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Abstract—The broad usage of accelerators, such as GPUs, faces
two important challenges. Developing code for a new accelerator
is expensive and unpredictable. Porting large parallel programs
from Multiple Instruction Multiple Data (MIMD) CPUs to Single
Instruction Multiple Thread (SIMT) GPUs involves significant
effort that may or may not result in improved performance versus
the CPU. This high activation energy to create new workloads in-
troduces the second challenge: architects and systems researchers
lack a diverse SIMT codebase to study new designs.

To tackle these challenges, we introduce ThreadFuser, an
analysis framework that efficiently and accurately predicts the
performance of any pre-written MIMD program on SIMT
hardware. ThreadFuser conducts thorough control and data
flow analysis on dynamic CPU program traces, determining
the impact of lock-step execution on CPU binaries. Thread-
Fuser efficiently delivers accurate reports on a MIMD pro-
gram’s divergence and synchronization characteristics. Moreover,
ThreadFuser seamlessly integrates with state-of-the-art GPU
simulators to conduct detailed analyses and produce fine-grained
performance measurements.

We evaluate ThreadFuser on a diverse set of 36 CPU work-
loads, demonstrating the potential and challenges of executing
MIMD code on a SIMT machine. We demonstrate ThreadFuser’s
potential to inform software development decisions and open new
areas to explore in data-parallel hardware design.

Index Terms—SIMT, GPU, Programmability, Simulation, Per-
formance.

I. INTRODUCTION

Most parallel programs are written in a Multiple Instructions

Multiple Data (MIMD) fashion, primarily targeting CPUs [5],

[20], [21], [33], [39]. However, the slowing of Moore’s Law

and the energy-efficiency limitations of CPUs have prompted

a paradigm shift in architectural approaches, ushering in the

era of accelerators, with the GPU’s Single Instruction Multiple

Thread (SIMT) model gaining the most commercial traction.

Beyond their conventional role in graphics processing, SIMT-

based architectures are used pervasively in High-Performance

Computing (HPC) and Machine Learning (ML). However,

they have yet to gain significant traction in other parallel

domains. Additional classes of software can benefit from exe-

cution on efficient SIMT hardware, creating a more diverse set

of applications for architects to explore SIMT designs outside

of traditional GPUs. From a software developer’s perspective,

porting code to a SIMT accelerator demands significant devel-

opment time, and there is a risk of wasting effort if the code

is unsuitable for the hardware. As a result, most GPU codes
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Fig. 1: Estimated SIMT Efficiency for 36 MIMD applications

(Section V-A) using ThreadFuser.

are ported from CPU codes with easy-to-identify regularity in

their control flow and access patterns. However, many parallel

applications miss acceleration opportunities because no effort

has been invested in moving them to a GPU. If developers had

access to a zero-effort performance estimation framework, the

risk of porting would be reduced, and more software could

take advantage of SIMT hardware. Similarly, architects face

limitations in analyzing and assessing the efficiency of new

SIMT hardware due to the limited variety of available software

for SIMT machines. Granting hardware designers the ability

to examine the impact of SIMT hardware on any CPU binary

can lead to more sophisticated SIMT accelerators that target

workloads beyond graphics, HPC, and ML.

To address both the developer’s lack of predictability and

the architect’s lack of software, we introduce ThreadFuser.

ThreadFuser is an analysis and trace-generation framework

designed to rapidly and precisely predict the performance

of any MIMD CPU program on SIMT hardware. By gath-

ering dynamic traces from unaltered parallel CPU binaries,

ThreadFuser quickly analyses control flow and memory access

patterns. This process results in a comprehensive, per-function

breakdown of a parallel application’s SIMT efficiency, mem-

ory divergence level, and synchronization characteristics if it

were to be executed on SIMT hardware. This initial estimate is

cheap to produce (generated with no programmer effort in only

2-6× native CPU execution time) and can be applied to any

CPU binary, even closed source. For a more comprehensive

analysis, ThreadFuser also generates a trace file that integrates

*Work conducted at Purdue University, currently at AMD Corporation



with trace-based SIMT hardware simulators [27], [45]. Using

the open-source Accel-Sim [27] framework, we demonstrate

ThreadFuser’s capability to generate detailed performance

analysis that accounts for all the cycle-level factors that impact

performance, allowing architects to evaluate SIMT designs that

target diverse workloads.

To demonstrate ThreadFuser’s effectiveness, Figure 1 plots

the estimated SIMT efficiency of 36 MIMD CPU workloads

(described in Section V-A) if they were run on SIMT hardware

with warp sizes of 8, 16, and 32. Some of these workloads

have complimentary GPU implementations (which we use

for correlation in Section IV); however, most do not. This

information is instructive to developers, who can quickly see

if the workload will perform poorly on a GPU if no addi-

tional optimizations are made. For instance, Pigz [1], a Linux

binary that implements GZip, exhibits notably low efficiency

compared to N-body simulation. A quick as-is port of Pigz

is unlikely to perform well on the GPU, where the N-body

code, as-written, will map very easily to SIMT hardware. Note

that SIMT efficiency is a necessary but insufficient condition

for performance improvement on a GPU. If the application’s

control flow, memory divergence, and synchronization patterns

look promising, the software designer can use ThreadFuser’s

simulator integration to analyze speedup predictions and bot-

tlenecks deeply. However, for software developers, the quickly

generated high-level information allows them to identify which

applications or services might be good GPU candidates with

little SIMT-specific code optimizations.

ThreadFuser leverages Intel’s x86 PIN tool [30] to gen-

erate dynamic instruction traces for each CPU thread, for-

warding them to a backend analyzer that employs a config-

urable batching algorithm to group threads into warps. Subse-

quently, ThreadFuser conducts a stack-based Immediate Post-

Dominator (IPDOM) reconvergence analysis for the grouped

threads [15]. This analysis calculates the SIMT control-flow

efficiency and the application’s anticipated memory diver-

gence (average accesses per memory instruction). ThreadFuser

also monitors the invocation of synchronization primitives,

ensuring that serialization is enforced when multiple threads

fused into the same warp access the same lock. To validate

the accuracy of ThreadFuser, we correlate efficiency and

performance metrics against real GPU hardware in 11 parallel

workloads with existing CPU and CUDA implementations.

