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Abstract—Modern GPU Streaming Multiprocessors (SMs)
have several warp schedulers, execution units, and register file
banks. To reduce area and energy-consumption, recent genera-
tions divide SMs into sub-cores. Each sub-core contains a distinct
warp scheduler, register file, and execution units, sharing L1
memory and scratchpad resources with sub-cores in the same SM.
Although partitioning the SM into sub-cores decreases the area
and energy demands of larger SMs, it comes at a performance
cost. Warps assigned to the SM have access to a fraction of
the SM’s resources, resulting in contention and imbalance issues.
In this paper, we examine the effect SM sub-division has on
performance and propose novel mechanisms to mitigate the
negative impacts. We identify four orthogonal effects caused
by sub-dividing SMs and demonstrate that two of these effects
have a significant impact on performance in practice. Based on
these findings, we propose register-bank-aware warp scheduling
to avoid bank conflicts that arise when instruction operands are
placed in the limited number of register file banks available
to each sub-core, and randomly hashed sub-core assignment to
mitigate imbalance issues. Our intelligent scheduling mechanisms
result in an average 11.2% speedup across a diverse set of
applications capturing 81% of the performance lost to SM sub-
division.

Index Terms—GPU, Scheduling, Register File, Bank Conflict

I. INTRODUCTION

The latest GPU architectures from both Nvidia and AMD
partition large cores into sub-units referred to as sub-cores [3],
[23] and dual compute units [2] respectively. Each sub-
core contains its own scheduler, Single Instruction Multiple
Data (SIMD) execution units, operand collectors, and register
file; however, sub-cores within the same SM share the same
memory system. This hard-divisioning of the core can result
in imbalance and contention issues that are not seen in a fully-
connected monolithic SM with the same thread and compute
capacity. Figure 1 shows the speedup of a of hypothetical,
fully-connected Volta SM over the four sub-core SM found in
contemporary machines.

Comparing a fully-connected core to a partitioned one,
four potential performance issues are observed. The first is
increased register file bank conflicts. Each sub-core has access
to 1/4 of the register file banks on the SM, increasing the
likelihood of bank conflicts, which decreases throughput in
the operand read stage. Second, each warp scheduler can only
issue instructions to one sub-core, if there is an imbalance in
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Fig. 1: Simulated speedup of a hypothetical fully connected
SM over a four-way partitioned Volta SM for 112 Appli-
cations

the work assigned to each scheduler, SIMD execution units
can go unused. Third, in workloads where warps assigned to
the same SM have diverse execution unit demands (i.e. some
warps makes heavy use of the tensor cores while others do
not), lacking access to all the core’s execution units decreases
utilization. Finally, if warps assigned to an SM have diverse
register-file capacity demands, which can occur when SMs
execute concurrent kernels, a lack of register space on one sub-
core may prevent others with capacity from accepting work.

Although these four factors can potentially harm sub-core
performance, we measured the effect of a hypothetical mono-
lithic core on 112 workloads from 8 benchmark suites [10],
[12], [13], [16], [22], [30], [55] and observe that register bank
conflicts and issue imbalance are responsible for the majority
of sub-core performance loss in practice. To mitigate these
factors, we develop a novel warp scheduling mechanism to
mitigate the effects of additional bank conflicts and propose
hashed sub-core warp assignment to reduce imbalance. To the
best of our knowledge, we are the first work to study the
effects of the GPU sub-core, develop scheduling techniques
to mitigate bank conflicts in GPUs, and examine sub-core
assignment policies.

A major side-effect of partitioning the SM is a reduction
in the number of register file banks available to each warp.



In Volta/Ampere for example, each SM has eight register file
banks, but each sub-core has access to only two [34], [35].
Even with compiler-orchestrated register swizzling among
banks, GPUs still need to make use of operand collectors [24],
[47] to keep multiple warps in the operand read stage and
maximize register file bandwidth. Increasing the number of
warps requesting operands each cycle is a straightforward
way to improve register bank utilization. However, doing so
involves scaling the number of collector units in each sub-
core, which adds area and energy to the SM (evaluated in
Section VI-B2), decreasing the gains made by moving to a
sub-core design in the first place. Instead of blindly scaling
collector units, we develop a novel Register Bank Aware
(RBA) warp scheduling mechanism to make better use of
the limited banks and collector units available in GPU sub-
cores. Although warp scheduling has been extensively studied
for other purposes [37], [39], [42], [46], [48], [49], [52],
[53], we are the first paper that uses it as a mechanism to
mitigate register bank conflicts, which are exacerbated by the
partitioned cores in recent GPU generations.

Imbalances across the work assigned to a sub-core can
lead to under-utilization and reduced performance. Through
extensive microbenchmarking (see Section III-B), we have
determined that contemporary Volta and Ampere GPUs assign
warps to sub-cores in a simple round-robin fashion. This
assignment balances the work across sub-cores, provided
warps execute a similar number of instructions. However,
not all workloads have well-balanced warps. In particular,
highly-optimized workloads that make use of warp specialized
programming [11], [14], [19], [20], [31] can exhibit severe
imbalance. Warp specialized programming is a technique used
to reduce the impact of control-flow divergence by grouping
threads with a similar control-flow path into the same warp.
Although the SIMD efficiency [27] of warp-specialized pro-
grams is high, there can be significant variations in the number
of instructions executed by warps in the same thread block.
This variation is easily smoothed in a monolithic core where
every warp has access to all the SM’s resources, but can lead
to severe imbalance in sub-core based SMs.

