
DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 91

DOI:10.1145/2682583

Learning Your Limit: Managing
Massively Multithreaded Caches
Through Scheduling
By Timothy G. Rogers, Mike O’Connor, and Tor M. Aamodt

Abstract
The gap between processor and memory performance has
become a focal point for microprocessor research and
development over the past three decades. Modern archi-
tectures use two orthogonal approaches to help alleviate
this issue: (1) Almost every microprocessor includes some
form of on-chip storage, usually in the form of caches, to
decrease memory latency and make more effective use of
limited memory bandwidth. (2) Massively multithreaded
architectures, such as graphics processing units (GPUs),
attempt to hide the high latency to memory by rapidly
switching between many threads directly in hardware. This
paper explores the intersection of these two techniques.
We study the effect of accelerating highly parallel work-
loads with significant locality on a massively multithreaded
GPU. We observe that the memory access stream seen by
on-chip caches is the direct result of decisions made by
the hardware thread scheduler. Our work proposes a hard-
ware scheduling technique that reacts to feedback from
the memory system to create a more cache-friendly access
stream. We evaluate our technique using simulations and
show a significant performance improvement over previously
proposed scheduling mechanisms. We demonstrate the
effectiveness of scheduling as a cache management tech-
nique by comparing cache hit rate using our scheduler and
an LRU replacement policy against other scheduling tech-
niques using an optimal cache replacement policy.

1. INTRODUCTION
Have you ever tried to do so many things that you could not
get anything done? There is a classic psychological princi-
pal, known as unitary-resource theory, which states that the
amount of attention humans can devote to concurrently
 performed tasks is limited in capacity.16 Attempting to divide
this attention among too many tasks at once can have a det-
rimental impact on your performance. We explore a similar
issue in the context of highly multithreaded hardware and
use human multitasking as an analogy to help explain our
findings. Our paper studies architectures which are built to
efficiently switch between tens of tasks on a cycle- by-cycle
basis. Our paper asks the question: Even though massively
multithreaded processors can switch between these tasks
quickly, when should they?

Over the past 30 years, there has been a significant
amount of research and development devoted to using on-
chip caches more effectively. At a hardware level, cache man-
agement has typically been optimized by improvements to
the hierarchy,3 replacement/insertion policy,14 coherence
protocol,19 or some combination of these. Previous work
on hardware caching assumes that the access stream seen
by the memory system is fixed. However, massively multi-
threaded systems introduce another dimension to the
problem. Every clock cycle, a hardware thread scheduler
must choose which of a core’s active threads issues next.
This decision has a significant impact on the access stream
seen by the first level caches. In a massively multithreaded
system, there are often many threads ready to be scheduled
on each cycle. This paper exploits this observation and uses
the thread scheduler to explicitly manage the access stream
seen by the memory system to maximize throughput.

The primary contribution of this work is a Cache‑
Conscious Wavefront Scheduling (CCWS) system that
uses locality information from the memory system to
shape future memory accesses through hardware thread
scheduling. Like traditional attempts to optimize cache
replacement and insertion policies, CCWS attempts to
predict when cache lines will be reused. However, cache
way-management policies’ decisions are made among a
small set of blocks. A thread scheduler effectively chooses
which blocks get inserted into the cache from a pool of
potential memory accesses that can be much larger than
the cache’s associativity. Similar to how cache replace-
ment policies effectively predict each line’s re-reference
interval,14 our proposed scheduler attempts to change
the re-reference interval to reduce the number of inter-
fering references between repeated accesses to high
locality data. Like cache tiling techniques performed in
software by the programmer or compiler25 that reduce the
cache footprint of inner-loops by restructuring the code,
CCWS reduces the aggregate cache footprint primarily by

The original version of this paper is entitled “Cache-
Conscious Wavefront Scheduling” and was published
in the Proceedings of the 45th IEEE/ACM International
Symposium on Microarchitecture, 2012. Another version
of this paper was also published as “Cache-Conscious
Thread Scheduling for Massively Multithreaded Proces-
sors” in IEEE Micro Special Issue: Micro’s Top Picks from
2012 Computer Architecture Conferences (2013).This work was performed when Mike O'Connor was with Advanced Micro

Devices (AMD) Research.

http://doi.acm.org/10.1145/2682583
http://crossmark.crossref.org/dialog/?doi=10.1145%2F2682583&domain=pdf&date_stamp=2014-11-26

92 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

research highlights

dynamically throttling the number of threads sharing the
cache in hardware.

The importance of fine-grained thread scheduling on
cache management is a concern to any architecture where
many hardware threads can share a cache. Some examples
include Intel’s Knights Corner,11 Orcale’s SPARC T4,24 IBM’s
Blue Gene/Q,9 and massively multithreaded graphics pro‑
cessing units (GPUs) such as those produced by AMD and
NVIDIA. In this work, we study the effect of thread schedul-
ing on GPUs since they represent the most extreme exam-
ple of a many-thread architecture. However, our techniques
could be extended and applied to any design where many
threads share a cache.

1.1. The effect of increasing your capacity
One solution to increase multitasking capability is to simply
increase the amount of information you can pay attention to
at once. Increasing the size of the GPU’s cache is one option
our full paper22 explores in more detail. However, no mat-
ter what size of cache is used, it will always have a limit and
our work is focused on maximizing performance based on
this limitation. Figure 1 highlights the potential benefit of
increasing the attention capacity of a GPU. Figure 1 shows
the speedup attained by increasing the level one data (L1D)
cache size by 256× (from 32KB to 8MB) on the economically
important server applications listed in Table 1. Our full
paper22 describes these applications in more detail. All of
these applications see a 3× or more per formance improve-
ment with a much larger L1 data cache, indicating there is
significant locality and that these programs and they would
benefit from caching more information.