Utilizing ThreadFuser, we conduct case studies to showcase

its potential application and shed light on untapped oppor-

tunities within contemporary parallel CPU workloads. For

instance, we explore the viability of porting multi-threaded

Linux utilities to SIMT hardware. Many of these workloads,

with unaltered code, demonstrate promisingly convergent con-

trol flow, achieving up to 99% SIMT efficiency and projected

speedups of 15-20x. We also explore the effect SIMT exe-

cution has on data center microservices [16], [41]. Modern

data centers exhibit extensive degrees of similar request-level

parallelism, receiving numerous independent requests from

millions of users running the same service code. ThreadFuser’s

analysis reveals that some microservices exhibit high con-

trol efficiency, averaging 78%, indicating potential efficiency

gains from executing them in a SIMT fashion. Using these

workloads, we also examine their synchronization patterns and

demonstrate the impact fine-grained locking can have on SIMT

workloads.

While ThreadFuser helps analyze closed-source applica-

tions, it is also designed to help developers perform pre-

port source code analysis. ThreadFuser generates a function-

specific report on efficiency metrics that helps identify likely

bottlenecks in GPU execution. Using this information, de-

velopers can make more informed decisions about which

functions are easy-wins and which need more refactoring to

make them amenable to GPU acceleration. We perform a case

study using production microservice to identify code—buried

deep within a library call—that single-handedly destroys the

application’s SIMT efficiency. Once identified, we demonstrate

how a SIMT-aware modification to the code improves SIMT

efficiency from 6% to 90%.

ThreadFuser is not limited to studying how developers

might better use GPUs. Integrating with a cycle-level sim-

ulator, ThreadFuser can be used to design efficient SIMT

machines with thread counts between a multicore CPU and

a GPU. Prior work has demonstrated that SIMT architectures

with a thread count in the hundreds to low thousands can be

an energy-efficient way to execute general-purpose instruction

sets [14], [26], [44]. The ThreadFuser infrastructure makes it

possible to study any MIMD workload with any thread count

using the Accel-Sim SIMT simulator.

This paper makes the following contributions:

• We introduce ThreadFuser, an innovative analysis frame-

work designed to rapidly and accurately estimate the per-

formance characteristics of parallel CPU workloads when

executed on SIMT hardware. ThreadFuser is validated

using GPU hardware across 11 OpenMP workloads with

CUDA implementations (Section IV).

• We demonstrate ThreadFuser’s ability to aid software

developers in creating zero-cost estimates of GPU per-

formance, showcasing how ThreadFuser can pinpoint

code regions that are challenging for GPUs. Our analysis

demonstrates that many CPU workloads have untapped

potential on contemporary GPUs (Section V-A).

• We highlight ThreadFuser’s ability to provide architects

with more diverse SIMT software and drive innovation

in data-parallel accelerators that target workloads outside

of graphics, ML, and HPC. We integrate ThreadFuser

with a state-of-the-art GPU simulator, demonstrating

that accelerator innovations can be driven by evaluating

MIMD software (Section V-B).

II. BACKGROUND

Switching from conventional CPUs to SIMT architecture,

a blend of SIMD and multithreading, responds to the

demand for parallelism and energy efficiency. Through warps

and control-flow divergence management, SIMT optimizes

efficiency. This section details the SIMT execution model
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Fig. 2: Example of SIMT Stack operations performed by

ThreadFuser.

and the effect of batching MIMD threads together for SIMT

execution.

SIMT Execution Model: Modern SIMT architectures com-

prise multiple processing cores, each hosting numerous par-

allel lanes (SIMD units), a vector register file, and a shared

memory segment. The primary unit of execution is referred to

as a warp (or wavefront), representing a collection of threads

executed in lockstep on a SIMD unit. Shared memory is

distributed among the warps concurrently executing on a core.

SIMT execution on GPUs involves running multiple threads

within a warp simultaneously, each potentially taking a differ-

ent path in the program’s control flow graph, as exemplified in

Figure 2. When threads in the same warp diverge, as shown

after BBL1 in Figure 2b, current SIMT architectures execute

all control paths, such as BBL2 and BBL3, sequentially. This

serial execution of divergent paths can reduce parallelism and

SIMD unit utilization. To counter this, modern GPUs ensure

the reconvergence of threads that follow different control

paths.

Control-flow divergence in SIMT hardware is man-

aged through a SIMT stack and immediate post-dominator

(IPDOM)-based convergence mechanism, as depicted in Fig-

ure 2. In this context, all threads reaching a specific diverged

branch reconverge at the immediate post-dominator basic

block of that branch. The post-dominator (IPDOM) basic

block, is the first basic block in the static control flow and

is guaranteed to be on both diverged paths (as indicated in

BBL4 in Figure 2b), plays a crucial role in orchestrating

reconvergence and maintaining high SIMD unit utilization

for optimal parallel execution. This approach is essential

for maximizing GPU performance and utilization in parallel

computing tasks [15], [31], [32].

Currently, the method for implementing IPDOM reconver-

gence in SIMT architectures is to treat control flow execution

as a serial stack, as shown in Figure 2c . Initially, a new

entry is pushed onto the SIMT stack with the active mask of

all threads set to all 1s. The top of the stack (TOS) keeps

track of the next basic block to execute. When encountering

a divergence in threads’ traces, such as BBL2 and BBL3, the

SIMT hardware adds new entries to the SIMT stack and uses

IPDOM analysis to identify the immediate post-dominator

(reconvergence point), exemplified by BBL4 in Figure 2c.

Each time control diverges, both the taken and not taken paths

are pushed onto the stack (in arbitrary order), and the path at

the new top of the stack is executed. As the SIMT hardware

processes divergent entries (BBL2, BBL3), it executes them

with distinct lock-step instructions and active masks (e.g.,

10 and 01), resulting in limited parallelism. However, this

approach allows for efficient handling of divergent paths

within a warp. Upon reaching the reconvergence point (BBL4),

the hardware removes the entry of the respective thread

from the SIMT stack, enabling the reconvergence of threads.

This mechanism allows threads to execute the instruction in

lockstep with active lanes, effectively managing control-flow

divergence in SIMT architectures.

From CPU to SIMT: The escalating demand for parallelism

in computational tasks and the critical need for energy-efficient

solutions have propelled the shift from conventional CPU

architectures to SIMT (Single Instruction, Multiple Threads)

architectures. SIMT combines the principles of SIMD (Single

Instruction, Multiple Data) with multithreading, allowing a

single instruction to be executed on multiple threads simul-

taneously while enabling divergence in data paths. Unlike

SIMD, SIMT’s implicit vectorization simplifies programming,

eliminating the need for explicit predicates when lanes diverge.

