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Abstract—Graphical processing units (GPUs) have found use
in plethora of modern day applications such as machine learning
and data analytics. GPU architectural simulators have been built
to enable hardware-software codesigning to extract peak perfor-
mance and performance per watt from such architectures. Many
applications such as recommendation models and graph neural
networks benefit from the use of multi-GPUs to scale up the size
of the workload and/or processing throughput. Current open-
sourced GPU architectural simulators have traditionally not been
able to efficiently model multi-GPU workloads that can cater to
a wide variety of applications. In computer architecture, it is no
secret that innovation is often powered by the industry. However,
the simulation tools used by industry are often closed sourced and
hence limiting in the goal to democratize architectural research.
This paper proposes an initial design of MAccel-sim that extends
Accel-sim to model a multi-GPU system. We highlight the limi-
tations of popular state-of-the-art GPU architectural simulators
and propose a novel trace-based simulation tool that enables
end-to-end simulation of workloads running popular machine
learning frameworks like Pytorch or Tensorflow. To conclude, we
present correlation studies performed using benchmarks running
on a 4xV100 GPU system. We aim to open-source this work to
democratize architectural studies and further push the envelope
of GPU research.

Index Terms—GPU architecture, modelling, Multi-GPU sys-
tems, NVbit

I. INTRODUCTION

GPUs have been used to accelerate workloads that are
commonly used in deep learning and exascale computing sys-
tems. Typically, such workloads exhibit high levels of implicit
parallelism and hence are amenable to increased performance
scalability as long as GPUs can scale their hardware resources.
Emerging types of workloads such as recommendation models
and graph neural networks often have memory footprints that
are much larger than what a single GPU can provide and hence
are often deployed in a multi-GPU system.

To enable hardware-software optimizations for a multi-GPU
system and also test out novel architectural ideas, it thus
becomes imperative to have a simulator that supports multi-
GPU modeling without compromising much on simulation
speed. However, while various single GPU architectural sim-
ulators have seen continued popularity in the open-sourced
community, options for multi-GPU simulators are limited. The
prime simulation frameworks to explore multi-GPU architec-
tural ideas in recent top conference venues are [6] and [5].

While simulators from the industry are often flexible and fast
(for eg: [6]), they are closed-sourced and hence not available
to the broader community. While primarily based on the
AMD ISA, MGPUsim [5] requires workloads to be custom
re-written which limits the flexibility of such simulators for
new workloads. An ideal key feature of a simulator would
be to simulate kernels based on representative GPU traces
through a popular programming framework such as Pytorch or
Tensorflow. GPU microarchitectural bottlenecks on emerging
workloads can be identified by being able to simulate the full
stack of kernels generated on real traces. Deployment on a
multi-GPU system brings with it a whole suite of inter-GPU
communication patterns (for eg: through peer-to-peer (P2P)
memcopies or NCCL [3]). A recent study [4] reveals that
communication will play an increasingly large role (40-75%)
in a distributed training setup as model parameters continue
to scale. Thus a true multi-GPU simulator must take into
account such communication primitives which are commonly
used during distributed training of machine learning models.

TABLE I
COMPARISON OF MULTI-GPU SIMULATORS

NVarchsim
[6]

mgpu-sim
[5]

MAccel-sim

Open sourced? No Yes Yes
Workload
generation

Unknown Manual Trace based

Simulation speed Fast Medium Medium
GPU architecures
modelled

NVIDIA AMD NVIDIA

II. SYSTEM OVERVIEW

We propose MAccelsim, a multi-GPU simulator based on
the open-sourced GPU simulator Accelsim [2]. We extend the
usage of the NVbit tracer [7] to trace multi-GPU workloads
from actual hardware. Our methodology shown in Figure 1
shows how an arbitrary multi-GPU workload can be traced
and executed on the first open-sourced multi-GPU simulation
framework that can simulate kernels end to end based on
popular machine learning frameworks such as Tensorflow or
Pytorch. Our framework supports several commonly occurring
GPU interconnection topologies such as Ring, Switch-based
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Fig. 1. Proposed multi-GPU simulator.
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Fig. 2. Inter-GPU bandwidth and Latency test.

and All-to-all topologies through the popular network simula-
tor Booksim [1].

III. CORRELATION

In this section, we look at examples of using the proposed
simulator. The multi-GPU system parameters assumed here are
listed in table II. It is imperative that the parameters chosen for
modeling closely reflect the hardware specs for the purpose of
correlation. The hardware used in our experiments is a 4xV100
NVIDIA GPU system.

TABLE II
MULTI-GPU CONFIGURATION

#GPUs 4
#SMs 80 SMs per GPU
SM configuration Volta-like SM, 64 warps, 4 warp scheds, 64KB

shared memory, 64KB L1 cache, 1.4Ghz
Inter-GPU
Interconnect

All-to-all topology, 46 GB/s per link (bi-
directional)

Memory BW 1440 GB/s (bidirectional) per GPU

We first validate the inter-GPU latency and bandwidth
modeled through a benchmark that performs SM initiated
copies through (Unified Virtual Addressing) between GPUs.
As shown in figure 2, the inter-GPU bandwidth and latency
shows high fidelity with the silicon measurements for various
data copy sizes. As expected, at low data copy sizes, the
operation is latency-limited and at high data copy sizes, the
operation is bandwidth-limited.

The ReduceScatter operation performs a reduction operation
on a vector of data and scatters the result in block sized
chunks among the various ranks (for eg: GPUs) of a compute
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Fig. 3. Validation of Multi-GPU Reduce-scatter NCCL kernel for various
data sizes.

system. The ReduceScatter operation is an important phase of
the AllReduce kernel as commonly seen in machine learning
workloads during gradient synchronization. Figure 3 shows the
validation of the ReduceScatter NCCL kernel for various data
sizes. The errors in simulation mostly come from the memory
accesses to the host which incur a long latency penalty due to
traversing the PCIe interconnect (which is not modeled in the
proposed multi-GPU simulator). Empirically, we found that
the number of such host accesses increases beyond a data
size of 128kB giving rise to poor correlation on hardware.
Improving the correlation of NCCL kernels remains an area
for future work.

IV. CONCLUSIONS

Current GPU architectural studies on multi-GPU systems
are limited in flexibility outside of the industry. This work
proposes a design of a multi-GPU simulator based on Accel-
sim [2] that adds much-needed flexibility in the interconnect
topology, GPU architectural configuration parameters and can
simulate any workload of interest based on actual traces col-
lected from hardware. Future improvements include improving
correlation on NCCL kernels and integrating kernel sampling
methods to improve simulation speed. We aim to open-source
our work once it has undergone rigorous validation.
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