Given that our workloads have significant locality,
the next question is where does it come from? To under-
stand this, first we must explain the concept of a wavefront
(or warp). A wavefront is a collection of threads whose
instructions are executed in lock-step by a GPU. Each static

assembly instruction is implicitly executed across multiple
lanes when it is run. The number of threads in a wavefront is
a value native to each machine. Our baseline hardware archi-
tecture has a wavefront size of 32. A consequence of this is
that a single load/store instruction can access as many as
32 different cache lines when executed. We study the local-
ity of our highly cache-sensitive benchmarks in Figure 2
which presents the average number of hits and misses per
thousand instructions (PKI) using an unbounded L1D cache.
The figure separates hits into two classes. We classify local-
ity that occurs when data is initially referenced and re-refer-
enced from the same wavefront as intra‑wavefront locality.
Locality resulting from data that is initially referenced by
one wavefront and re- referenced by another is classified as
inter‑wavefront locality. Figure 2 illustrates that the majority
of data reuse observed in our highly cache-sensitive bench-
marks comes from intra-wavefront locality. If we were to
think about this result in the context of a human trying to
multitask, it means that each of your tasks require a large
amount of information that is not shared with other tasks.

1.2. Primary goals of CCWS
Based on the observation that tasks do not share much data,
we design CCWS with the principal goal of capturing more
intra-wavefront locality. To this end, CCWS acts as a dynamic
thread throttling mechanism that prevents wavefronts from
issuing memory instructions when their accesses are predicted
to interfere with intra-wavefront locality already present in the
cache. CCWS detects if threads require more exclusive access
to cache through memory system feedback from a lost local-
ity detector (G in Figure 6 which gives a high-level view of our
baseline architecture explained in more detail in Section 2).
The lost locality detector observes when the L1D has been
oversubscribed by storing the L1D’s replacement victim tags
in wavefront private sections. It uses these tags to determine if
misses in the L1D could have been avoided by giving the wave-
front that missed more exclusive cache access. The lost locality
detector provides feedback akin to remembering that you were
supposed to do a small errand but no longer remember what the
errand was. You can use this information to reduce the num-
ber of tasks you are juggling at once because you realize you
have exceeded the capacity of your attention. Interpreting this
feedback is performed by CCWS’s locality scoring system (H).
The locality scoring system decides which wavefronts should
be permitted to issue memory instructions, throttling those

Figure 1. Performance using a round-robin scheduler at various L1D
cache sizes for highly cache-sensitive workloads, normalized to a cache
size of 32K. All caches are 8-way set-associative with 128B cache lines.

36.3

0
1
2
3
4
5
6
7

BFS KMN MEMC GC HAR-MEAN

N
or

m
al

iz
ed

 I
P

C 32K L1D 8M L1D

Intra-wavefront hits PKI Inter-wavefront hits PKI Misses PKI

Figure 2. Average hits and misses per thousand instructions (PKI)
using an unbounded L1 data cache (with 128B lines) on highly cache-
sensitive benchmarks.

Table 1. GPU compute benchmarks (CUDA and OpenCL)

Highly cache sensitive

Name Abbreviation Name Abbreviation

BFS graph
 traversal5

BFS Kmeans5 KMN

Memcached10 MEMC Garbage
 collection2

GC

DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 93

that are predicted to cause interference. Changing the thread
scheduler to improve cache effectiveness introduces a new
challenge not encountered by traditional cache management
techniques. The goal of the scoring system is to maximize
throughput, not just cache hit rate. Typically, massively multi-
threaded architectures hide long latency operations by issuing
instructions from more threads. The CCWS scoring system
balances the trade-off between increasing latency tolerance
and reducing the need for latency hiding. Increasing the num-
ber of actively interleaved threads improves latency tolerance,
while interleaving less threads decreases the frequency of
long latency events. This is like trying to find the right balance
between not doing too many things at once while still manag-
ing to do more than one thing at a time.

1.3. The effect of intelligently managing
your attention
Intelligently managing how your attention is allocated can
increase your multitasking effectiveness. In the context of
our problem, this is equivalent to improving the cache’s
replacement policy. To contrast the effects of hardware
thread scheduling and replacement policy, consider Figures
3 and 4. They present the memory accesses created by two
different thread schedulers in terms of cache lines touched.
In this example, we assume each instruction generates four
memory requests and we are using a fully associative, four-
entry cache with a least recently used (LRU) replacement pol-
icy. Figure 3 illustrates what happens when the scheduler
attempts to fill empty cycles by executing another wavefront.
In Figure 3, no wavefront will find its data in cache because
the data will have been evicted by requests from other wave-
fronts before the wavefront is scheduled again. In fact, even
if a Belady optimal replacement policy 4 were used, only
4 hits in the cache are possible. The scheduler in Figure 4
is aware of the data reuse present in each wavefront’s access
stream and has rearranged the wavefront’s issue order to be
more cache-friendly. The scheduler in Figure 4 chooses to
schedule the memory accesses from wavefront 0 together,

even if it means leaving the processor idle while the requests
for wavefront 0 return. This results in 12 cache hits, captur-
ing every redundant access made by the wavefronts.