Its execution model, based on Single Program Multiple Data

(SPMD) on SIMD hardware, allows each thread to be treated

separately by the programmer while hardware groups threads

together into warps (usually 64 or 32 threads wide) to aggre-

gate control logic and exploit spatial data reuse among parallel

threads. The inherent efficiency in SIMT hardware comes from

(i) amortizing the pipeline front-end overhead by fetching,

decoding, and scheduling each instruction only once for all

the threads in the same warp and (ii) generating less traffic

to the memory system by coalescing accesses from threads

in the same warp. GPUs have traditionally been recognized as

the predominant platform for SIMT hardware. However, recent

studies by Kalathingal et al. [25], and Tino et al. [44] challenge

this notion, demonstrating that SIMT efficiency can extend to

Simultaneous Multi-Threading (SMT) CPU hardware as well.

This is achieved by dynamically grouping multiple scalar SMT

threads to execute in lockstep when they share a common



instruction stream.

Programming abstractions for SIMT, such as CUDA [36]

or HIP [6], create the illusion of data parallelism with in-

dependent threads. However, in actual execution, a group of

program instances (threads) is mapped to a warp and exe-

cuted synchronously. Consequently, control-flow divergence in

SPMD programs can significantly impact performance due to

the inherent limitations of SIMT execution.

In SIMT hardware, memory coalescing is illustrated in

figure 4, showcasing its optimization impact. This process

consolidates multiple memory requests from threads within a

warp into a single, efficient transaction. This streamlined ap-

proach minimizes the number of 32-byte transactions needed

for load/store instructions, enhancing overall memory access

performance. The coalescing process showcased in figure 4

mirrors algorithms commonly utilized in GPU hardware [35],

[36], emphasizing its alignment with established optimization

principles and its contribution to improved efficiency and

throughput in SIMT architectures.

Whether utilizing GPUs or the previously suggested SIMT-

based CPU hardware, a fundamental inquiry arises: How much

can a specific workload capitalize on SIMT-based hardware?

In simpler terms, what is the extent of SIMT efficiency in

parallel CPU workloads?

III. SYSTEM OVERVIEW

Figure 3 visually represents the design of the ThreadFuser

system, providing insight into its structure and functionalities.

The overarching goal of ThreadFuser is to establish a

framework capable of accurately estimating and predicting

the performance of diverse parallel MIMD programs without

requiring to port them to SIMT hardware architecture

platforms. At its core, ThreadFuser has two primary

components: 1) The ThreadFuser tracer component (depicted

in Figure 3a) responsible for capturing detailed traces of

the MIMD application’s instructions and memory accesses.

This critical functionality forms the foundation for precise

performance estimation and analysis within the ThreadFuser

framework. (2) The ThreadFuser analyzer (depicted in

Figure 3b) that analyzes the generated traces to project the

SIMT efficiency and the memory divergence.

Additionally, ThreadFuser includes a separate component

that can be utilized to generate warp-based instruction traces.

These traces can be fed into a state-of-the-art traced-based

GPU simulator like Accel-Sim [27], providing a detailed

performance analysis.

ThreadFuser Tracer: The ThreadFuser Tracer leverages a

tracing tool built on Intel’s PIN platform [30] to systematically

generate traces for each thread initiated by the CPU program.

This tool inserts callbacks before the execution of each basic

block (BBL) to capture essential information such as addresses

and the number of instructions within executed basic blocks.

Moreover, the traces include detailed per-instruction (x86

CISC instruction) memory access information. Additionally,

the tracing tool instruments the recording of function calls,
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Fig. 3: ThreadFuser architecture.

capturing both call and return points and collecting the called

function names. This enables the framework to construct a

detailed function-call stack, providing valuable insights into

the program’s execution flow and aiding in comprehensive

analysis. Furthermore, the tool captures the addresses of

accessed synchronization locks, which are utilized by the

ThreadFuser Analyzer component to study lock contention

and synchronization overhead in multi-threaded programs.

The tool is configurable, allowing programmers to selectively

choose specific functions for tracing or exclusion. This

capability enables a more focused analysis, allowing for a

detailed study of particular regions within the application.

This flexibility showcases the tool’s adaptability to various

analyses and requirements. In essence, with its low overhead,

typically ranging between only 2 to 6 X the native CPU

execution time, the tracing tool serves as the foundational

component of ThreadFuser, actively facilitating the generation

of warp-based SIMT traces and enabling detailed analyses of

SIMT efficiency across diverse MIMD workloads running on

SIMT hardware.

ThreadFuser Analyzer: The initial goal of the analyzer

is to provide a quick, cost-effective first-order estimate

and prediction, covering SIMT efficiency and memory

divergence. This initial estimation prepares for a more

detailed performance study, enabled by the subsequent

generation of SIMT-based traces. The ThreadFuser Analyzer

pipeline, illustrated in Figure 3b, includes several key stages.

Initially, the analyzer parses the basic block and memory

traces, generated by the ThreadFuser Tracer.

The subsequent phases focus on preparing and analyzing

the parsed traces to create intermediate data structures and

metadata utilized in performance predictions. As mentioned

in section II, SIMT hardware relies on IPDOM and SIMT

divergence stacks to manage threads’ divergence. To find the

IPDOMs of basic blocks, the tool must construct the program’s

Control Flow Graph. The analyzer leverages the collected



traces of dynamically executed basic blocks to build the

Dynamic Control Flow Graph (DCFG). This graph represents

the program’s evolving control flow during execution by

identifying successors and predecessors for each Basic Block

(BBL) to form the DCFG.To simplify matters, the DCFG

is generated independently for each thread and subsequently

merged into a unified graph. In case of threads divergance, the

analyzer ensures to reconverge the threads at the reconvergence

point(IMPDOM).

ThreadFuser implements the Immediate Post-Dominator

(IPDOM) algorithm, similar to GPGPU-sim [2], [9]. This

algorithm is pivotal in identifying the first basic block that is

guaranteed to execute after all paths in the program converge.

It iteratively refines the IPDOM information for each basic

block (BB) in the program’s control flow graph

Following the IPDOM analysis, ThreadFuser organizes the

threads into warps, emulating the warp structure in SIMT

hardware. The analyzer allows user configuration of the warp

width, facilitating the exploration of different SIMT hardware

different SIMT hardware widths, as we observed how that

influences the applications in Section I. Moreover, different

batching algorithm can be explored in the process of warp

formation.

After these stages are completed, ThreadFuser proceeds to

emulate warp execution in a lock-step manner.If the analyzer

detects thread divergence based on the traces, ThreadFuser

incorporates SIMT stack operations. It utilizes data obtained

from the IPDOM analysis to ensure the convergence of threads

at the reconvergence points, emulating the architecture of

contemporary SIMT hardware (e.g., GPUs) as discussed in

Section II.

In Figure 2a, the operation of ThreadFuser is illustrated,

demonstrating how the tracer collects traces from two CPU

threads executing the same function. These traces are then

processed to construct the Dynamic Control Flow Graph

(DCFG), showcased in Figure 2b, based on the observed basic

block trace. Subsequently, ThreadFuser forms these threads

into a warp, assuming a warp size of 2 in this example.