The assignment of warps to sub-cores adds an additional
layer to the GPU thread-scheduling hierarchy. Although these
sub-cores act as independent units, thread blocks are assigned
at the SM granularity. Once a thread block is assigned to an
SM, each sub-core is tasked with a subset of the warps that
make up the thread block. Table I contrasts the different levels
of thread scheduling in a contemporary GPU.

Sub-core warp assignment shares similarities with warp
scheduling and thread block scheduling (Table I), but its
position in the hierarchy makes it fundamentally different.
Sub-core scheduling operates at a warp granularity, however,
the assignment of a warp to a sub-core happens only once in
the lifetime of the warp and cannot be changed. As a result, de-
cisions are made less frequently than warp scheduling and each
individual decision has a greater impact. Sub-core scheduling
frequency is more similar to thread block scheduling, however
the granularity is different. Thread block scheduling can do

nothing about disparities among the warps within a thread
block, since it only decides which SM a thread block will be
assigned to.

This paper makes the following contributions:
• The first study to improve GPU sub-cores’ effect on

performance, quantifying the two primary sources of
performance degradation: increased register file bank
conflicts, and sub-core issue imbalance.

• A novel bank-aware warp scheduler to mitigate the effects
of increased bank conflicts in sub-core partitioned register
files. A quantitative cost-benefit analysis of the design
compared to scaling the number of collector units is
presented.

• A hashed sub-core scheduler to eliminate pathological
issue imbalances.

• Evaluation of the novel scheduling techniques resulting
in an average speedup of 11.2% across all applications
and 19.3% on applications sensitive to SM partitioning.

II. MOTIVATION AND BACKGROUND

A. The Streaming Multiprocessor Sub-Core

There has been a trend in scaling not only the number of
SMs in each new generation of GPUs, but also the capability
of each SM. For example, in 2006 Nvidia introduced their
first unified graphics and parallel compute architecture with the
Tesla [45]. The Tesla architecture SM contained a single multi-
threaded issue unit, eight Streaming Processor (SP) cores, and
two Special Functional Units (SFUs). In contrast, each SM
in the Ampere A100 (released in 2020) contains four warp
schedulers / issue units, four tensor cores, 64 FP32 units,
64 INT32 Units, and 32 FP64 units [3]. As the number of
schedulers and functional units within each SM has increased,
the need to subdivide the SM to reduce area and power require-
ments arose. The Maxwell architecture was the first Nvidia
design to partition the SM into sub-cores, and all subsequent
Nvidia architectures have used a similar SM partitioning. The
Maxwell architecture achieved twice the performance per watt
of the previous generation, Kepler, while using the same 28 nm
process [5]. Sub-core partitioning reduced the die area of each
SM while also improving power efficiency. By decreasing the
area per SM while providing about 90% of the performance of
the Kepler SM, Nvidia was able to increase the total number
of SMs from two in the Kepler GK107, to five in the Maxwell
GM107, with only a 25% increase in die area.

AMD has also adopted a partitioned Computational Unit
(CU) in the RDNA architecture, which it refers to as the dual
compute unit. Each dual compute unit contains four wavefront
schedulers, one for each of the four SIMD units [2]. Similar to
Nvidia’s partitioned SM architecture, the two sub-cores share
a common L1 data cache and shared memory scratchpad. Each
of the four SIMD units in the dual compute unit has its own
20-entry wavefront buffer. Likewise, the GCN architecture also
has 4 SIMD units per CU with a 10-entry wavefront buffer per
SIMD unit [1]. As work-groups are sent to a dual compute unit
the wavefronts within the work-group must be moved into the



Characteristic Warp Schedulers
[37], [39], [42], [46], [48], [49], [52], [53] Sub-Core Schedulers Thread Block Schedulers

[25], [40], [50], [56]–[60]
Scheduling Granularity Warp (32 threads) Warp (32 threads) Thread Block (1-1024 threads)
Scheduling Frequency Every Cycle Upon Thread Block Assignment Upon Kernel Launch

Deallocation Granularity Thread Block Thread Block Thread Block

TABLE I: Comparison of GPU hardware schedulers

Arbitration

Unit

M
u
x

C
ro

ssb
ar

Execution

UnitsBank 2

Bank 1 CU 1

CU 2

(Issued Instruction from Warp Scheduler) RR Dispatch

Fig. 2: Operand collector block diagram
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Fig. 3: In-silicon (ran on hardware) GPU microbenchmark
test: FMA performance degradation due to sub-core issue
imbalances

SIMD unit wavefront buffers, which can lead to a sub-core
issue imbalance that cannot be remedied by modifying the
wavefront scheduling algorithm.

III. IDENTIFYING SUB-CORE PERFORMANCE EFFECTS IN
HARDWARE

A. Register File Bank Conflicts

GPUs require huge register files to support the large amount
of threads that can be scheduled each cycle. Such large struc-
tures have high area and power costs and it can be prohibitively
expensive to add additional ports. Several techniques have
been proposed to improve GPU register file throughput and
reduce power and area requirements [29], [17], [41], [33], but
register file banking is the simplest and most commonly used.
Register file banking increases maximum bandwidth in a more
efficient manner than adding ports, however bank conflicts
reduce effective throughput. A bank conflict occurs if a warp
instruction’s operands are resident in the same bank, and
therefore cannot be accessed in a single cycle. The compiler
can reduce bank conflicts through carefully selected register
assignment, however register access requests from other warps
on the sub-core compete for register bank access, and their
issue ordering is unknown at compile time.