1.4. The effect of doing less all the time
Another simple way to decrease interference among tasks is
to place a hard limit on the number of tasks performed at
once. Our paper proposes a simple mechanism called Static
Wavefront Limiting (SWL) that does something similar. SWL is
implemented as a minor extension to the wavefront schedul-
ing logic where a cap is placed on the number of wavefronts
that are actively scheduled when the program is launched.
Figure 5 shows the effect that limiting the number of wavefronts
actively scheduled on a core has on the cache performance and
system throughput of our highly cache-sensitive applications.

Figure 5 shows that peak throughput occurs at a mul-
tithreading value less than maximum concurrency, but
greater than the optimum for cache miss rate (which limits
concurrency to a single wavefront). In SWL, the program-
mer must specify a limit on the number of wavefronts when
launching the kernel. This technique is useful if the user
knows or can easily compute the optimal number of wave-
fronts prior to launching the kernel.

Our full paper22 demonstrates that the optimal number of
wavefronts is different for different benchmarks. Moreover,
we find this number changes in each benchmark when its
input data is changed. This dependence on benchmark and
input data makes an adaptive CCWS system that adapts to
locality in threads as they are run desirable.

2. GPU ARCHITECTURE
Our work studies modifications to the GPU-like accelerator
architecture illustrated in Figure 6. The workloads we study
are written in OpenCL or CUDA. Initially, an application
begins execution on a host CPU which launches a kernel
containing a large number of threads on the GPU. Our base-
line system uses GPGPU-Sim 3.x.1

Our work focuses on the decision made by the wavefront
issue arbiter (WIA) (A in Figure 6). An in-order scoreboard
(B) and decode unit (C) control when each instruction in
an instruction buffer (I-Buffer D) is ready to issue. The WIA
decides which of these ready instructions issues next.

Figure 3. Example access pattern (represented as cache lines
accessed) resulting from a throughput-oriented round-robin
scheduler. The letters (A,B,C, . . .) represent cache lines accessed.
Wi indicates which wavefront generated this set of accesses. For
example, the first four accesses to cache lines A,B,C,D are generated
by one instruction in wavefront 0.

Cache line 0 hitsA,B,C,D E,F,G,H I,J,K,L A,B,C,D E,F,G,H I,J,K,L

W0 W1 W2 W0 W1 W2

Figure 4. Example access pattern resulting from a hardware
scheduler aware of its effect on the caching system. The red boxes
highlight where scheduling improves locality by changing memory
access order.

A,B,C,D A,B,C,D E,F,G,H E,F,G,H I,J,K,L I,J,K,L

W0 W0 W1 W1 W2 W2

Cache line 12 hits
H H H H H H H H H H H H

Figure 5. Average misses per thousand instructions (MPKI) and
harmonic mean (HMEAN) performance improvement of highly
cache-sensitive benchmarks with different levels of multithreading.
Instructions per cycle (IPC) is normalized to 32 wavefronts.

0

5

10

15

20

25

30

35

40 1.8

0 5 10 15 20 25 30 35

A
ve

ra
ge

 M
P

K
I

Wavefronts actively scheduled

1.6
1.4
1.2
1
0.8

H
M

E
A

N
 n

or
m

al
iz

ed
 I

P
C

HMEAN normalized IPCMPKI

0.6
0.4
0.2
0

research highlights

94 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

As mentioned previously, each memory instruction can
generate more than one memory access. Modern GPUs
attempt to reduce the number of memory accesses generated
from each wavefront using an access coalescer (E) which
groups the lane’s memory requests into cache line-sized
chunks when there is spatial locality across the wavefront.
Applications with highly regular access patterns may gen-
erate as few as one or two memory requests that service all
32 lanes. Our baseline GPU includes a 32K L1 data cache (F)
which receives memory requests from the coalescer.

3. CACHE-CONSCIOUS WAVEFRONT
 SCHEDULING (CCWS)
The goal of CCWS is to dynamically determine the number
of wavefronts allowed to access the memory system and
which wavefronts those should be. Figure 7 presents a more
detailed view of CCWS’s microarchitecture. At a high level,
CCWS is a wavefront scheduler that reacts to access level
feedback (1 in Figure 7) from the L1D cache and a victim
tag array (VTA) at the memory stage.

CCWS’s scheduling decisions are made by the locality
scoring system (6). The intuition behind why the scoring
system works is illustrated in Figure 8. Each wavefront is
given a score based on how much intra‑wavefront locality
it has lost. These scores change over time. Wavefronts with
the largest scores fall to the bottom of a small sorted stack
(e.g., W2 at T1), pushing wavefronts with smaller scores above
a cutoff (W3 at T1) which prevents them from accessing the
L1D. In effect, the locality scoring system reduces the num-
ber of accesses between data re-references from the same
wavefront by removing the accesses of other wavefronts.

3.1. Effect on baseline issue logic
Figure 7 shows the modifications to the baseline WIA (2)
 and memory unit (3) required for CCWS. CCWS is imple-
mented as an extension to the system’s baseline wavefront

Figure 6. Overview of our GPU-like baseline accelerator architecture. InstWi denotes the next instruction ready to issue for wavefront i.
N is the maximum number of wavefront contexts stored on a core. I-Buffer: instruction buffer.