The utilization of the SIMT stack algorithm, as detailed in

Section II, guides this process. A visual representation of the

SIMT stack operation in ThreadFuser is provided in Figure 2.

ThreadFuser captures a crucial performance metric for SIMT

hardware—SIMT efficiency. This metric involves counting

the instructions executed in lock-step mode and those exe-

cuted by each thread within the warp. SIMT efficiency is

key in assessing how effectively the program utilizes the

SIMD processing capabilities offered by SIMT hardware. The

overall SIMT efficiency for the program is then computed by

averaging these efficiencies across all warps, with the specific

formula outlined in Equation 1. For instance, a program with a

50% SIMT efficiency indicates that half of the computational

resources in a SIMD hardware unit are effectively utilized

during processing.
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SIMT efficiency =

#Instructions by all threads

#Instructions in lock-step × WarpSize
(1)

Selecting the optimal granularity for constructing the Dy-

namic Control Flow Graph (DCFG) presents a challenge.

Building the DCFG based on the entire trace might lead to

a situation where a single function is called from various

parts of the application. Consequently, the function return

instruction could point to multiple basic blocks in the DCFG,

making the Immediate Post Dominator (IPDOM) algorithm

more conservative and selecting distant reconvergence points.

To address this challenge, ThreadFuser employs a solution

by introducing a virtual basic block at the end of each

function and creating a per-function DCFG. This strategy

compels divergent threads to converge at the conclusion of

each function, mirroring the behavior seen in contemporary

SIMT hardware like GPUs. This refined approach results in a

more accurate DCFG.

Additionally, ThreadFuser maintains a function-call stack

in its SIMT stack to accurately track the currently emulated

function. Leveraging the per-function DCFG, ThreadFuser

generates a per-function efficiency report that specifically

excludes the influence of nested function calls. This feature

allows programmers to identify bottleneck functions that could

hinder SIMT performance, as exemplified in Section V-A.

Through the analysis of per-function efficiency, programmers

can optimize application performance by precisely identifying

and enhancing less efficient functions. This proves particularly

valuable in complex applications with numerous functions,

providing a detailed assessment of performance at the function

level.

ThreadFuser, in addition to evaluating SIMT efficiency,

offers valuable insights into the memory performance of the

application. The tool generates a comprehensive report on

the total number of memory transactions per x86 instruction
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Rodinia 3.1 [12] µsuite [41] ParSec 3.0 [10]
BFS 4K McRouter (Memcached ,Mid ,Leaf) 2K blackscholes 1K

Nearest Neighbors(NN) 42K TextSearch(Mid, Leaf) 2K streamcluster 8K
Stream Cluster(SC) 16K HDImageSearch(Mid, Leaf) 2K bodytrack 1K

b+tree 4K DeathStarBench facesim 1K
Particle Filter(PF) 4K Post 2K fluidanimate 4K

Parapoly [48] Text 2K freqmine 2K
BFS 4K URLShort 2K swaptions 512

Connected Components(CC) 4K UniqueID 2K vips 512
Page Rank 4K UserTag 2K x264 4K

Nbody 4K User 2K Others
Micro Benchmark Others Pigz [1] 128

VectorAdd 1K Rotate [7] 1K
Uncoalesced Vector operation 1K MD5 [7] 512

TABLE I: Studied Workloads. #SIMT threads is the number of threads simulated by ThreadFuser

that initiates memory accesses. This involves checking

the accessed addresses by each thread within the warp,

subsequently coalescing them to determine the number

of 32-byte transactions necessary for the load or store

instruction. Figure 4 provides an illustrative example of

how ThreadFuser adeptly coalesces memory accesses. For

instance, when an ADD instruction generates a load memory

access, and all threads in the warp touch memory addresses

that are 4 bytes apart, ThreadFuser coalesces these accesses

into a single memory transaction (i.e., coalesced accesses).

Conversely, in scenarios of divergent memory access, multiple

transactions might be required to load the data necessary for

the ADD instruction. Moreover, ThreadFuser breaks down the

transactions based on the accessed segment, distinguishing

between stack and heap transactions. As the tool coalesces

transactions into 32-byte cache line transactions, the ideal

number of memory transactions per coalesced memory

instruction for a 32-thread warp is ideally 4x 32B transactions

for 4-byte access or 8x 32B transactions for 8-byte access.

This insightful breakdown aids in identifying memory access

patterns and unveils optimization opportunities for enhancing

application performance.

Synchronization handling in ThreadFuser: Dealing with

synchronization and locking presents a significant obstacle

when attempting to port MIMD applications to SIMT

hardware. Locks contention can affect the control flow

efficiency of the running application. As a result, to ensure

accurate prediction of the performance of MIMD applications

ThreadFuser monitors all the locks acquiring/releasing

operations performed by each thread. The ThreadFuser Tracer

records the calls to all synchronization primitives along with

the addresses of the accessed locks. In the analysis phase,

we use the traced information to quantify the effects of

the synchronization. To identify the critical section being

executed by the threads, we match the lock and unlock

operations based on the lock address they refer to. As we

emulate the execution of the warps, if a synchronization

primitive is called, we check the addresses of locks accessed

by all threads and allow threads acquiring different locks to

execute in parallel. For threads that compete on the same

lock, the analyzer will simulate their execution in a serial

fashion. Therefore, ThreadFuser pushes multiple entries to

the SIMT stack, reflecting the serial execution of the threads.

The identification and location of the reconvergence point of

serialized threads can impact the efficiency of control flow.

We select one of the unlock pairs of one of the threads as

the anticipated reconvergence point. We acknowledge that

different choices of reconvergence points may have varying

effects on the control flow efficiency, but we defer this

investigation to future research. In section V-B, we explore

the impact of the critical section on control flow efficiency.

Generating warp-based instruction traces using Thread-

Fuser: To provide a comprehensive performance evaluation

of parallel MIMD applications on SIMT hardware like GPUs,

ThreadFuser generates warp-based instruction traces.

These traces can be fed to trace-based SIMT hardware

simulators, like Accel-Sim [27]. Utilizing these traces enables

detailed microarchitectural performance predictions, including

cycle-level timing predictions using the SIMT simulator. This

capability significantly enhances the precision of performance

estimation, providing a deeper understanding of the applica-

tion’s behavior on SIMT hardware. Section V-A discuss how

ThreadFuser used to predict the actual speedups of various

MIMD applications with minimum developer effort.