The Operand Collector is a GPU hardware structure de-
scribed in Nvidia patents [47] [24] to reduce bank conflicts by
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Fig. 4: FMA microbenchmark thread block warp layout
(red : compute, green : empty)

processing register file accesses from several warps simultane-
ously. By processing multiple instructions at once, the Operand
Collector hides bank conflicts from a single instruction by
processing register file requests for other instructions. Figure 2
shows a block diagram of a baseline Operand Collector which
can process two instructions from different warps at once,
similar to the Nvidia V100 model. Each Collector Unit (CU)
holds state for a single warp instruction and is allocated upon
warp scheduler issue. The CU maintains an operand entry
for each operand necessary to execute the instruction. Each
operand entry contains a ready bit, valid bit, register id, and
32 four-byte data fields (one for each thread in a warp). Upon
allocation, CU source operand read requests are sent to the
arbitration unit which maintains a queue of read requests for
each of the banks. The arbitration unit grants one request for
each bank per cycle. When all of the operand entries of a CU
are ready, the CU instruction is dispatched to the appropriate
SIMD execution unit. The CU is then deallocated and can be
filled with a new instruction.

Modern GPUs partition the SM register file into separate
structures to improve power and area efficiency. These smaller
register file structures typically have a small number of banks.
For example, the Ampere A100 and Volta V100 have only
two register file banks per sub-core, while previous fully
connected architectures had four [34], [35]. Decreasing the
number of banks increases the likelihood of bank conflicts. The
operand collector, and its associated CUs, are also partitioned
among the sub-cores which decreases its capacity to hide bank
conflicts. We found several applications highly sensitive to
register file throughput, and evaluated the effects of CU scaling
and a novel bank-aware warp scheduler in section VI-B.

B. Issue Imbalance

In this work we identify two key characteristics of the
sub-core warp assignment mechanism used in modern GPU
hardware. First, a simple round-robin warp assignment scheme
is used to assign warps to sub-cores. Second, the assignment
of warps to sub-cores is static; once a warp is assigned to a
sub-core it cannot be re-assigned to execute on a different sub-



core. Resources allocated to a warp can only be freed once the
entire thread block the warp belongs to has completed because
the programming model guarantees access to a common on-
chip shared memory scratch-pad for the entire thread block.
Hardware underutilization occurs when a warp assigned to a
sub-core has completed execution but cannot be deallocated
because it belongs to a thread block still executing on other
sub-cores. If all of the warps a sub-core is assigned are in such
a state the entire sub-core will stall. In this manner, static
assignment leads to substantial performance loss whenever
warps are improperly balanced across sub-cores.

Figure 3 shows the performance loss due to sub-core imbal-
ance of a microbenchmark run on three generations of Nvidia
GPU hardware. Figure 4 shows the thread block warp layout of
each of the three applications. A warp is a group of 32 threads
that execute in lock-step, and warpID = ⌊threadID/32⌋.
The baseline application includes 256 threads (8 warps) per
thread block. Each thread performs 4096 fused multiply add
(FMA) instructions on data resident in the register file then
waits at a thread-block-wide barrier before exiting. The bal-
anced and unbalanced applications also have 8 warps per
thread block performing fused-multiply-add instructions in the
same manner as the baseline application, however 768 ”empty”
threads (24 warps) are additionally included in the thread
block. Each empty thread simply waits at the barrier and then
exits, without performing any calculation. Warps from a thread
block are assigned to a sub-core in sequential order using
round robin scheduling, therefore each column in figure 4 will
be assigned to a different sub-core on architectures with 4 sub-
cores per SM.
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The results in figure 3 are normalized to the baseline
application and indicate that the A100 takes 3.9 times longer to
execute when the computation is imbalanced to a single sub-
core. The balanced application achieves performance equal
to the baseline application which indicates the performance
difference is solely due to differences in sub-core balancing.
Figure 5 shows the SM block diagrams for Ampere and
Kepler architectures. The Ampere SM architecture contains
4 sub-cores per SM [3] while the Kepler architecture has
no partitioning [9]. Due to the lack of partitioning in the
Kepler architecture no performance difference is seen across
the three applications in figure 3. Hopper, Ampere, Turing,
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Volta, Pascal, and Maxwell architectures all feature 2 to 4 sub-
cores per SM [3]–[8], and are therefore susceptible to sub-core
imbalances. Although real GPU applications may not have
empty warps to cause such a stark imbalance, computational
variations between warps within a thread block can cause them
to finish at significantly different times [58]. We refer to this
imbalance between warp finish times within a thread block
as inter-warp-divergence. Inter-warp-divergence is not to be
confused with intra-warp-divergence, which refers to threads
within a warp taking different control flow paths.

IV. SCHEDULING ARCHITECTURES

A. Register Bank Aware Warp Scheduling

Sub-core partitioning has led to the reduction in the number
of CUs and register banks available to each warp instruction
[34]. These effects have increased pressure on the compiler
to avoid register bank conflicts, causing some applications to
become limited by the read operand stage (see section VI-B).
Increasing the number of CUs is an effective way to improve
effective throughput and register file utilization, but comes at a
high cost of area and power. Scaling the amount of register file
banking is similarly expensive for both area and power [36].
In light of these factors, we propose a Register-Bank-Aware
(RBA) warp scheduler, which prioritizes warps that access
register file banks with the fewest pending access requests.

Figure 6 outlines the key structures of the RBA design.
The additional or modified hardware required to support RBA
scheduling is shown in red. Non-red structures are part of
the baseline design. For each ready warp instruction, we
define its RBA score ( 1 ) as the sum of queue lengths of
each of its operands. The RBA score is 5 bits wide and



stored in the Warp PC Table( 3 ). The warp scheduler ( 2 )
is responsible for arbitrating between decoded ready warps
from the instruction buffer and selecting one to issue to an
empty CU each cycle. Similar to numerous works studying the
warp scheduler [27], [28], [36], [42], [43], [46], we modelled
the Warp PC Table ( 3 ) as a fully associative table. The warp
to issue is found by warp selection logic ( 4 ) implemented as
a hierarchical comparator network ( 5 ) that selects the lowest
(or highest) scoring entry by comparing a specific field of the
entries.