GPU

Memory Partition

L2 Cache
PortionPort

Off-Chip
DRAM

Channel
Controller

Interconnect
Network

Memory Partition

L2 Cache
PortionPort

Off-Chip
DRAM

Channel

Memory Partition

L2 Cache
PortionPort

Off-Chip
DRAM

Channel
Controller

Compute Unit

Memory
Port

Memory Unit

Wavefront Issue Arbiter

Fetch/
Decode

WIA

Locality
Scoring
System

Lost
Locality

Dectector

L1D
Cache

Intersection

Baseline Priority Logic

Registers/
Execution
Mem. Unit

I-Buffer/
Scoreboard

Waves
Ready [1:N]

Inst.
(WID)

A

B

Can Issue [1:N]

Lost Locality Detected

Coalescer

I-Buffer
InstW1 InstWNInstW2

DC

E F

Compute Unit

Memory
Port

Memory Unit

Wavefront Issue Arbiter

Fetch/
Decode

WIA

Locality
Scoring
System

Lost
Locality

Dectector

L1D
Cache

Intersection

Baseline Priority Logic

Registers/
Execution
Mem. Unit

I-Buffer/
Scoreboard

Waves
Ready [1:N]

Inst.
(WID)

A

B

Can Issue [1:N]

Lost Locality Detected

Coalescer

I-Buffer
InstW1 InstWNInstW2

DC

E F

Compute Unit

Memory
Port

Memory Unit

Wavefront Issue Arbiter

Fetch/
Decode

WIA

Locality
Scoring
System

Lost
Locality

Dectector

L1D
Cache

Intersection

Baseline Priority Logic

Registers/
Execution
Mem. Unit

I-Buffer/
Scoreboard

Waves
Ready [1:N]

Inst.
(WID)

A

B

Can Issue [1:N]

Lost Locality Detected

Coalescer

I-Buffer
InstW1 InstWNInstW2

DC

E F G

H

Victim Tag
Array

Mem. Unit

Registers/
Execution

(WID + Tag) On Evict/Miss

W1

LLD

11

8

3

2

7

4

6
14

15

12

Score
[1:N]

LSS

VTAHit
(WID)

LSS Update Logic

Memory Unit To LSS WID
(On VTA Hit)

Can
Issue
[1:N]

5
13

1

9

W2

10

Tag
Tag

Tag WID
WID

Data
DataTagL1D

Cache

Access
From

Coaleser

Inst.
(WID)

Waves
Ready
[1:N]

Waves
Ready
[1:N]

Wavefront Issue Arbiter
Is Load

[1:N]

To Exec
Inst.

(WID)

Intersection

Baseline
Priority

Logic
Prioritized

Waves
[1:N]

WIA

I-Buffer/
Scoreboard

Fetch/
Decode

Compute Unit

Tag
Tag

Tag
Tag

WN

LLSW1

LLS Cutoff Test

LLSW2

LLSWN

Figure 7. Modeled GPU core microarchitecture. N is the number of
wavefront contexts stored on a core. LSS: locality scoring system,
LLD: lost intra-wavefront locality detector, WID: wavefront ID, LLS:
lost-locality score, VTA: victim tag array, I-Buffer: instruction buffer.

prioritization logic (4). This prioritization could be done
in a greedy, round-robin, or two-level manner. CCWS oper-
ates by preventing loads that are predicted to interfere with
intra-wavefront locality from issuing through a Can Issue
bit vector (5) output by the locality scoring system (6).

DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 95

wavefronts with the smallest LLS from issuing load instruc-
tions. Wavefronts whose LLS rise above the cumulative LLS
cutoff (a in Figure 8) in the sorted heap are prevented from
issuing loads.

The LLS cutoff test block (14) takes in a bit vector from
the instruction buffer, indicating what wavefronts are
attempting to issue loads. It also takes in a sorted list of
LLSs, performs a prefix sum, and clears the Can Issue bit for
wavefronts attempting to issue loads whose LLS is above
the cutoff. In our example from Figure 8, between T0 and T1,
W2 has received a VTA hit and its score has been increased.
W2’s higher score has pushed W3 above the cumulative LLS
cutoff, clearing W3’s Can Issue bit if it attempts to issue a
load instruction. From a microarchitecture perspective,
LLSs are modified by the score update logic (15). The update
logic block receives VTA hit signals (with a WID) from the
LLD which triggers a change to that wavefront’s LLS. In
Figure 8, between T1 and T2 both W2 and W0 have received
VTA hits, pushing both W3 and W1 above the cutoff. Between
T2 and T3, no VTA hits have occurred and the scores for W2
and W0 have decreased enough to allow both W1 and W3 to
issue loads again. This illustrates how the system naturally
backs off thread throttling over time. Our paper explains the
scoring system in more detail.

4. EVALUATION
We model CCWS in GPGPU-Sim1 (version 3.1.0). The simu-
lator is configured to model an NVIDIA Quadro FX5800,
extended with L1 data caches and an L2 unified cache simi-
lar to NVIDIA Fermi. We also evaluate L1 data cache hit
rate using the Belady-optimal replacement policy,4 which
chooses the line which is re-referenced furthest in the future
for eviction. Belady replacement is evaluated using a trace-
based cache simulator that takes GPGPU-Sim cache access
traces as input. We ran our experiments on the highly cache-
sensitive applications listed in Table 1. The full version of
our paper22 provides additional data on a collection of mod-
erately cache-sensitive and cache-insensitive workloads and
gives more details on our experimental setup.