ThreadFuser generates x86 instruction SIMT traces, which

Accel-Sim utilizes by mapping those instructions to Accel-

Sim virtual instructions. Furthermore, ThreadFuser converts

x86 CISC instructions to a set of multiple RISC instructions.

For example a CISC add instruction with memory operand

breaks down into a load and add when converted to RISC in-

structions. ThreadFuser directs stack accesses to local memory

accesses and other accesses to global memory accesses.

This feature is particularly helpful for architects seeking

to explore various application types, including those with

complex control flow or memory access patterns. Such

exploration is important in optimizing performance on SIMT

hardware. The availability of this capability proves beneficial

in the design of new domain-specific SIMT accelerators

for applications like microservices, as exemplified by the



hardware architecture proposed in previous work [14], [26],

[44]. In Section V-A, we discuss the accuracy and validity of

these traces on Accel-Sim.

IV. CORRELATION RESULTS

In this section, we examine the accuracy of our proposed

framework, ThreadFuser (specifically the analyzer), by con-

ducting a validation against real SIMT hardware, specifi-

cally an NVIDIA Hopper H100. The validation employs 11

multithreaded CPU workloads, outlined in Table I, imple-

mented using Linux POSIX threads (Pthread) and OpenMP

frameworks. Our selection includes applications derived from

Rodinia 3.1 [12], featuring OpenMP implementations iden-

tical to their CUDA implementations. Furthermore, we re-

implemented three applications with complex control flow

graph from the Parapoly [48] suite using Pthreads. Also we

implemented two microbenchmarks which are simple vector

multiply-add kernels with different memory accessing pat-

terns.

For validation, two metrics are employed: (1) Mean Ab-

solute Error (MAE) and (2) Karl Pearson Coefficient of

Dispersion (Correl). MAE quantifies the error between the

analyzer data and hardware data, providing insight into the

accuracy of our framework. Correl, on the other hand, assesses

the strength of trends between the analyzer and hardware

data.For our experiments, we employ the CUDA 12.3 toolkit,

including the NVCC compiler toolchain, runtime library, and

SDK utilities. Furthermore, we collect SIMT efficiency and

memory transaction data for Volta GPU hardware using the

Nvidia Profiling tool (Nsight Compute) [34]. These metrics

and tools collectively form the basis for a robust validation

process, ensuring the reliability and accuracy of ThreadFuser

against real SIMT hardware.

We compile the CUDA workloads using nvcc at the -O3

optimization level. We did not observe significant variations

in the results when the CUDA workloads were compiled using

different optimization options. In contrast, we adopt the gcc

compiler for compiling CPU workloads, employing various

optimization options such as O0, O1, O2, and O3. Subse-

quently, traces are collected for each optimized binary version.

The tracing tool, developed using the Intel PIN 3.15 platform,

captures x86 traces from our multithreaded applications. This

tracing procedure is conducted on a machine with an Intel

Xeon CPU E5-2630 with 20 cores.

In scenarios where the CPU application establishes a thread

pool (e.g., OpenMP), the workload distribution among threads

depends on the OS or the library’s scheduling policy. In

contrast, in GPUs, all threads within a kernel execute identical

code and handle an equivalent amount of fine-grain work.

To ensure an equitable comparison between CPU and GPU

threads, ThreadFuser addresses this challenge by generating

a trace for each loop iteration in OpenMP workloads and

a trace for each call to the traced thread’s worker function

in Pthread workloads. This approach guarantees consistency

in data partitioning and interleaving between CPU and
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Fig. 5: ThreadFuser SIMT efficiency and memory divergence

correlation versus Nvidia Hopper H100.

GPU implementations throughout the study. In Table I,

the ”#SIMT Threads” column denotes both the number of

threads executed on the actual GPU and the number of

OpenMP iterations/Pthreads worker functions simulated by

ThreadFuser.

SIMT Efficiency Correlation: Figure 5a illustrates a com-

parative analysis of SIMT control efficiency as projected by

ThreadFuser in contrast to SIMT-based NVIDIA H100 GPU

hardware. This experiment includes all correlation workloads

detailed in Table I, compiled with varying optimization options

to ensure a comprehensive evaluation. ThreadFuser demon-

strates a perfect 1.0 correlation with hardware when employing

O0 and O1 optimizations. Notably, O1 exhibits a minimal 3%

mean absolute error, making it the closest approximation to

the real GPU.

In general, the analyzer tends to overestimate SIMT ef-

ficiency when O3 optimizations are applied, given that the

compiler employs more aggressive optimization strategies to

enhance performance. Techniques such as loop unrolling and

jump table implementation for switch statements play a role

in minimizing code divergence.

An interesting observation we found when comparing the

PTX generated by nvcc and the x86 assembly code generated



by gcc. Surprisingly, gcc applies more aggressive optimiza-

tions than nvcc, even when both compilers are invoked with the

highest optimization option.gcc targets x86 CPUs, which have

a rich instruction set and various optimization opportunities.

For example, gcc can utilize SSE and AVX instructions for

vectorization and parallel processing, optimizing performance

for x86 architectures.

We calculated the standard deviation (std) of errors across

the different optimization levels for all 11 applications to

assess the variability in performance outcomes. The calculated

std value is approximately 6%, reflecting the range of errors

observed among the tested optimization levels. Additionally,

the average error across these samples is approximately 4%.

Notably, 30 out of these 44 samples, or approximately 83%,

exhibit errors that fall within one standard deviation from

the mean. This statistical measure provides insights into the

consistency and predictability of error outcomes relative to the

mean performance across the optimization spectrum.

Memory Accesses Correlation: In Figure 5b, we present a

comparison of the total number of 32-byte memory trans-

actions for each workload detailed in Table I. This figure

illustrates the relationship between the load/store accesses

estimated by ThreadFuser and the actual data collected during

the execution of the workloads on the Nvidia H100 GPU. The

analysis focuses on the overall number of global transactions

issued per load/store on the GPU and the number of accesses

per each x86 instruction generating memory accesses to the

heap segment (as disccused in section III). Both the X and Y

axes of the graph utilize a base-10 logarithmic scale.

Remarkably, ThreadFuser exhibits a robust correlation with

hardware data for memory transactions, akin to the efficiency

study. Specifically, the correlation factors are 0.99, 0.98, 0.98,

and 0.96 for O0, O1, O2, and O3, respectively. Among these

optimization options, O1 boasts the lowest mean absolute error

(MAE) of 17%. Similar to SIMT efficiency analysis, the study

of memory transactions reveals that 85% of the applications

exhibit transaction rates within one standard deviation of the

mean rate, approximately 34%.