In the baseline design, warps are ordered according to
greedy then oldest (GTO) priority, so the warp selection logic
compares entries based on their age. Our design modifies
the warp selection logic such that it compares warps on
the concatenated field of {RBA score, warp age}. Here, the
overline means taking the complement of age, so older warps
score lower. The warp with the lowest RBA score is selected,
with older instructions selected in the case of a tie. The
selected warp is then issued to an available CU ( 6 ) in the
Operand Collector ( 7 ).

CUs stage warp instructions while their operands are being
retrieved from the register file. Upon allocation, the CU sends
bank access requests to the arbitration unit ( 8 ) for each
of its operands. The arbitration unit maintains a separate
request queue for each bank of the register file. Priority logic
within the arbitration unit then grants bank accesses to CUs
each cycle. The only modification necessary to the Operand
Collector to support RBA is to send the number of requests in
each bank’s request queue to the warp scheduler. The scoring
logic ( 9 ) then uses these request queue lengths to compute
scores for each ready warp instruction and updates the results
in the warp PC table. Scores are computed by summing the
length of each queue for each operand of the instruction. For
example, if an instruction had three operands, two stored in
bank 0, and one stored in bank 1, the score would be computed
as: score = 2 × length(queue0) + length(queue1). Two
pieces of information are necessary for this computation: the
bank ID of each operand of the instruction (present in the
baseline design), and the length of each bank’s request queue
(sent by the modified operand collector). The arbitration unit
has dedicated ports per operand per collector unit, exercising
a ready-valid handshake protocol ( a ), hence the queue length
can be conveniently found by summing the number of ports
that have a valid request ( b ). RBA can tolerate delays in
score updates, and does not need to increase the critical path.
We evaluated RBA with a 0-20 cycle score update latency and
observed < 0.1% performance degradation (Section VI-B4).

B. Hashed Sub-Core Warp Assignment

1) Hardware Support for Hashed Multiplexing: Kernels
with large amounts of inter-warp-divergence are highly sensi-
tive to sub-core imbalances. The assignment of warps to sched-
uler tables should be designed to mitigate any programmatic
warp imbalances. To reduce the likelihood of pathological
imbalances the sub-core assignment of a warp should be
abstracted from its warpID. Replacing the round robin sub-
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core scheduler used in hardware today with a balanced hashing
function can effectively accomplish this goal. Figure 7 shows
the hardware structures necessary to support hashed sub-
core warp assignment on each SM. The baseline round-robin
structures are shown in black, and the additional structures to
support hashing are marked in red. The thread block scheduler
( 1 ) allocates and frees resources on the SMs as they become
available at a thread block granularity. It contains logic which
determines which thread block will be scheduled on which SM
and sends and receives messages through the interconnect to
communicate with each SM. Four key operations must occur
when a thread block is scheduled on an SM:

1) Allocate register file space
2) Allocate shared memory space
3) Write kernel arguments to constant memory
4) Load warp program counters (PCs) into warp scheduler

PC tables
In order to perform these operations the thread block

scheduling unit encodes information about the thread block
(such as shared memory size, kernel arguments, number of
threads, etc) and sends it over the interconnect to the SM
being scheduled. Upon receiving the data, the SM Interconnect
Arbiter ( 2 ) fills the corresponding storage structures within
the SM. Likewise, when a thread block completes execution
the SM sends a message through the interconnect to the thread
block scheduling unit to notify it of the freed resources. Each
sub-core has its own warp scheduler and each warp scheduler
contains a warp PC table ( 8 ). In the baseline architecture a
thread block is allocated on an SM by filling the sub-cores’
warp scheduler PC table through a round robin multiplexer.
The method in which the SM loads warp PCs into the warp
scheduler tables forms the crux of the sub-core assignment
balancing problem. The baseline round robin assignment can
be implemented by a 4:1 multiplexer ( 3 ) with select lines
driven by a 2-bit binary up-counter ( 4 ) that increments each
time a new warp in the thread block is assigned to a sub-core.

To support hashed sub-core assignment we add a small 4-
entry hash function table ( 5 ), an additional 4:1 multiplexer



( 6 ), and two 4-bit shift registers ( 7 ). Each entry of the hash
function table contains a 1 byte entry which determines the
assignment of 4 consecutive warp assignments. The upper 4
bits are used to drive select line 0 of the sub-core multiplexer
( 3 ) while the bottom 4 bits are used to drive select line 1.
Rather than incrementing the 2-bit counter upon each warp
allocation, as is done in the baseline round-robin design, the
interconnect arbiter instead shifts a bit from the hash function
table into the shift register each time a new warp PC is written,
while incrementing the 2-bit counter every 4th warp. In this
manner, a new entry of the hash function table is selected every
four warps. Note that the hash function table supports direct
assignment for up to 16 warps, but a thread block may have
up to 64 warps. The table simply wraps around, so the 17th
warp would re-use the assignment pattern encoded in entry 0.

