
A SIMT Analyzer for Multi-Threaded CPU
Applications

Ahmad Alawneh
ECE department
Purdue University

aalawneh@purdue.edu

Mahmoud Khairy
ECE department
Purdue University

abdallm@purdue.edu

Timothy G. Rogers
ECE department
Purdue University

timrogers@purdue.edu

Abstract—The use of GPUs for general purpose applications
has drastically increased. However, the performance gain from
porting multithreaded CPU workloads to massively parallel
SIMT-based accelerators, like GPUs, is often unpredictable. Even
with enough parallelism, programmers do not know if their
CPU code will run well on a GPU without first investing the
effort to refactor it into a GPGPU programming language.
Most of this unpredictability stems from two key side-effects
of the GPU’s energy-efficient SIMT hardware: control-flow and
memory divergence.

To alleviate this issue, we propose SIMTec, an analysis tool that
computes the control-flow and memory divergence of arbitrary
pre-compiled CPU binaries. The tool constructs and analyzes a
dynamic control flow graph of the application, batches threads
into warps and emulates the operation of a SIMT stack for
each warp to compute the projected SIMT efficiency. Given each
warp’s execution mask, memory coalescing is computed using the
addresses accessed by memory instructions from parallel threads.
The tool reports the SIMT efficiency and memory divergence
characteristics.

We validate SIMTec using a suite of 11 applications with
both x86 CPU and CUDA GPU implementations on an NVIDIA
Volta V100, demonstrating that SIMTec has a correlation factor
of 1.00 and 0.98 for SIMT efficiency and memory divergence,
respectively. To demonstrate the predictive power of SIMTec,
we explore another 16 CPU workloads for which there is no
1:1 GPU implementation. We perform case studies on these
applications that range from compute-intensive thread-parallel
workloads to cloud-based request-parallel microservices. Using
SIMTec, we demonstrate that many of these CPU-only workloads
are amenable to SIMT acceleration as-is.

I. INTRODUCTION

Single Instruction Multiple Thread (SIMT) hardware, like

Graphics Processing Units (GPUs), has been widely adopted in

many areas, including graphics, High Performance Computing

(HPC) and machine learning. The Single Program Multiple

Data (SPMD) pattern available in these workloads make them

amenable to lock-step execution on SIMT hardware, as threads

execute the same program code and exhibit similar control

flow. Moreover, these workloads show regular memory behav-

ior which increases memory coalescing opportunities. These

program characteristics have led to significant performance

and energy efficiency gains when these workloads are ported

to SIMT-based GPU hardware [1]. The inherent efficiency in

SIMT hardware comes from: (i) amortizing the pipeline front-

end overhead by fetching and decoding each instruction only

once for all the threads in the same warp, and (ii) generating

PIN

per thread trace

CPU

(a) Step 1: Per-thread
PIN trace generation

T0 BBL
#S FUN1
48 0xFF18
#R FUN1

⁞

T0 MEM
0xFF18 0x810 R
0xFF18 0x814 R
0xFF24 0x810 W

⁞
….

SIMTizer

TN BBL
#S FUN1
48 0xFF18
#R FUN1

⁞

TN MEM
0xFF18 0x810 R
0xFF18 0x814 R
0xFF24 0x810 W

⁞

Parse and
Scale Trace

Construct
DFG

IPDOM
Analysis

Warp
Formation

SIMTStack
Simulation

Gen Efficiency
and Mem Div

report

(b) Step 2: Control flow and memory
divergence analysis

Fig. 1: SIMTec architecture.

less memory traffic to the memory system by coalescing

accesses from threads in the same warp.

However, these efficiency gains cannot be captured by all

parallel programs. The grouping of threads into warps for

lock-step execution creates significant penalties for workloads

where parallel threads traverse different control-flow paths

or access dissimilar data. Often, the greatest barrier to the

adoption of the GPU as an accelerator for arbitrary parallel

workloads is that the effects of these inefficiencies cannot

be evaluated without porting the code to a General Purpose

Graphics Processing Unit (GPGPU) language and evaluating

the results on real hardware. The porting process takes signif-

icant effort and often results in programs that are less efficient

than their parallel CPU counterparts. As a result, the exercise is

often only attempted on codes with obviously regular control-

flow and access patterns, leaving the acceleration opportunities

in many highly-parallel applications unexplored.

II. SYSTEM OVERVIEW

To remove the high initial evaluation barrier and uncover

new multithreaded CPU workloads that might benefit from

SIMT hardware, we propose SIMTec. SIMTec traces the

control-flow and memory access pattern of unaltered CPU

binaries to generate a per-function breakdown of a parallel

application’s SIMT efficiency and memory divergence level.

Figure 1 depicts the end-to-end flow of our SIMTec tool.

First, we use Intel’s x86 PIN tool [2] to generate the dynamic

control flow graph and memory accesses pattern for each CPU

thread. Second, these traces are then fed up to our backend that

20%

40%

60%

80%

100%

20% 40% 60% 80% 100%

SI
M

TI
ZE

R
 S

IM
T

EF
FI

CI
EN

CY

VOLTA V100 EFFICIENCY

O0 CORREL=1.00 MAE=6%

O1 CORREL=1.00 MAE=4%

O2 CORREL=0.99 MAE=5%

O3 CORREL=0.99 MAE=5%

Fig. 2: SIMTec SIMT control flow efficiency correlation.

1000

10000

100000

1000000

10000000

100000000

1000 10000 100000 1000000 10000000 100000000SI
M

TI
ZE

R
 M

EM
O

RY
 T

RA
N

SA
CT

IO
N

S

VOLTA V100 MEMORY TRANSACTIONS

O0 CORREL=0.99 MAE=30%

O1 CORREL=0.98 MAE=17%

O2 CORREL=0.96 MAE=27%

O3 CORREL=0.96 MAE=31%

Fig. 3: SIMTec memory divergnce correlation.

groups the threads into warps based on a configurable batching

algorithm. Then, SIMTec runs a stack-based Immediate Post-

Dominator (IPDOM) reconvergence analysis for the grouped

threads [1] to calculate the SIMT control-flow efficiency.