Upon analyzing the assembly code generated by the gcc

compiler across different optimization levels, significant vari-

ations in memory accesses were observed. Specifically, O0

exhibited a tendency to include a load or store instruction for

each global variable access, whereas O2 and O3 applied more

aggressive optimizations to minimize memory transactions.

These optimizations leverage the differing number of archi-

tectural registers provided by SIMT and x86 ISAs as well as

the significant differences in compiler toolchains, influencing

the accuracy of memory transaction estimates in ThreadFuser.

Taking the example of VectorAdd, the use of O2 and O3

resulted in storing the cumulative sum value in the register

file, reducing the number of issued transactions. O1, with

a moderate level of optimization, found a middle ground,

positioning itself between the extremes and achieving the

lowest Mean Absolute Error (MAE) of 17% among the four

levels of optimization.
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Fig. 6: Projected Speedup of the studied MIMD CPU workload

using GPU simulator(Speedup Normalized to Multi-threaded

CPU execution on actual CPU).

V. ThreadFuser USE CASES

This section unveils use cases of ThreadFuser for both

developers and architects, illustrating the practical value and

versatility of the ThreadFuser framework. In the first use case,

covered in Section V-A, we explore a practical application

of the ThreadFuser framework for developers. This section

demonstrates the analyzer’s ability to swiftly estimate SIMT

efficiency with minimal time overhead and to project speedup

when utilized with a warp-based simulator. We present a

case study in which we identify the sources of SIMT in-

efficiency bottlenecking a particular workload. Importantly,

this is achieved without the necessity of undergoing the

porting effort. In Section V-B, we demonstrate the framework’s

utility for architects in guiding the design of future SIMT

hardware. We emphasize the importance of designing future

SIMT hardware to handle a broader range of general-purpose

workloads. The section offers a detailed study of the impact

of synchronization primitives on SIMT efficiency, explores the

relationship between SIMT width and efficiency, and discusses

the design considerations for compilers and underlying mem-

ory systems to exploit the efficiency of SIMT hardware.

A. Developers Use Case

Table I provides an exhaustive catalog of the workloads

incorporated in this case study. These workloads primarily rely

on CPU-based processing and currently lack a corresponding

CUDA implementation. Consequently, we utilize the original

CPU C++ implementation without any modifications to assess

the Single Instruction, Multiple Thread (SIMT) efficiency of

these multi-threaded workloads. We limit traced threads to

capture essential patterns efficiently. Additional threads would

repeat the same patterns without adding significant insights.

The focal point of this case study revolves around exploring

the feasibility of executing these multi-threaded workloads

on SIMT hardware, particularly GPUs [35], [36]. To achieve

this, compute-intensive applications, alongside data center

microservice workloads, are implemented using C++ OpenMP

and Pthread libraries. The microservices, crafted in C++,



leverage a spectrum of libraries, including C++ stdlib, Intel

MKL, gRPC, and FLANN. Compilation is carried out using

gcc with the -O3 optimization and SSE vectorization enabled.

To optimize performance, the applications with compute-

intensive tasks are partitioned into multiple chunks, and each

thread executes the same computation on the assigned chunk in

parallel. This design aligns with the Single Program Multiple

Data (SPMD) pattern, making the applications well-suited for

efficient parallelization.

As illustrated in Figure 1, the data compression benchmark,

pigz, displays constrained efficiency due to its control flow

being intrinsically data-dependent [28], [29], [37]. Notably,

microservices applications such as TextSearch exhibit re-

markable SIMT efficiency. This is a noteworthy observation,

considering that the SIMT hardware domain has, until now,

remained relatively unexplored and unported for microservices

applications.

By leveraging ThreadFuser, developers can rapidly and cost-

effectively estimate the porting effort for these workloads,

minimizing overhead. This provides developers with a valuable

tool to gauge the potential SIMT efficiency of their code

without undergoing the actual porting process. SIMT effi-

ciency is a pivotal factor that dictates the extent of porting

and code reengineering efforts required to make a code SIMT-

friendly. Therefore, this estimation approach aids developers in

making informed decisions about the feasibility and resource

implications of adapting their code for SIMT architectures.

Moreover, through the ThreadFuser trace generation feature,

developers can utilize state-of-the-art simulators such as Ac-

celSim [27] to forecast the performance speedup gains when

migrating CPU MIMD applications to SIMT hardware, like

GPUs. Figure 6 delineates the projected speedups for all the

applications listed in Table I.

For applications where a SIMT implementation exists in

CUDA, traces for the CUDA implementation were generated

using nvbit [46] and the tracing tool integrated with Accel-

Sim [27] on an Nvidia Volta 100 GPU. For CPU implemen-

tations, traces were generated using ThreadFuser with a warp

size of 32 threads. Subsequently, both sets of collected traces

were executed in the AccelSim simulator, configured with

Nvidia RTX 3070 settings.

As depicted in the figure, ThreadFuser enables accurate

measurement and prediction of performance, as evidenced by

the close alignment of both series on the left side of the graph,

following the same trend line. This capability shows the effec-

tiveness of ThreadFuser in providing developers with valuable

insights into the potential speedup of their applications on

SIMT hardware, aiding in informed decision-making during

the porting process.

In cases where access to the source code is available,

ThreadFuser proves to be an invaluable tool for identifying

the underlying causes of low SIMT efficiency when porting

current MIMD implementations to SIMT hardware.

We conducted an in-depth analysis on one of the microser-

vices, specifically HDSearch-Midtier. Initially, the SIMT effi-

ciency for this workload was measured at only 7%. However,
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Fig. 7: HDSearch-Midtier microservice analysis

leveraging ThreadFuser’s per-function analysis, we were able

to break down the SIMT efficiency on a per-function basis,

enabling us to pinpoint specific code sections exhibiting high

control divergence. The distribution of executed instructions

per function call in HDSearch-Midtier, depicted in Figure 7a,

revealed that half of the instructions were generated from the

getpoint method, showing a substantial control divergence of

6%, as illustrated in Figure 7b.

Further examination of the source code of the getpoint

function in the FLANN library, as shown in Listing 1, unveiled

data-dependent control flow for kd-tree traversal. To address

this issue, we ensured that the number of computations per-

formed by getpoint matched the originally reported results by

the HDSearch-Midtier microservice to the client. By fixing the

number of computations to return the first top 10 results for all

queries, we guaranteed uniform execution across all threads in

the for loop at line #5. This adjustment significantly increased

SIMT efficiency to 90%, while still maintaining an impressive

93% image search accuracy. Notably, the other two methods,

ProcessRequest and vector, faced limitations associated with

the serialization from dynamic memory allocation in the C++

glibc library.

1 for (; table != table_end; ++table) {

2 for (; xor_mask != xor_mask_end; ++xor_mask) {

3 sub_key = key ˆ (*xor_mask);

4 ....