The data in Figures 9 and 10 is collected using GPGPU-
Sim for the following mechanisms:

LRR: Loose round-robin scheduling. Wavefronts are priori-
tized for scheduling in round-robin order. However, if a
wavefront cannot issue during its turn, the next wavefront
in round-robin order is given the chance to issue.

The intersection logic block (7) selects the highest priority
ready wavefront that has issue permission.

3.2. Lost intra-wavefront locality detector (LLD)
To evaluate which wavefronts are losing intra-wavefront
locality, we introduce the LLD unit (8) which uses a victim
tag array (VTA) (9). The VTA is a highly modified variation of
a victim cache.15 The entries of the VTA are subdivided among
all the wavefront contexts supported on this core. This gives
each wavefront its own small VTA (10). The VTA only stores
cache tags and does not store line data. When a miss occurs
and a line is reserved in the L1D cache, the wavefront ID
(WID) of the wavefront reserving that line is written in addi-
tion to the tag (11). When that line is evicted from the cache,
its tag information is written to that wavefront’s portion of
the VTA. Whenever there is a miss in the L1D cache, the VTA
is probed. If the tag is found in that wavefront’s portion of
the VTA, the LLD sends a VTA hit signal to the locality scoring
system (12). These signals inform the scoring system that a
wavefront has missed on a cache line that may have been a hit
if that wavefront had more exclusive access to the L1D cache.

3.3. Locality scoring system operation
Returning to the example in Figure 8, there are four wave-
fronts initially assigned to the compute unit. Time T0 cor-
responds to the time these wavefronts are initially assigned
to this core. Each segment of the stacked bar represents a
score given to each wavefront to quantify the amount of
intra-wavefront locality it has lost (which is related to the
amount of cache space it requires). We call these values lost‑
locality scores (LLS). At T0 we assign each wavefront a con-
stant base locality score. LLS values are stored in a max heap
(13) inside the locality scoring system. A wavefront’s LLS
can increase when the LLD sends a VTA hit signal for this
wavefront. The scores each decrease by one point every cycle
until they reach the base locality score. The locality scoring
system gives wavefronts losing the most intra-wavefront
locality more exclusive L1D cache access by preventing the

Figure 8. Locality scoring system operation example. LLS: lost-
locality score.

W0

T0 T1 T2
Time

T3

Wave
0’s
LLS

C
um

ul
at

iv
e

LL
S

W1

W1
W1

W2 W2 W2

W0

W0

W0

W3
W1

W3

W3

Legend
Wave Cannot
Issue Loads

Cumulative
LLS CutoffTo

Wz

W2

VTA Hit
(W2)

VTA Hit
(W2, W0)

No VTA
Hit

W3

a Figure 9. Performance of various schedulers for the highly cache-
sensitive benchmarks. Normalized to the GTO scheduler.

5.9

1.15

0

0.5

1

1.5

2

BFS KMN MEMC GC HAR-MEAN

N
or

m
al

iz
ed

 I
P

C

4.1

LRR GTO 2LVL-FG Best-SWL CCWS

research highlights

96 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

4.2. Detailed breakdown of wavefront locality
Figure 11 breaks down L1D accesses into misses, inter-
wavefront hits, and intra-wavefront hits for our evaluated
the schedulers. In addition, it quantifies the portion of
intra-wavefront hits that are a result of intra-thread local-
ity. It illustrates that the decrease in cache misses using
CCWS and Best-SWL comes chiefly from an increase in
intra-wavefront hits. Moreover, the bulk of these hits are
a result of intra-thread locality. The exception to this rule
is Breadth First Search (BFS) graph traversal, where only
30% of intra-wavefront hits come from inter-thread local-
ity and we see a 23% increase in inter-wavefront hits. An
inspection of the code reveals that inter-thread sharing
(which manifests itself as both intra-wavefront and inter-
wavefront locality) occurs when nodes in the applica-
tion’s input graph share neighbors. Limiting the number
of wavefronts actively scheduled increases the hit rate of
these accesses because it limits the amount of nonshared
data in the cache, increasing the chance that these shared
accesses hit.

5. RELATED WORK
Other papers have observed that throttling the number of
threads running in a system can improve performance.
Bakhoda et al.1 observe that launching less workgroups
(or CTAs) on a GPU core without an L1 cache improved per-
formance by alleviating contention for the memory system.
Guz et al.8 introduce an analytical model to quantify the
 performance valley that exists when the number of threads
sharing a cache is increased. They show that increasing
the thread count increases performance until the aggre-
gate working set no longer fits in cache. Increasing threads
beyond this point degrades performance until enough
threads are present to hide the system’s memory latency.
In effect, CCWS dynamically detects when a workload has
entered the machine’s performance valley and scales down the
number of threads sharing the cache to compensate. Cheng
et al.6 introduce a thread throttling scheme to reduce
 memory latency in multithreaded CPU systems. They pro-
pose an analytical model and memory task limit throttling
mechanism to limit thread interference in the memory stage.

There is a body of work attempting to increase cache

GTO: A greedy-then-oldest scheduler. GTO runs a single
wavefront until it stalls then picks the oldest ready
wavefront.

2LVL-GTO: A two-level scheduler similar to that described
by Narasiman et al.20 Their scheme subdivides wavefronts
waiting to be scheduled on a core into fetch groups (FG)
and executes from only one fetch group until all wave-
fronts in that group are stalled. Intra- and inter-FG arbi-
tration is done in a GTO manner.