2) Hash Function Sensitivity: While a particular sub-core
assignment hashing function may be optimal for certain ker-
nels, it may perform sub-optimally on applications with a
different inter-warp-divergence distributions. We propose and
evaluate two different hashing functions, Skewed Round Robin
(SRR) and Random Shuffle. The SRR hashing function is
shown in equation (1) below, where N is the number of sub-
cores and W ≥ 0 is a count of the number of warps previously
allocated to this SM.

subcoreID = (W + ⌊W
N

⌋) mod (N) (1)

We created the SRR hashing function to keep the number of
warps per sub-core even, while shifting the subcoreID index
by one every N warps. This shifting factor was determined
by examining the TPC-H benchmark and observing that most
kernels exhibit a single long running warp every 4 warps. SRR
was then crafted to evenly distribute the long-running warps
among the sub-cores for applications that match this specific
warp balance distribution.

The Shuffle design randomly distributes incoming warps
to sub-cores while ensuring that the number of warps as-
signed to each sub-core does not differ by more than one.
Shuffle eliminates pathological imbalances but is suboptimal
for highly imbalanced kernels. As the amount of inter-warp
divergence of an application grows, an optimized sub-core
warp assignment becomes increasingly critical. Figure 8 shows
simulated performance of the unbalanced FMA application
(described in Section III-B) as the amount of inter-warp
divergence is scaled. Like the TPC-H benchmarks, the FMA
application has one long running warp every four warps, and
therefore is balanced ideally by the SRR hashing function.
Note that the suboptimal assignment of Random Shuffle is
increasingly detrimental as imbalance scales.

3) Design Cost: The additional hardware required for
hashed assignment is minimal. Each SM is augmented with a
4 byte table, an additional 4:1 multiplexer and two 4-bit shift
registers. The table can be filled arbitrarily for each SM to
support different assignment hashing functions. Warp sub-core
assignment only occurs on kernel launch, not every cycle, and
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the additional multiplexer and shift register have a negligible
increase on overall assignment latency.

The V100 SM holds state for a maximum of 64 warps,
and each entry encodes the assignment of 4 warps, so a 16
entry hash table is necessary to encode a unique assignment
for each warp. However, a 4-entry table can be used to fully
represent the SRR hashing function because the SRR pattern
repeats every 16 warps. A full-sized 16-entry table enables
the Random Shuffle hashing algorithm to avoid repeating
permutations, but provides minimal performance benefit over a
4-entry table. We found a 16-entry table using Random Shuffle
to be within 2% of the execution time of the 4-entry table
across all benchmark suites studied.

V. EXPERIMENTAL METHODOLOGY

All designs were evaluated using the trace-based cycle accu-
rate GPU simulator, Accel-Sim [38], with Nvidia Volta V100
performance models from GPGPUSim 4.0 [18]. Accel-Sim
was executed in trace-driven SASS mode such that accurate
compiler register allocation and bank mappings were reflected
in simulation. Each application was simulated to completion
or a minimum of 5 billion instructions. The simulator was
updated to accurately reflect the sub-core structures used in
hardware for each stage of the pipeline. The Volta V100
model has 80 SMs per GPU, but the number of SMs was
limited to 20 while evaluating the TPC-H benchmarks to more
accurately model the load seen at larger scale factors. Database
Management Systems (DBMS) applications typically run on
databases with scale factors of 10 TB or more, but simulating
queries with such a large scale factor would take prohibitively
long, so a scale factor of 100 GB was used. Moreover,
as the sub-core balancing problem is concerned with warp
completion times, it is desirable to have the entire query
simulate to completion in order to fully capture its behavior.

Table II shows the baseline simulator configurations used for
all performance modeling in this study. In order to validate the
number of collector units in each SM sub core, we constructed
a set of seven microbenchmarks that stress register file bank
conflicts. We correlated the cycle count for these microbench-
marks reported by Accel-Sim using 1 to 4 CUs/sub-core with



Number of SMs 80 (20 for TPC-H)
Sub-Cores per SM 4
Warp Scheduler Algorithm Greedy Then Oldest
Max Warps per SM 64
Device Memory 32 (8 for TPC-H) GB HBM
Shared Memory Banks 32
Register File per Sub-core 64 KB
RF Banks per Sub-core 2
CUs per Sub-core 2
L1 / Shared Memory Cache 128 KB
L1 Instruction Cache 128 KB
Constant Cache 64 KB
L2 Cache 24-way 6MB

TABLE II: Baseline simulator configuration parameters

the silicon cycles from a Volta V100. We find that 2 CUs/sub-
core yields the lowest mean absolute error at 16.2%, compared
to 43% for the worst performing configuration. As a result,
we use 2 CUs/sub-core (8 per SM) in our baseline GPU
performance, area, and power results. 112 applications from
8 diverse benchmark suites were used for evaluation in this
study. Table III summarizes a few key applications from each
suite that are particularly sensitive to SM core partitioning.

TPC-H is a database benchmark standardized by the Trans-
actional Processing Performance Council (TPC) [10]. TPC-
H includes 22 SQL queries and operates on data tables
generated from a set of templates. SQL queries and data
tables can be directly input to Apache Spark through the SQL
API. The spark-rapids plug-in [31] and Rapids C++ libraries
[11] are open-source projects actively developed by Nvidia
which provide GPU implementations of most Apache Spark
operations and data transformations. Thus, Apache Spark
applications, including SQL queries, can be executed on GPUs
with no change to the application code. All of the TPC-H
benchmark queries execute on a common database, however
the SQL operations across queries is diverse. Therefore the
characteristics and performance profile of each query can be
wildly different. Two versions of the TPC-H benchmark were
evaluated in this study, compressed and uncompressed. In
the compressed benchmark the database has been stored in
parquet files that have been compressed using Google’s snappy
compression algorithm [15]. The uncompressed benchmark
uses database information stored in raw parquet files.