5 for (int j = 0; j < num_point; j++) {

6 point_id_vec->push_back(point);

7 }

8 }

9 }

Listing 1: Code snapshot from FLANN library used in

HDSearch-midtier workload

B. Architects Use Case

ThreadFuser aimes at assisting architects in evaluating the

efficiency and effectiveness of emerging SIMT hardware. It



provides architects with the opportunity to delve into a new

realm of workloads that were previously unconsidered for

SIMT hardware. This capability empowers architects to ex-

plore a diverse set of applications beyond the traditional focus

on graphics and machine learning. By doing so, architects

gain valuable insights into the hardware features necessary

for future SIMT architectures, enabling them to design novel

accelerators tailored to a broader spectrum of applications like

the ones introduced in previous work [13], [14], [26], [44].

For example, utilizing ThreadFuser, architects can effi-

ciently investigate the impact of SIMT warp width on SIMT

efficiency. While a warp size of 32 is commonly employed

in modern SIMT hardware, such as NVIDIA GPUs [36], we

extend the configurability of the warp size in ThreadFuser,

ranging it from 8 to 32. Comprehensive experiments are then

conducted on all the workloads discussed in the preceding

sections.

As depicted in Figure 1, the SIMT efficiency of the work-

loads is illustrated across various warp sizes. The results

prominently showcase a consistent trend: as the warp size

increases, the efficiency of all workloads experiences a decline.

This observed decline can be attributed to the augmented num-

ber of threads accommodated within the warp, consequently

escalating the likelihood of thread divergence.

The decreasing control efficiency with an increasing warp

width stems from the expanded number of threads in the warp.

This, in turn, amplifies the probability of thread divergence.

Furthermore, the increase in control-flow divergence becomes

more harmful as all divergent paths are executed serially,

leading to a reduction in parallelism. This observed behavior

aligns seamlessly with Equation 1, as previously discussed.

Figure 1 shows that high SIMT efficiency workloads are

less affected by warp size. For example, Nbody and MD5 have

minimal variations below 5%.

On the other hand, lower SIMT efficiency workloads are

more sensitive to warp size. Pigz achieves 18% efficiency with

a warp size of 8, compared to 10% with a warp size of 32.

Similarly, Rodinia BFS jumps to 40% efficiency with an 8-

thread warp size.

These findings imply that workloads with lower SIMT

efficiency could benefit from hardware optimizations or warp

size adjustments. Understanding sensitivity variations across

workloads is crucial for architects optimizing SIMT efficiency

based on each application’s unique characteristics.

Impact of synchronization primitives on SIMT efficiency:

When looking at workloads that involve synchronization, like

microservices, it’s important to note that the SIMT efficiency

we report assumes fine-grain locking and doesn’t consider lock

spinning in the traces we generate. For example, the C++ glibc

allocator uses a single shared mutex for dynamic memory

allocation, causing conflicts between threads, especially during

the new operation.

We assume the use of fine-grain locking and a high-

throughput concurrent memory manager, a common practice

in optimized data center workloads for good performance

scaling [17].
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In Figure 8, we show the percentage of instructions not

traced, including spinning lock instructions and I/O operations.

The GEOMEAN indicates that we are tracing 90% of the in-

structions, which means that we can safely skip the remaining

10%. This approach ensures a practical evaluation of SIMT

efficiency in workloads with synchronization, giving a realistic

view of performance scaling potential.

Furthermore, architects can leverage ThreadFuser to explore

more complex workloads where synchronization primitives

play a crucial role, an area often overlooked and underexplored

in SIMT hardware like GPUs.

Using ThreadFuser, we investigate the impact of imple-

menting locks and other synchronization primitives on the

overall control flow efficiency. The study used a measure of

SIMT efficiency built for data center workloads, as depicted

in Figure 9.

Dealing with synchronization primitives, following the

intra-warp approach discussed in Section III, did result in

a decrease in SIMT efficiency. However, this decline was

not found to be as substantial, aligning with the findings

discussed in 8. This observation can be attributed to the

nature of the workloads studied, where microservices han-

dle independent requests from multiple clients, resulting in

minimal data sharing. Additionally, upon closer examination

of the source code, we identified the use of fine-grained

locking, effectively mitigating lock contentions and reducing

synchronization overheads.

This study shows the importance of carefully optimizing

synchronization methods to ensure optimal control flow
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Metric XAPP ThreadFuser

Input CPU code CPU MIMD traces

Output GPU speedup projection

Estimation SIMT efficiency
Estimation memory divergence

Cycle level detailed performance
estimation

Source code bottlenecks

Analysis Profiling ML-based Dynamic CFG

Accuracy (error %) 26.9% Execution time

3% SIMT efficiency , 17% memory
0.97 Speedup projection correlation

33% Execution time

Hardware support Only GPUs Any SIMT hardware including GPU

TABLE II: XAPP [8] vs ThreadFuser comparison

efficiency in parallel computing environments.

Impact of Memory divergence: In Figure 10, we present

the memory divergence degree, quantified as the number of

memory transactions per load/store instruction, for both heap

and stack memory access. The depicted workloads exhibit

significant memory divergence, a result of each thread having

its private stack, and the memory manager allocating scattered

data chunks in the heap segment. This allocation strategy

diminishes the opportunity for data coalescing during runtime.

To address this challenge, data restructuring, such as transi-

tioning from a array-of-structure (AoS) to a structure-of-array

(SoA) representation, can enhance the memory efficiency of

these workloads [36].

Architects and compiler developers play a pivotal role in

proposing hardware or software solutions, such as optimized

memory allocators [17], [24], [38], [42], to minimize memory

divergence. This proactive approach ensures that the memory

access patterns align with the underlying hardware archi-

tecture, optimizing data layout, and consequently improving

overall memory efficiency for these workloads.

VI. RELATED WORK

The closest existing work to ThreadFuser is XAPP [8].

Table II outlines the main differences between XAPP and

ThreadFuser. XAPP employs a machine-learning-based ap-

proach to predict GPU performance based on single-threaded

CPU implementations, identifying code segments likely to

benefit from GPU porting using 16 profile-based program

properties. In contrast, ThreadFuser utilizes dynamic control-

flow graph properties for more accurate SIMT control ef-

ficiency and memory divergence predictions. In contrast to

XAPP, ThreadFuser is designed to analyze and simulate

MIMD workloads, allowing for fine-grained identification

of code bottlenecks and detailed architectural explorations.

XAPP’s opaque machine learning model is well suited to

providing a quick estimate of code performance but lacks the

comprehensive performance analysis ThreadFuser’s architec-

tural simulation integration provides.

