wavefront locality than inter-wavefront 
locality. Previous schedulers do not take into account the 
effect issuing more wavefronts has on the intra-wavefront 
locality of those wavefronts that were previously scheduled. 
In the face of L1D thrashing, the round-robin nature of their 
techniques will cause the destruction of older wavefront’s 
intra-wavefront locality. Our follow-up work on Divergence‑
Aware Warp Scheduling (DAWS)23 builds upon the insights in 
CCWS. DAWS attempts to proactively predict the cache foot-
print of each warp. It does this by considering the impact of 
memory and control divergence while taking into account 
the loop structure of computation kernels. In that work, we 
demonstrate through an example that DAWS enables non-
optimized GPU code, where locality is not managed by the 
programmer, to perform within 4% of optimized code.

6. CONCLUSION
Current GPU architectures are excellent at accelerating 
applications with copious parallelism, whose memory 

access is regular and statically predicable. Modern CPUs 
feature deep cache hierarchies and a relatively large 
amount of cache available per-thread, making them bet-
ter suited for workloads with irregular locality. However, 
CPU’s limited thread count and available memory band-
width prohibit their ability to exploit pervasive parallelism. 
Each design has problems running the important class of 
highly parallel irregular applications where threads access 
data from disparate regions of memory. The question of 
how future architectures can accelerate these applications 
is important.

Many highly parallel, irregular applications are commer-
cially important and found in modern data centers. The 
highly cache-sensitive benchmarks in our paper include 
several such workloads, including Memcached,10 a parallel 
Garbage Collector,2 and a breadth-first search graph tra-
versal5 program. We demonstrate that these applications 
are highly sensitive to L1 cache capacity when naive thread 
schedulers are used. Furthermore, we show that a relatively 
small L1 cache can capture their locality and improve per-
formance, provided an intelligent issue-level thread sched-
uling scheme is used.

Although our work focuses primarily on performance, 
the impact of CCWS and consequently fine-grained thread 
scheduling on power consumption is important. As mod-
ern chips become progressively more power limited, pre-
serving locality in the cache can be an effective way to 
reduce power consumption. CCWS can be tuned to reduce 
the number of data cache misses even further, at the 
expense of some performance.

Intellectually, we feel this work offers a new perspec-
tive on fine-grained memory system management. We 
believe that integrating the cache system with the issue-
level thread scheduler to change the access stream 
seen by the memory system opens up a new direction of 
research in cache management. CCWS demonstrates that 
a relatively simple, dynamically adaptive, feedback-driven 
scheduling system can vastly improve the performance of 
an important class of applications.
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