Similar to spark-rapids, cuGraph supports applications ex-
pressed in high level languages such as Python and executes on
top of optimized Nvidia Rapids C++ libraries. All benchmarks
were run with input graphs containing 262,144 vertices with
randomly generated edges and weights.

Additional benchmarks come from Rodinia [22], a bench-
mark suite with a broad range of parallel communication
patterns, Cutlass [12], a high performance GPU matrix multi-
plication suite, Parboil [55], a suite of throughput computing
applications, Polybench [30], a suite of benchmarks with static
control flow, and Deepbench [13] a CNN/RNN deep learning
suite.

Abbreviation Suite Name

tpcU-q8 TPC-H
Uncompressed [10] Query 8

tpcC-q9 TPC-H
Compressed [10] Query 9

pb-mriq

Parboil [55]

Magnetic Resonance
Imaging Q

pb-mrig Magnetic Resonance
Imaging Gridding

pb-sad Sum of Absolute Differences

pb-sgemm Single Precision Dense
Matrix Multiply

pb-cutcp Distance-Cutoff
Coulombic Potential

cutlass-4096 Cutlass [12] Matrix Convolution
rod-lavaMD

Rodinia [22]

Particle Potential
rod-bp Back Propagation

rod-srad Speckle Reducing
Anisotropic Diffusion

rod-htsp Hotspot 3D
cg-lou

cuGraph [16]

Louvain
cg-bfs Breadth First Search
cg-sssp Single Shortest Path

cg-pgrnk Pagerank

cg-wcc Weakly Connected
Components

cg-katz Katz Centrality
cg-hits Hits Link Analysis

ply-2dcon Polybench [30] 2D Convolution
ply-3dcon 3D Convolution
db-conv-tr

Deepbench [13]

CNN Train
db-conv-inf CNN Inference

db-rnn-tr RNN Train
db-rnn-inf RNN Inference

TABLE III: Application Abbreviations

Applications

S
pe
ed
up

0.5

1.0

1.5

2.0

Shuffle+RBA Fully-Connected

Fig. 9: Design performance on all applications - speedup
normalized to GTO warp scheduler & RR sub-core sched-
uler

VI. EXPERIMENTAL RESULTS

Figure 9 shows the performance of our combined design
on all applications from all 8 suites. Across all applications,
Shuffle+RBA had an average speedup of 10.6%, only 2.6%
less than the 13.2% average speedup of the fully connected
SM. Note that RBA outperforms fully connected in some
applications (see section VI-A). Figure 10 summarizes the
results of our designs and register bank stealing [36] on a
subset of applications limited by the read operand stage or sub-
core issue imbalance. The RBA warp scheduler achieved an
average speedup of 11.1%. RBA performs better than doubling
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the number of CUs per sub-core, which we will show achieves
an average of 4.1%, while only increasing the power and area
of the operand collector and warp scheduler by 1%.

We compared the effectiveness of RBA against register bank
stealing [36], and found that bank stealing provides less than
1% speedup on average due to modern GPUs having fewer
register banks and CUs per scheduler than prior generations.
The V100 only has 2 CUs and banks per sub-core, whereas
the GPU evaluated in [36] had 10. Bank stealing relies on
free CUs to allocate a candidate warp ahead of normal issue
to fill unused register bank accesses. As there are only 2 CUs
per sub-core, opportunities for bank-stealing rarely arise. The
aim of bank stealing is to better utilize highly banked register
files that are often not being accessed, conversely RBA seeks
to make better use of a highly contended register file with a
limited number of banks. More details of RBAs effectiveness
in reducing bank conflicts is discussed in section VI-B3.

The TPC-H SQL benchmarks exhibit large amounts of sub-
core issue imbalance and therefore benefit most from shuffle
and SRR. The larger imbalance in the compressed query
benchmark is due to the highly warp-specialized snappy [15]
decompression kernel, which has an average issue imbalance
on the order of 100x. In applications where sub-core issue
is not imbalanced the assignment techniques do not improve
or degrade performance beyond the baseline RR sub-core
scheduler. Further analysis of the sub-core assignment designs
is discussed in section VI-C.

A. Why does RBA outperform fully-connected in some apps?

A fully connected SM allows each thread to distribute
its operands across eight banks instead of two, but unlike
a partitioned SM, must share bank accesses with requests
from warps issued from all four schedulers. Applications with
many register file accesses can still suffer conflicts with a
fully connected SM. Figure 11 shows that RBA improves
performance of a fully connected SM from a geomean of
6.1% to 19.6% in applications where RBA outperforms Fully-
Connected. Additionally, figure 14(d-f) shows that RBA can
achieve a higher average RF bank utilization than Fully-
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Fig. 11: RBA improves Fully-Connected SM performance
in register file sensitive apps

Connected over the entire execution time of the application,
resulting in better performance.

B. RBA as an alternative to scaling CUs

1) CU Scaling Performance: Figure 12 shows the perfor-
mance as the number of CUs per sub-core scales. The values
are normalized to a baseline model with 2 CUs per sub-
core. Note that these results represent scaling the number of
collector units only, the number of register banks per sub-
core is held constant at two. The fully connected SM has the
same total number of CUs as the baseline design but without
sub-core partitioning, therefore each scheduler has access to
a shared pool of 8 CUs, and operands can be mapped to
any of the 8 banks on the SM. CU scaling improved average
performance by 4.1%, 7.1%, and 9.6% for 4, 8, and 16 CUs
per sub-core respectively. As shown in figure 10, the RBA
scheduler achieved an average speedup of 11.9%. In all of
the cugraph applications, the RBA scheduler outperformed the
fully connected SM by 15% or more. The cuGraph applica-
tions have a large proportion of register intensive instructions,
and are therefore sensitive to register file bandwidth. However,
the graph applications tend to access a limited number of
registers repeatedly and therefore do not benefit from the
increased register file banking and full crossbar available in
the fully connected SM. In applications other than the cugraph
suite, the RBA scheduler achieved an average speedup of
6.7%, which is equivalent to the performance of between 4
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and 8 CUs per sub-core. The results in figure 12 indicate
diminishing returns for scaling the number of CUs. It is
critical to have enough CUs to cover bank conflicts with access
requests from other warps, but the performance benefit beyond
8 CUs per sub core is only 2.5%.