From a prediction accuracy perspective, XAPP achieves

a 26.9% error rate in predicting execution time, while

ThreadFuser averages 33% for similar workloads. More-

over, while XAPP is limited to existing GPU architectures,

ThreadFuser supports the analysis of multithreaded CPU

workloads on various SIMT hardware platforms, including

GPUs. This capability is facilitated by ThreadFuser’s SIMT

trace generator, which can feed any SIMT trace-based simu-

lator, enabling the exploration of diverse SIMT hardware mi-

croarchitectures and offering insights for previously unstudied

MIMD workloads. ThreadFuser stands out as the first frame-

work enabling programmers and architects to comprehensively

study and predict MIMD performance on SIMT machines

without code porting effort. Furthermore, ThreadFuser excels

in accurate predictions of dynamic workload performance that

vary with input, distinguishing it from XAPP’s reliance solely

on static code analysis.

In GPU First [43], the authors present a compiler technique

for executing CPU code on GPUs, but it is limited to OpenMP

programs. In contrast, our approach supports a broader range

of multithreading models, offering greater flexibility for port-

ing CPU workloads to SIMT architectures.

Various GPU analytical performance models with distinct

focuses have been proposed [22], [23], [47], [49]. Wu et

al. [47] employ machine learning for GPU performance and

power estimation, while Zhou et al. [23] introduce GPUMech,

using interval analysis to model multithreading and resource

contentions. Zhang et al. [49] develop a microbenchmark-

based model to identify GPU program bottlenecks, and Hong

et al. [22] propose an integrated power and performance

prediction model for GPUs. Previous works [11], [40], [46],

[50] have proposed performance profiling methodologies for

CUDA workloads, aiming to pinpoint performance bottle-

necks. Zhou et al. [50] introduce GPA, a performance advisor

for NVIDIA GPUs that suggests potential code optimizations

across multiple levels. Shen et al. [40] present CUDAAdvisor,

a profiling framework designed to guide code optimization

on modern GPUs, conducting fine-grained analyses based on

profiling results from GPU kernels.

In contrast, ThreadFuser offers distinctive insights, specif-

ically targeting CPU MIMD programs such as OpenMP or

microservices. ThreadFuser determines whether these pro-

grams would benefit from porting to SIMT hardware and

provides performance optimization suggestions to enhance

SIMT efficiency.

Previous research [3], [4], [18] have found that server

workloads have SIMT efficiency that can be exploited on

GPUs. To take advantage of request similarity, Sandeep et

al. [3] proposed running data center server workloads, SPEC-



Web benchmarks, in lock-step execution on GPUs. While

achieving significant energy efficiency, the authors had to

rewrite the workloads from PHP to CUDA. Similarly, Het-

herington et al. [18], [19] run the Memcahced workload on

a GPU. Agrawal et al. [4] investigate the SIMT efficiency of

SPEC-web workloads, demonstrating that they have promis-

ing control and memory efficiency that can be executed on

SIMT hardware. In all these previous studies, they focused

on monolithic services and had to rewrite the workloads in

CUDA, whereas ThreadFuser analyzes SIMT efficiency of

microservices as-is on the CPU in its original programming

language. Furthermore, they do not explore the bottlenecks of

SIMT deficiency.

Tino et al. [44] describe how an out-of-order pipeline can be

integrated with SIMT hardware to execute OpenMP workloads

efficiently. ThreadFuser can be used to improve the reach of

these previous works by providing control flow and memory

efficiency estimations for a broad class of CPU workloads.

VII. LIMITATIONS

With zero coding effort, the framework enables program-

mers to project the first-order performance gain of multi-

threaded CPU workloads on SIMT hardware, including ar-

bitrary multithreaded code that does not follow the SPMD

programming model. Although ThreadFuser gives the pro-

grammer a sense of how well the program will perform with

zero restructuring, it does not directly project the potential

performance possible if the programmer is willing to invest

the effort required to leverage GPU-specific features such

as shared memory or tensor cores. However, by leveraging

ThreadFuser’s detailed simulation results, the programmer

can assess the potential impact of these optimizations. Pro-

grammers must explicitly use these features for maximum

performance benefits; for example, existing SIMT compilers

do not automatically target tensor cores. Similarly, optimizing

data movement for shared memory requires careful manual

consideration.

From an ISA perspective, since ThreadFuser relies on

the output of a CPU compiler optimized for x86 machines,

some of the assumptions made by the compiler could be

sub-optimal for a SIMT design. For example, the register

allocation mechanism is unaware of the large multi-threaded

registers available for throughput hardware, which may lead

to more register spills/fills than necessary. These kinds of

hardware/software co-design considerations are possible for

architects to assess by modifying ThreadFuser’s simulation

infrastructure but hamper direct correlation between equivalent

CPU and GPU programs. For example, the CPU compiler’s

optimization level can have a non-trivial effect on memory

system correlation, as shown in Figure 5.

From a programmer’s perspective, ThreadFuser is most

useful in projecting the performance of large codebases with

less structured and less easily predictable patterns. Estimating

the performance of a matrix multiplication CPU program,

for example, is better left to higher-level roofline analysis

since optimized library kernels already exist for these kinds

of workloads. ThreadFuser focuses more on finding the next

optimization frontier for SIMT-based accelerators than per-

fectly predicting their current use cases in workloads where

a rich suite of software already exists. We believe that SIMT

simulation of these workloads will enable architects to explore

more exotic SIMT-based designs not limited to today’s GPUs

and drive the exploration of more heterogeneous hardware.

VIII. CONCLUSION

We introduce ThreadFuser, a correlated analysis framework

designed to evaluate the effects of SIMT execution on arbitrary

CPU binaries. Without changing a line of code, ThreadFuser

enables application developers to evaluate the compatibility

of multithreaded CPU applications with SIMT GPUs. We

demonstrate that there is significant potential to accelerate

MIMD CPU programs, previously considered too irregular for

SIMT, with contemporary GPUs. ThreadFuser’s per-function

analysis helps to rapidly identify problematic code segments,

providing a clear understanding of code modifications that are

necessary for efficient GPU execution.

By integrating with state-of-the-art simulation tools [27],

ThreadFuser enables architects and system designers to study

the implications of data-parallel acceleration on diverse soft-

ware. The GPU revolution in machine learning was enabled by

giving programmers the ability write general-purpose code for

a data-parallel SIMT machine. ThreadFuser seeks to build on

this momentum, unhindered by the often painstakingly task of

porting code to a GPU programming language. ThreadFuser

allows architects to explore the wide space of CPU software

and evaluate alternative SIMT accelerator designs in new

domains that have yet to be accelerated.
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