The tool also reports the application’s predicted memory

divergence by determining the number of memory transactions

for each x86 instruction that generates memory accesses after

employing a memory coalescing algorithm similar to the

ones used in GPU hardware [1]. The tool reports the SIMT

efficiency and memory divergence characteristics for each

function in the application, which gives the programmer the

ability to identify SIMT-specific bottlenecks. It also explores

the effect of warp size on their efficiency and identify GPU-

specific bottlenecks in the source code.

III. CORRELATION RESULTS

To demonstrate the validity of our tool, we correlate the

reported metrics with real SIMT hardware using 11 multi-

threaded CPU workloads that have OpenMP/Pthread imple-

mentations and CUDA implementations that mirror each other.

On these applications, SIMTec uses the CPU execution of the

programs to predict the GPU’s SIMT efficiency and memory

divergence characteristics with a mean absolute error of 4%

and 17% respectively, as depicted in Figures 2 and 3.

The CUDA workloads are compiled via nvcc with -O3
optimization level. We did not find significant differences in

the results when compiled with different optimization options.

On the other hand, the CPU workloads are compiled via gcc
with different optimization options, i.e., O0, O1, O2, O3.

SIMTec has a 1.0 correlation with hardware when O0, and

O1 optimizations are used. O1 has a 5% mean absolute error

making it the closest to the real SIMT control flow efficiency.

In general, when O3 is used, the analyzer tends to slightly

overestimate the SIMT efficiency, in view of the fact that

0%

20%

40%

60%

80%

100%

Rotate MD5 Pigz Avg

Genreal multithreaded workloads Average

SI
M

T
EF

FI
CI

EN
CY

Fig. 4: Warp efficiency of general-purpose multi-threaded

workloads (Warp size=32).

0

5

10

15

20

25

30

35

Rotate MD5 Pigz Avg

Genreal multithreaded workloads Average

M
EM

 T
RA

N
S

PE
R

LO
A

D
/S

TO
RE

heap stack

Fig. 5: Memroy transactions per load/store instruction for

general-purpose multi-threaded workloads (Warp size=32).

the compiler applies more aggressive optimizations to deliver

higher performance.

IV. CASE STUDY

Using our tool, we perform a case study to demonstrate

both its potential use cases and the opportunities present in

contemporary multithreaded CPU applications that have not

been ported to the GPU. In our case study, we examine the

feasibility of porting general-purpose multi-threaded Linux

utilities to SIMT hardware [3], [4]. In these compute-intensive

applications, the program breaks down the workload into

multiple chunks and each thread computes the assigned chunk

in parallel. We used the original workloads as-is without any

alterations.

Figure 4 shows that some of these workloads exhibit

promisingly convergent control-flow with up to 99% SIMT

efficiency, suggesting that a straight-port of the application

code to SIMT hardware would result in significant efficiency

gains. However, the data compression benchmark, pigz, ex-

hibits limited efficiency as its control flow is inherently data-

dependent. In Figure 5, we plot the memory divergence degree.

The workloads demonstrate high memory divergence, as each

thread has its private stack and the memory manager allocates

scattered data chunks in the heap segment, decreasing the data

coalescing opportunity at run-time. Data reformatting -like

changing data representation from array-of structure (AoS) to

structure-of-array (SoA)- can improve the memory efficiency

of these workloads [1].

V. CONCLUSION

Application developers can use SIMTec to quickly evaluate

the SIMT-friendliness of any multithreaded CPU application

without changing the source code. We believe that SIMTec can

uncover new classes of applications that can benefit from GPU

acceleration. With access to the source code, we demonstrate

how our per-function analysis quickly identifies problem

areas in the code, allowing the developer to understand the

scope of code changes necessary to make the application

more amenable to the SIMT-based hardware, like GPU.

From an architect and system designers standpoint, we

believe SIMTec provides interesting insights into new software

classes that can help drive future GPU and general SIMT-

accelerator design. It allows architects to ask: What should a

SIMT-accelerator look like for general-purpose multithreaded

CPU applications? SIMTec can also be easily modified to gen-

erate warp-based instruction traces from CPU programs that

can be input into contemporary trace-based GPU simulators

like Accel-Sim [5], enabling more detailed microarchitectural

design studies.

VI. ACKNOWLEDGMENTS

This work was supported, in part, by NSF CCF #1943379

(CAREER) and the Applications Driving Architectures (ADA)

Research Center, a JUMP Center cosponsored by SRC and

DARPA.

REFERENCES

[1] “NVIDIA CUDA C Programming Guide,” https://docs.nvidia.com/cu-da/
cuda-c-programming-guide/index.html, NVIDIA Corp., 2020, accessed
August 6, 2020.

[2] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wal-
lace, V. J. Reddi, and K. Hazelwood, “Pin: building customized program
analysis tools with dynamic instrumentation,” in Proceedings of the
2005 ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2005.

[3] M. Andersch, B. Juurlink, and C. C. Chi, “A benchmark suite for
evaluating parallel programming models,” in Proceedings 24th Workshop
on Parallel Systems and Algorithms, 2011. [Online]. Available:
http://www.aes.tu-berlin.de/fileadmin/fg196/publication/andersch01.pdf

[4] “A parallel implementation of gzip for modern multi-processor, multi-
core machines,” https://zlib.net/pigz/.

[5] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
Proceedings of the International Symposium on Computer Architecture
(ISCA). ACM, 2020.