In some applications, namely rod-lavaMD, pb-sgemm, rod-
bp, rod-srad, pb-mrig, and the cuGraph applications, scaling
the number of CUs provides more benefit than having access
to a larger number of register banks (i.e. the fully connected
SM). Such scenarios can arise when the fully connected SM
exhausts its pool of shared CUs causing the warp scheduling
stage to stall.

2) Power & Area Cost Comparison: CU scaling vs. RBA :
To assess the costs of implementing the RBA design against
adding CUs to each sub-core we implemented the Operand
Collector and Warp Issue Scheduler (Figure 6) in RTL. The
baseline design had 2 CUs per sub-core with a GTO Warp
Issue Scheduler. From this baseline we either applied the
changes marked in red in Figure 6 to realize the RBA
scheduler or adjusted the number of CUs.

We synthesized the designs with a 1 GHz clock in Cadence
Genus using a 45 nm process design kit [54]. The register
file was built from SRAM modules generated by OpenRAM
[32] with the same process design kit, and was configured

according to Table II. The area and power results normalized
to the baseline design are shown in Figure 13. Increasing the
number of CUs to 4 increases the area of the design by 27%,
and the power by 60%. Conversely, the RBA design introduces
a mere 1% overhead in area and power respectively.

The RBA design is significantly cheaper than scaling the
number of CUs because each operand stored in the CU is
a vector of 32 values, each requiring a few thousand bits
of storage. Moreover, the full crossbar connecting the vector
operands is expensive to scale. In stark contrast, the RBA
design (1) adds a minimal amount of storage (16 entries x
5-bit RBA score = 80 bits per sub-core) to the existing warp
PC table, (2) requires minimal changes to the warp selection
logic (the comparator network needs to be widened to compare
5 more bits of input) and (3) calculates the RBA score quickly
(with 2 CUs and 3 operands per CU, max queue length is 6).

3) Register Bank Aware Scheduler Results: The RBA
scheduler provides the performance benefits of scaling CUs
without the significant area and power overheads. Figure 14
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Fig. 13: Area and power cost estimates of scaling the
number of CUs per sub-core, compared to a RBA-based
design. All designs include the warp issue scheduler,
operand collector and two register file banks.

shows the number of register reads aggregated across a single
SM plotted for each cycle of execution for the pb-mriq
and rod-srad benchmarks. The average number of reads/cycle
across the entire application is shown in red. The maximum
bandwidth is 256 reads/cycle which would occur if all 8 banks
were accessed in a cycle by 8 different warps. The figure
indicates RBA improves utilization of pb-mriq by increasing
the average number of reads per cycle and reducing the number
of cycles with 85 reads or less. The fully connected SM has
a much higher average read/cycle rate. 160 reads corresponds
to 5 register file banks being accessed in a cycle. The RBA
scheduler is constrained to using 2 CUs and therefore has
difficulty smoothing bank conflicts during large bursts of
register file activity. In contrast, if one of the schedulers in
the fully connected SM reaches section of code with a burst
of register file activity, it can make use of more than two
collector units at a time to help hide any bank conflict stalls.

The RBA scheduler improves average register file through-
put beyond that of a fully connected SM in rod-srad (see
fig. 14). The average register file reads per cycle across a
single SM were 22.2, 27.1, and 23.4 for baseline, RBA,
and fully-connected respectively. RBA outperformed the fully
connected SM in rod-srad by improving the average utilization
of the register file, even though the peak throughput was not
improved.



(a) Baseline: pb-mriq (b) RBA: pb-mriq (c) Fully-connected: pb-mriq

(d) Baseline: rod-srad (e) RBA: rod-srad (f) Fully-connected: rod-srad

Fig. 14: Number of 4-byte register file read accesses per cycle in two applications: pb-mriq and rod-srad. RBA improves
performance beyond fully-connected in rod-srad by increasing average register file read utilization across the entire
application (shown in red).

4) RBA Score Latency Sensitivity Study: RBA uses score
values from register bank contention to make scheduling
decisions. Although computing the scores is a relatively simple
process, it is possible that the distance between the register
file and the instruction scheduler may cause score updates
to influence the critical path. In such a scenario, an RBA
implementation may need to latch or pipeline the score update
to avoid changing the cycle time. To quantify the effect a
delay in score updates has on RBA, we evaluate RBA with
score update latencies swept from 0 to 20 cycles. Across the
top 15 applications where RBA shows a benefit, on average
the performance decreased by < 0.1% as the latency was
increased. We find that the majority of the applications tend
to have stable periods of register file access, in which a
slightly stale score value still provides a reasonable estimate
for making scheduling decisions. Of the 15 applications in the
latency study, only one, ply-2Dconv, had a performance impact
of >1%. In this application the speedup of RBA decreased
from 24.2% to 19.2% with a latency of 20 cycles.

5) RBA Bank Scaling Sensitivity Study: We found that the
effectiveness of RBA is reduced (from 19.3% to 15.4% on
average) when the number of banks per sub-core is doubled
from 2 to 4. As the number of banks increases the read-
operand stage becomes less of a bottleneck and there are fewer
opportunities for RBA to improve register file utilization.