Best-SWL: An oracle solution that knows the optimal num-
ber of wavefronts to schedule concurrently before the ker-
nel begins to execute.

CCWS: Cache-Conscious Wavefront Scheduling with GTO
wavefront prioritization logic.

The data for Belady-optimal replacement misses per thou‑
sand instructions (MPKI) presented in Figure 10 is generated
with our trace-based cache simulator:

(scheduler)-BEL: Miss rate reported by our cache simulator
when using the Belady-optimal replacement policy. The
access streams generated by running GPGPU-Sim with
the specified (scheduler) are used.

4.1. Performance
Figure 9 shows that CCWS achieves a harmonic mean 63%
performance improvement over a simple greedy wavefront
scheduler and 72% over the 2LVL-GTO scheduler on highly
cache-sensitive benchmarks. The GTO scheduler performs
well because prioritizing older wavefronts allows them to
capture intra-wavefront locality by giving them more exclu-
sive access to the L1 data cache.

CCWS and SWL provide further benefit over the GTO
scheduler because these programs have a number of unco-
alesced loads, touching many cache lines in relatively few
memory instructions. Therefore, even restricting to just
the oldest wavefronts still touches too much data to be con-
tained by the L1D.

Figure 10 shows the average MPKI for all of our highly
cache-sensitive applications using an LRU replacement
policy and an oracle Belady-optimal replacement policy
(BEL). It illustrates that the reason for the performance
advantage provided by the wavefront limiting schemes is a
sharp decline in the number of L1D misses. Furthermore, it
demonstrates that a poor choice of scheduler can reduce the
effectiveness of any replacement policy.

Figure 10. MPKI of various schedulers and replacement policies for
the highly cache-sensitive benchmarks.

80

60

40M
P

K
I

20

0
Average

LRR LRR-BEL
GTO
2LVL-FG
Best-SWL
CCWS

GTO-BEL
2LVL-FG-BEL
Best-SWL-BEL
CCWS-BEL

Figure 11. Breakdown of L1D misses, intra-wavefront locality hits
(broken into intra-thread and inter-thread), and inter-wavefront
locality hits per thousand instructions for highly cache-sensitive
benchmarks.

BFS KMN MEMC GC AVG-HCS

0

20

40

60

80

100

120

140

160

180

LR
R

G
T

O

2L
V

L-
FG

B
es

t-
S

W
L

C
C

W
S

LR
R

G
T

O

2L
V

L-
FG

B
es

t-
S

W
L

C
C

W
S

LR
R

G
T

O

2L
V

L-
FG

B
es

t-
S

W
L

C
C

W
S

LR
R

G
T

O

2L
V

L-
FG

B
es

t-
S

W
L

C
C

W
S

LR
R

G
T

O

2L
V

L-
FG

B
es

t-
S

W
L

C
C

W
S

(H
it

/M
is

s)
 P

K
I

Miss
Inter-wave
Intra-wave hit (inter-thread)
Intra-wave hit (intra-thread)

DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM 97

hit rate by improving the replacement policy (e.g., Jaleel et
al.14 among many others). All these attempt to exploit dif-
ferent heuristics of program behavior to predict a block’s
 re-reference interval and mirror the Belady-optimal4 pol-
icy as closely as possible. While CCWS also attempts to
maximize cache efficiency, it does so by shortening the
re-reference interval rather than by predicting it. CCWS
has to balance the shortening of the re-reference inter-
val by limiting the number of eligible wavefronts while
still maintaining sufficient multithreading to cover
most of the memory and operation latencies. Other
schemes attempt to manage interference among het-
erogeneous workloads,12, 21 but each thread in our work-
load has roughly similar characteristics. Recent work
has explored the use of prefetching on GPUs.18 However,
prefetching cannot improve performance when an appli-
cation is bandwidth limited whereas CCWS can help in
such cases by reducing off-chip traffic. Concurrent to our
work, Jaleel et al.13 propose the CRUISE scheme which
uses LLC utility information to make high-level schedul-
ing decisions in multiprogrammed chip multiprocessors
(CMPs). Our work focuses on the first level cache in a
massively multithreaded environment and is applied at a
much finer grain. Scheduling decisions made by CRUISE
tie programs to cores, where CCWS makes issue-level
decisions on which bundle of threads should enter the
execution pipeline next.

Others have also studied issue-level scheduling algo-
rithms on GPUs. Lakshminarayana and Kim17 explore
numerous warp scheduling policies in the context of a GPU
without hardware-managed caches and show that, for appli-
cations that execute symmetric (balanced) dynamic instruc-
tion counts per warp, a fairness-based warp and DRAM
access scheduling policy improves performance. Several works
have explored the effect of two-level scheduling on GPUs.7, 20
A two-level scheduler exploits inter-wavefront locality while
ensuring wavefronts reach long latency operations at dif-
ferent times by scheduling groups of wavefronts together.
However, Figure 2 demonstrates that the highly cache -
-sensitive benchmarks we studied will benefit more from
exploiting intra-wavefront locality than inter-wavefront
locality. Previous schedulers do not take into account the
effect issuing more wavefronts has on the intra-wavefront
locality of those wavefronts that were previously scheduled.
In the face of L1D thrashing, the round-robin nature of their
techniques will cause the destruction of older wavefront’s
intra-wavefront locality. Our follow-up work on Divergence‑
Aware Warp Scheduling (DAWS)23 builds upon the insights in
CCWS. DAWS attempts to proactively predict the cache foot-
print of each warp. It does this by considering the impact of
memory and control divergence while taking into account
the loop structure of computation kernels. In that work, we
demonstrate through an example that DAWS enables non-
optimized GPU code, where locality is not managed by the
programmer, to perform within 4% of optimized code.