C. Scheduler Issue Balancing Results

TPC-H is not limited by the read operand stage and there-
fore benefits only a few percent from the RBA warp scheduler
design. Both sub-core assignment hash functions maintain
performance across balanced applications. This can be seen

from the performance of Shuffle on the Parboil, Cutlass,
Cugraph, and Rodinia applications in figure 10.

Figures 15 and 16 show the speedup of all designs for
each query in the TPC-H benchmark suites with compressed
and uncompressed databases. SRR and Shuffle had average
speedups of 33.1%, 27.4% respectively on the compressed
benchmark, and 17.5%, 13.9% respectively on the uncom-
pressed benchmark. SRR performed the best in all queries
because the assignment function was designed to match to the
warp issue distribution of the benchmarks, i.e. one long run-
ning warp every 4th warp. However, the shuffle hash function
is more broadly applicable to other imbalance patterns, and
was within 5% of SRR on average.

The total number of instructions issued from each of the
four schedulers provides insight into how well each design
distributes work among the sub-cores. The coefficient of
variation quantifies the amount of variation between the four
schedulers in relation to the average number of instructions
issued from each warp scheduler. A smaller value indicates
better balancing across the four sub-cores in each SM. Fig-
ure 17 shows the coefficient of variation for SRR and Shuffle
on the uncompressed TPC-H benchmarks and is calculated as
cv = σ

µ , where σ is the standard deviation and µ is the mean.
The SRR hashing function reduced the coefficient of vari-

ation from .80 to .11 on average across all queries. Query
8, which had the largest baseline coefficient of variation of
1.01, experienced the largest performance improvement due
to sub-core balancing with a 30.8% speedup. By improving
the balance of instructions issued from each sub-core, both
shuffle and SRR improved upon the baseline performance
within four percent of each other. A larger reduction in sub-
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core instruction issue imbalance does not always correspond to
a larger increase in performance. The number of instructions
issued is a imperfect metric for measuring warp completion
times because many instructions take a different amount of
cycles to execute. For example, memory instructions can
take hundreds of cycles more than an arithmetic instruction,
especially if misses occur in the cache hierarchy.

D. SM Sensitivity Study

To evaluate the trade off between having fewer fully con-
nected SMs or more partitioned SMs, we perform a sensitivity
study that scales the number of partitioned SMs in our
baseline. Figure 18 plots the performance of compute-bound
applications that benefit from SM scaling and demonstrates
that 100 partitioned SMs perform similar to 80 fully connected
SMs. Our techniques reduce this value such that only 84
partitioned SMs are needed to match the performance of 80
fully connected SMs.

VII. RELATED WORK

The performance impact of bank conflicts is well known
and has been studied in the context of several different micro-
architectural structures. In [44] the authors propose a method
to avoid DRAM bank conflicts with a novel memory con-
troller that duplicates select lines of data into multiple banks.
Similarly in [26], the authors propose duplicating architectural
registers into multiple banks to avoid read-operand bank
conflicts. RBA differs from both of these designs because
it avoids bank conflicts through scheduling rather than the
explicit duplication of data across banks.

In [58] the under-utilization caused by allocating and releas-
ing SM resources at a thread block granularity was examined,
and a mechanism to allocate and release resources at a warp
granularity was proposed. Although the design allowed more
warps to be assigned at a time to an SM, it did not adjust
the assignment of those warps across multiple sub-cores.
Moreover, their design left thread block management of shared
memory intact. Shared memory is a driving force behind
the sub-core balancing problem because sub-cores have a
common shared memory space. Assigning thread blocks at the
sub-core granularity would therefore require partitioning the
shared memory and decreasing the maximum size available,
or changing the programming model.

The authors of [46] propose coordination between multiple
warp-schedulers to minimize idle time spent at barriers from
warp-level-divergence. Warp scheduling policies can be used
to effectively reduce the amount of inter-warp-divergence,



however they cannot address fundamental programmatic im-
balances between warps and sub-cores. A work stealing hard-
ware structure seems like an obvious solution to the sub-core
issue balancing problem [21]. It is possible to design a system
to transfer a warp’s context from one sub-core to another
dynamically to maintain balanced execution. However, any
work stealing based design would be forced to transfer the
the register file state of all of the threads within the migrating
warp. Since the register file is partitioned across the sub-cores
and each thread maintains its own private register file state,
such a transfer would be prohibitively expensive. A work
stealing design would have a much higher implementation
overhead than the hashed sub-core assignment discussed in
this work. Random interleaving has been studied as a method
to improve memory bandwidth [51] but has not been used for
sub-core work assignment.

VIII. CONCLUSION

This work identified sub-core partitioning as a source of
SM underutilization in several generations of modern GPU
architectures. Issue imbalance stems from the distribution of
warps within a thread block to discrete scheduler and execution
blocks, and therefore cannot be resolved through alternative
warp or thread block scheduling algorithms. Applications
with high levels of warp-level-divergence are particularly
susceptible to underutilization due to sub-core imbalance,
such as those used in database query processing. A hardware
mechanism to reduce the likelihood of pathological imbalances
with hashed sub-core scheduling was proposed.

Additionally, the partitioning of register file and operand
collector structures has created bottlenecks in the read operand
stage of several common GPU applications. A cost benefit
analysis of scaling collector units to reduce bank conflicts was
presented. A register file bank aware warp scheduling design
was outlined to more efficiently utilize operand collector units
with a constrained amount of resources, such as those found
in partitioned SMs.
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