6. CONCLUSION
Current GPU architectures are excellent at accelerating
applications with copious parallelism, whose memory

access is regular and statically predicable. Modern CPUs
feature deep cache hierarchies and a relatively large
amount of cache available per-thread, making them bet-
ter suited for workloads with irregular locality. However,
CPU’s limited thread count and available memory band-
width prohibit their ability to exploit pervasive parallelism.
Each design has problems running the important class of
highly parallel irregular applications where threads access
data from disparate regions of memory. The question of
how future architectures can accelerate these applications
is important.

Many highly parallel, irregular applications are commer-
cially important and found in modern data centers. The
highly cache-sensitive benchmarks in our paper include
several such workloads, including Memcached,10 a parallel
Garbage Collector,2 and a breadth-first search graph tra-
versal5 program. We demonstrate that these applications
are highly sensitive to L1 cache capacity when naive thread
schedulers are used. Furthermore, we show that a relatively
small L1 cache can capture their locality and improve per-
formance, provided an intelligent issue-level thread sched-
uling scheme is used.

Although our work focuses primarily on performance,
the impact of CCWS and consequently fine-grained thread
scheduling on power consumption is important. As mod-
ern chips become progressively more power limited, pre-
serving locality in the cache can be an effective way to
reduce power consumption. CCWS can be tuned to reduce
the number of data cache misses even further, at the
expense of some performance.

Intellectually, we feel this work offers a new perspec-
tive on fine-grained memory system management. We
believe that integrating the cache system with the issue-
level thread scheduler to change the access stream
seen by the memory system opens up a new direction of
research in cache management. CCWS demonstrates that
a relatively simple, dynamically adaptive, feedback-driven
scheduling system can vastly improve the performance of
an important class of applications.

Acknowledgments
We thank Norm Jouppi, Yale N. Patt, Aamer Jaleel, Wilson
Fung, Hadi Jooybar, Inderpreet Singh, Tayler Hetherington,
Ali Bakhoda, and our anonymous reviewers for their insight-
ful feedback. We also thank Rimon Tadros for his work on
the garbage collector benchmark. This research was funded
in part by a grant from Advanced Micro Devices Inc.

References
 1. Bakhoda, A., Yuan, G., Fung, W.,

Wong, H., Aamodt, T. Analyzing
CUDA workloads using a detailed
GPU simulator. In Proceedings
of International Symposium on
Performance Analysis of Systems
and Software (ISPASS 2009),
163–174.

 2. Barabash, K., Petrank, E. Tracing
garbage collection on highly
parallel platforms. In Proceedings
of International Symposium on
Memory Management (ISMM

2010), 1–10.
 3. Beckmann, B.M., Marty, M.R.,

Wood, D.A. ASR: Adaptive selective
replication for CMP caches. In
Proceedings of International
Symposium on Microarchitecture
(MICRO 39) (2006), 443–454.

 4. Belady, L.A. A study of replacement
algorithms for a virtual-storage
computer. IBM Syst. J. 5, 2 (1966),
78–101.

 5. Che, S., Boyer, M., Meng, J., Tarjan, D.,
Sheaffer, J., Lee, S.H., Skadron, K.
Rodinia: A benchmark suite

research highlights

98 COMMUNICATIONS OF THE ACM | DECEMBER 2014 | VOL. 57 | NO. 12

and Architecture Support for GPGPU
(2010).

 18. Lee, J., Lakshminarayana, N.B.,
Kim, H., Vuduc, R. Many-thread
aware prefetching mechanisms for
GPGPU applications. In Proceedings
of International Symposium on
Microarchitecture (MICRO 43) (2010),
213–224.

 19. Marty, M.R., Hill, M.D. Coherence
ordering for ring-based chip
multiprocessors. In Proceedings
of International Symposium on
Microarchitecture (MICRO 39) (2006),
309–320.

 20. Narasiman, V., Shebanow, M., Lee, C.J.,
Miftakhutdinov, R., Mutlu, O., Patt, Y.N.
Improving GPU performance via
large warps and two-level warp
scheduling. In Proceedings of
International Symposium on
Microarchitecture (MICRO 44)
(2011), 308–317.

21. Qureshi, M.K., Patt, Y.N. Utility
based cache partitioning:
A low-overhead, high-performance,
runtime mechanism to partition
shared caches. In Proceedings

of International Symposium on
Microarchitecture (MICRO 39) (2006),
423–432.

22. Rogers, T.G., O’Connor, M., Aamodt, T.M.
Cache-Conscious Wavefront
Scheduling. In Proceedings of
IEEE/ACM International
Symposium on Microarchitecture
(MICRO-45) (2012).

23. Rogers, T.G., O’Connor, M., Aamodt, T.M.
Divergence-Aware Warp Scheduling.
In Proceedings of IEEE/ACM
International Symposium on
Microarchitecture (MICRO-46) (2013).

24. Shah, M., Golla, R., Grohoski, G.,
Jordan, P., Barreh, J., Brooks, J.,
Greenberg, M., Levinsky, G., Luttrell, M.,
Olson, C., Samoail, Z., Smittle, M.,
Ziaja, T. Sparc T4: A dynamically
threaded server-on-a-chip. Micro
IEEE 32, 2 (Mar.–Apr. 2012), 8–19.

25. Wolf, M.E., Lam, M.S. A data locality
optimizing algorithm. In Proceedings
of ACM SIGPLAN Conference on
Programming Language Design and
Implementation (PLDI ’91) (1991),
30–44.

for heterogeneous computing.
In Proceedings of International
Symposium on Workload
Characterization (IISWC 2009),
44–54.

 6. Cheng, H.Y., Lin, C.H., Li, J., Yang, C.L.
Memory latency reduction via
thread throttling. In Proceedings
of International Symposium on
Microarchitecture (MICRO 43) (2010),
53–64.

 7. Fung, W., Aamodt, T. Thread block
compaction for efficient SIMT control
flow. In Proceedings of International
Symposium on High Performance
Computer Architecture (HPCA 2011),
25–36.

 8. Guz, Z., Bolotin, E., Keidar, I.,
Kolodny, A., Mendelson, A., Weiser, U.
Many-core vs. many-thread machines:
Stay away from the valley. Comput.
Architect. Lett. 8, 1 (Jan. 2009),
25–28.

 9. Haring, R., Ohmacht, M., Fox, T.,
Gschwind, M., Satterfield, D.,
Sugavanam, K., Coteus, P.,
Heidelberger, P., Blumrich, M.,
Wisniewski, R., Gara, A., Chiu, G.T.,
Boyle, P., Chist, N., Kim, C.
The IBM Blue Gene/Q compute
chip. Micro IEEE 32, 2 (Mar.–Apr.
2012), 48–60.

 10. Hetherington, T.H., Rogers, T.G.,
Hsu, L., O’Connor, M., Aamodt, T.M.
Characterizing and evaluating a
key-value store application on
heterogeneous CPU-GPU systems.
In Proceedings of International
Symposium on Performance Analysis
of Systems and Software (ISPASS
2012), 88–98.

 11. Intel Xeon Phi Coprocessor Brief.

http://www.intel.com/content/www/
us/en/high-performance-computing/
high-performance-xeon-phi-
coprocessor-brief.html.

 12. Jaleel, A., Hasenplaugh, W.,
Qureshi, M., Sebot, J., Steely, S., Jr.,
Emer, J. Adaptive insertion policies
for managing shared caches.
In Proceedings of International
Conference on Parallel Architecture
and Compiler Techniques (PACT
2008), 208–219.

 13. Jaleel, A., Najaf-abadi, H.H.,
Subramaniam, S., Steely, S.C.,
Emer, J. CRUISE: Cache replacement
and utility-aware scheduling.
In Proceedings of International
Conference on Architectural Support
for Programming Languages and
Operating Systems (ASPLOS 2012),
249–260.

 14. Jaleel, A., Theobald, K.B.,
Steely, S.C., Jr., Emer, J. High
performance cache replacement
using re-reference interval
prediction (RRIP). In Proceedings
of International Symposium on
Computer Architecture (ISCA
2010), 60–71.

 15. Jouppi, N.P. Improving direct-mapped
cache performance by the addition
of a small fully-associative cache
and prefetch buffers. In Proceedings
of International Symposium on
Computer Architecture (ISCA 1990),
364–373.

 16. Kahneman D. Attention and Effort
Prentice-Hall, 1973.

 17. Lakshminarayana, N.B., Kim, H. Effect
of instruction fetch and memory
scheduling on GPU performance. In
Workshop on Language, Compiler, © 2014 ACM 0001-0782/14/12 $15.00

Timothy G. Rogers and Tor M. Aamodt
({tgrogers, aamodt}@ece.ubc.ca),
Department of Electrical and Computer
Engineering, University of British
Columbia, Vancouver, Canada.

Mike O’Connor (moconnor@nvidia.com),
NVIDIA Research, Austin, TX.

ACM Transactions
on Interactive

Intelligent Systems

ACM Transactions on Interactive
Intelligent Systems (TIIS). This
quarterly journal publishes papers
on research encompassing the
design, realization, or evaluation of
interactive systems incorporating
some form of machine intelligence.

World-Renowned Journals from ACM
 ACM publishes over 50 magazines and journals that cover an array of established as well as emerging areas of the computing field.

IT professionals worldwide depend on ACM's publications to keep them abreast of the latest technological developments and industry
news in a timely, comprehensive manner of the highest quality and integrity. For a complete listing of ACM's leading magazines & journals,

including our renowned Transaction Series, please visit the ACM publications homepage: www.acm.org/pubs.

 PLEASE CONTACT ACM MEMBER
SERVICES TO PLACE AN ORDER
Phone: 1.800.342.6626 (U.S. and Canada)
 +1.212.626.0500 (Global)
Fax: +1.212.944.1318
 (Hours: 8:30am–4:30pm, Eastern Time)
Email: acmhelp@acm.org
Mail: ACM Member Services
 General Post Offi ce
 PO Box 30777
 New York, NY 10087-0777 USA

ACM Transactions on Computation
Theory (ToCT). This quarterly peer-
reviewed journal has an emphasis
on computational complexity, foun-
dations of cryptography and other
computation-based topics in theo-
retical computer science.

ACM Transactions
on Computation

Theory

www.acm.org/pubs

PUBS_halfpage_Ad.indd 1 6/7/12 11:38 AM

